Document details
Abstract
The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for space debris in Geostationary (GEO) and Medium Earth Orbits (MEO). Usually, to improve the quality of the determined orbits for newly discovered objects, follow-up observations are conducted. The latter take place at different times during the discovery night or in subsequent nights. The time interval between the observations plays an important role in the accuracy of the calculated orbits. Another essential parameter to consider is the position of the observer at the observation time. In this paper, the accuracy of the orbit determination with respect to the position of the observer is analyzed. The same observing site at varying epochs or multiple site locations involve different distances from the target object and a different observing angle with respect to its orbital plane and trajectory. The formal error in the orbit determination process is, among other dependencies, a function of the latter parameters. The analysis of this dependence is important to choose the appropriate observation strategy. One of the main questions that arises is e.g. whether observing the same object from different stations results in better determined orbits and, if yes, how big is the improvement. Another question is e.g. whether the observation from multiple sites needs to be simultaneous or not for a better orbit accuracy.