Skip to main content

Estimating Solar Radiation Pressure for GEO Debris

Chao, Cia-chun George 1, Campbell, Spencer1
Affiliation data not available1

Document details

Publishing year2009 PublisherESA Publishing typeConference Name of conference5th European Conference on Space Debris
Pagesn/a Volume
H. Lacoste


Earlier investigations and surveys show that over 700 trackable debris objects are drifting or librating in the GEO (geosynchronous Earth orbit) ring. The close monitoring of the motion of these debris objects is becoming increasingly important due to the potential collision risks to operational GEO satellites. A critical element in improving the ephemeris prediction accuracy of these objects is the determination of solar radiation pressure effects on the orbit. A computational procedure employing specially designed PC programs was developed for estimating the solar radiation pressure effect on GEO debris. Results of three sample cases show significant accuracy improvement in long-term ephemeris prediction. The post-fit residuals (sigmar=3.0, sigmai = 10, sigmac = 1.0 km) are in good agreement with that processed by an independent tool (TRACE). The noise in the post-fit residuals is believed to be due to the position uncertainty in the two line elements (TLE) data. This efficient method, once implemented, has the potential of achieving real-time monitoring of the GEO debris objects with position accuracy considerably better than 10 km in-track, 3 km radial and 1 km cross-track.