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ABSTRACT

Reliable uncertainty propagation is crucial for satellite
maneuver detection, particularly when using Gaussian-
based anomaly metrics like the k2, or squared Maha-
lanobis distance. Traditional Cartesian coordinates lose
Gaussianity over time, limiting prediction accuracy. This
study compares Cartesian, Modified Equidistant Cylin-
drical (EQCM), and Generalized Equinoctial Orbital El-
ements (GEqOE) representations for maintaining Gaus-
sianity in uncertainty propagation. Using both linear
methods and the Unscented Transform (UT), we assess
uncertainty realism against Monte Carlo samples. Results
show EQCM and GEqOE, especially with UT, signifi-
cantly improve the quality of Gaussian-based uncertainty
representation. Additionally, enhancing Initial Orbit De-
termination (IOD) with UT and Taylor algebra refines un-
certainty realism of single track radar-based estimations,
boosting the sensitivity and robustness of maneuver de-
tection. The k2 metric is evaluated across synthetic sce-
narios representative of operational uncertainties. This
study provides practical guidelines for selecting state rep-
resentations and propagation methods to optimize accu-
racy and reliability in satellite anomaly detection.
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1. INTRODUCTION

Spacecraft maneuver detection is vital to Space Surveil-
lance and Tracking operations, essential for maintain-
ing accurate catalogs and preventing collisions. Even
centimeter-per-second orbital adjustments can invalidate
state estimates, requiring reliable detection methods.
This challenge is magnified in Low Earth Orbit, where
limited observation windows and atmospheric drag am-
plify uncertainties, affecting critical functions from con-
junction analysis to re-entry forecasting.

Recent research has explored reachability-based met-
rics and control distances, particularly for geostation-
ary orbits [19, 3, 17, 8], demonstrating that maneuvers

can be inferred by testing the feasibility of linking pre-
and post-maneuver orbits with minimal propulsive cost.
However, translating these concepts to LEO scenarios
with a single radar track and strong perturbations re-
mains non-trivial [15]. Effective maneuver detection de-
mands accurate orbital uncertainty representation. Clas-
sical Cartesian coordinates distort Gaussian distributions
over time [11, 20], while techniques like the Unscented
Transform, Gaussian-Mixtures, and alternative state rep-
resentations (equinoctial or curvilinear coordinates) bet-
ter maintain covariance integrity during extended propa-
gation [16, 9, 12, 13]. Likewise, robust Initial Orbit De-
termination methods for short radar tracks must address
strong non-linearities when mapping measurement-space
uncertainty to state-space covariance [2, 1]. Accounting
for dynamical model uncertainties remains critical for re-
alistic state uncertainty characterization in orbit determi-
nation applications [4].

In this paper, we introduce a maneuver detection met-
ric for single-track scenarios under realistic LEO oper-
ational uncertainty. Building on a short-arc IOD method
that incorporates J2 perturbations [14], we enhance ac-
curacy using (at least) second-order approximations to
better manage the non-linear mapping between measure-
ments and orbital elements. We assess different curvi-
linear coordinate systems for (i) uncertainty propagation
and (ii) IOD performance from sparse radar data. Results
show that optimal propagation coordinates may not yield
the best IOD accuracy, underscoring the need for a joint
perspective. Our experiments confirm that second-order
IOD in orbital elements improves detection sensitivity for
low-thrust maneuvers, balancing precision and efficiency
in LEO surveillance.

The paper is organized as follows: Sections 2 and 3
present the maneuver detection scenario and the met-
ric selected for the comparative study. Section 4 dis-
cusses propagation methods for the alternative state space
representations considered, while Section 5 introduces
enhanced IOD techniques to address measurement non-
linearities. Section 6 validates covariance consistency
and Section 7 reports experimental results on the metric.
Finally, Section 8 concludes with practical implications
for operational surveillance.

Proc. 9th European Conference on Space Debris, Bonn, Germany, 1–4 April 2025, published by the ESA Space Debris Office

Editors: S. Lemmens, T. Flohrer  & F. Schmitz, (http://conference.sdo.esoc.esa.int, April 2025)



2. SCENARIO UNDER CONSIDERATION

In the context of this study, maneuver detection is per-
formed under a highly constrained information environ-
ment with only a single survey radar station available.
This radar has a known geodetic coordinates, a fixed an-
tenna orientation, and a defined Field of Regard (FoR).
As Resident Space Objects (RSOs) pass through its sur-
veyed volume, the radar detects them and generates a
track consisting of sequential observations. Each obser-
vation provides measurements of range ρ, azimuth Az,
elevation el, and range-rate ρ̇, all subject to known uncer-
tainties.

Once a track has been correlated with an existing cat-
alogue entry, always assumed here, the primary objec-
tive becomes determining whether a maneuver has taken
place since the last recorded estimate1. This is a crucial
step in the catalogue maintenance process, as detecting
a maneuver directly impacts how past observational data
is utilized for precise orbit determination. If a maneuver
is detected, prior information becomes unreliable for fu-
ture orbit determination. The detection process relies on
comparing the state estimate obtained through Initial Or-
bit Determination (IOD) from the new radar track with
the predicted state propagated from the last known cat-
alogue entry. The statistical discrepancy between these
two distributions serves as the foundation for maneuver
detection in this study.

The maneuver detection scenario, represented in Fig-
ure 1, relies on two key orbital state representations: a
past state estimate obtained from the catalogue and a
present estimate derived from radar observations. The
past state at some previous epoch t0 is assumed to be
well-characterized by a six-dimensional Gaussian distri-
bution:

N (x;X0,P0), (1)

where X0 = [r0 v0] represents the mean state vector (po-
sition and velocity in an inertial frame), and P0 is the as-
sociated covariance matrix. This state is propagated for-
ward to a reference epoch tref, where it defines the pre-
dicted probability density function (PDF),

N (x;XP ,PP ). (2)

Simultaneously, a new estimation of the state is obtained
from the radar track at the same epoch tref, resulting in a
second Gaussian distribution:

N (x;XE ,PE). (3)

The statistical comparison of these two independent
distributions—N (x;XP ,PP ) from propagation and
N (x;XE ,PE) from IOD—forms the basis of maneuver
detection in this study.

1The prior catalogue estimate was computed through an orbit deter-
minatio effort that could have used any number of information sources,
not limited to a single radar track. The implication is that the uncer-
tainty of this past state is low compared to the radar-based estimation
used in the metric computation.

3. MANEUVER DETECTION METRIC

If the observed object follows a purely ballistic trajec-
tory, the estimated state N (x;XE ,PE) at tref should
be statistically consistent with the propagated state
N (x;XP ,PP ). However, if a maneuver has occurred
between t0 and tref, the two distributions will diverge be-
yond what can be expected of their estimated uncertain-
ties. To quantify this deviation, a statistical measure is
required to assess the distance between the estimated and
predicted distributions. This study adopts a very simple
approach, the squared Mahalanobis distance, also called
k2, which accounts for both the difference in mean states
and the covariance structure of the distributions:

k2 = (XE −XP )
T P−1 (XE −XP ), (4)

where the total covariance matrix is given by

P = PE + PP . (5)

The assumptions underpinning this detection framework
are:

• The IOD-derived state N (x;XE ,PE) is an unbi-
ased, realistic estimate of the true state, within the
limits imposed by observational noise and the (typi-
cal) short track durations.

• The propagated state N (x;XP ,PP ) is computed
under a reasonable approximation of the real-world
dynamical enviroment, resulting in a realistic repre-
sentation of the expected error distribution given the
problem uncertainties.

• Both distributions are statistically independent.

Under the critical assumption that both state distributions
remain Gaussian after propagation and estimation, the k2
metric follows a chi-squared distribution with six degrees
of freedom in the nominal, non-maneuvered case. Meet-
ing these criteria, it is possible to set a statistically signif-
icant threshold for the maximum expected squared Ma-
halanobis distance, above which a maneuver is flagged.
This threshold is given by:

k2th = χ2
ν(1− δ), (6)

where χ2
ν(1 − δ) is the inverse chi-squared cumulative

distribution function evaluated at confidence level (1−δ)
for ν = 6 degrees of freedom. The choice of δ determines
the sensitivity of the detection metric, with lower values
reducing false positives at the cost of reduced maneuver
sensitivity.

This detection framework has two key requirements.
First, at a minimum, it demands preservation of Gaussian
consistency for both the propagated state N (x;XP ,PP )
and the radar-derived estimate N (x;XE ,PE) through-
out their respective transformations. Second, and more
stringently, it requires covariance realism—not merely



Figure 1. Maneuver detection from the track information is achieved by comparing an estimate of the orbital
state N (x;XE ,PE) with the predicted PDF, characterized by N (x;XP ,PP ) and obtained from a past estimation
N (x;X0,P0) at t0. This is done with the squared Mahalanobis distance.

covariance consistency—to ensure reliable detection per-
formance. The following sections detail how appropri-
ate state representation, uncertainty propagation, and Ini-
tial Orbit Determination (IOD) methods are combined to
meet these requirements, while highlighting the implica-
tions of achieving true covariance realism versus simple
consistency.

4. COMPUTATION OF THE PREDICTION

Propagating the initial distribution N (x;X0,P0) to tref
presents two key challenges. The detection of low-
magnitude maneuvers (∼10 cm/s) requires high-fidelity
dynamics to minimize propagation bias. Additionally,
orbital non-linearities can distort the Gaussian PDF over
time, potentially invalidating the k2 metric. These chal-
lenges are addressed through two uncertainty propagation
methods, each compatible with different state representa-
tions.

4.1. Uncertainty propagation methods

The propagation of uncertainty requires mapping the ini-
tial Gaussian distribution x0 ∼ N (x;X0,P0) at t0
through the non-linear dynamics:

ẋ = F (x, t,p), (7)

where p represents the model parameters defining pertur-
bation forces. The flow x(t) = φ(x0, t) of this dynami-
cal system transforms the initial PDF into a non-Gaussian
distribution at tref. However, under the assumption of lim-
ited non-linearity, this transformed distribution can be ap-
proximated as Gaussian x(tref) ∼ N (x;XP ,PP ) using
two different methods described below.

A comprehensive uncertainty propagation framework
should account not only for the initial state uncertainty
but also for uncertainties in the dynamics F and the satel-
lite parameters p. However, this work assumes high-
fidelity dynamics and fixed satellite parameters, avoiding
explicit modeling of process noise or parameter uncer-
tainty. While this simplifies the computation of the so-
lution, it potentially underestimates the true state uncer-
tainty, particularly in cases where drag and reflectivity co-
efficients play a significant role [4]. The impact of these
assumptions is later evaluated through simulated scenar-
ios when both uncertainties are present but not accounted
for.

The two uncertainty propagation methods applied in this
study are Linear Covariance Propagation (LCP) and Un-
scented Transform (UT). The Linear Covariance Propa-
gation (LCP) method propagates uncertainty by assuming
local linearity around a reference trajectory. The mean
state evolves according to the full non-linear dynamics:

ẋ = F (x, t,p), x(t0) = X0, (8)

so that XP = φ(X0, tref). While the covariance is prop-
agated using the state transition matrix Φ:

PP = ΦPP0Φ
T
P (9)

The state transition matrix is obtained by solving the vari-
ational equations alongside the state:

Φ̇ =
∂F

∂x
Φ, Φ(t0) = I (10)

This captures how small deviations from the reference
trajectory evolve over time. The method is computation-
ally efficient but becomes less accurate as non-linearities
grow stronger over longer propagation times.

The UT propagates uncertainty by sampling the initial
distribution with a minimal set of deterministically cho-
sen points. Given the six-dimensional state vector (n =



6), thirteen sigma points are selected to preserve the sta-
tistical moments:

X
(i)
0 = X0 ±

√
(n+ λ)[P0]i, i = 1, ..., n, (11)

where [P0]i is the i− th column of the matrix square root
of P0 [10]. These points are propagated individually:

X
(i)
P = φ(X

(i)
0 , tref ). (12)

The predicted mean and covariance are then recon-
structed using weighted statistics:

XP =

2n∑
i=0

W
(m)
i X

(i)
P ,

PP =

2n∑
i=0

W
(c)
i (X

(i)
P −XP )(X

(i)
P −XP )

T .

(13)

The UT method captures non-linear uncertainty evolution
more accurately than linear propagation while requiring
only 2n + 1 propagations. The weights and scaling pa-
rameter λ are determined by three parameters: α controls
the spread of sigma points, β incorporates prior knowl-
edge of the state distribution, and κ is an additional scal-
ing parameter. When properly tuned, these parameters
ensure the UT provides a third-order accurate approxi-
mation of the mean and covariance after the non-linear
transformation [6].

The choice between these methods depends on the level
of non-linearity present in the problem. The following
section introduces the state representation choices con-
sidered, which further influence the accuracy of uncer-
tainty consistency.

4.2. Curvilinear state representations

Any state representation can be used for uncertainty prop-
agation, provided the dynamics can be expressed in that
frame. While propagators typically operate in standard
coordinates (Cartesian, Equinoctial, Keplerian), the un-
certainty can be analyzed in alternative representations
through appropriate transformations.

Given the same orbital state x⌋A and x⌋B in representa-
tions A and B, the transformation A → B and its Jaco-
bian are:

x⌋B = TA/B(x⌋A), JA/B =
∂TA/B

∂x⌋A
(14)

For the LCP method the transformation of the predicted
distribution N (x;XP ,PP ) to a different state represen-
tation is a direct transformation of the computed mean
and covariance:

XP ⌋B = TA/B(XP ⌋A)
PP ⌋B = JA/B PP ⌋A JTA/B

(15)

This approach assumes that the entire process applied to
the initial Gaussian distribution can be linearly approxi-
mated around the reference trajectory, including transfor-
mations to a different state space. Since this is a strong
assumption, the UT offers a more accurate alternative. As
described in Section 4.1, propagated sigma points in (12)
are further transformed using TA/B before reconstruc-
tion, ensuring that non-linear effects of the state conver-
sion are accounted for. Notably, the UT does not require
the Jacobian JA/B.

The proposed curvilinear state representations tested
against Cartesian (C) are the Modified Equidistant Cylin-
drical (EQCM, E) [11] and the Generalized Equinoctial
Orbital Elements (GEqOE, G) [9]. EQCM has already
been evaluated for this purpose in [13], while GEqOE, an
alternative orbital element-based representation, is intro-
duced here for comparative analysis. Notably, GEqOE
has been previously applied in [14] for the development
of an efficient J2-corrected IOD algorithm.

The transformation and its inverse between Cartesian
and GEqOE coordinates (C ↔ G), along with the as-
sociated Jacobian, are defined in [9]. However, a brief
overview of these orbital elements is provided here for
clarity. GEqOE generalize the classical equinoctial ele-
ments [21] by incorporating the perturbing potential U
directly into their definition, making them well-suited for
dynamical models with conservative perturbations. The
formulation introduces the generalized semi-major axis a
and the Laplace vector µg, which define a non-osculating
ellipse in the orbital plane. The in-plane projections of g
yield the elements p1 and p2, which generalize the clas-
sical equinoctial elements h and k. Kepler’s equation is
expressed in terms of the generalized mean longitude L,
while the generalized mean motion ν is derived from the
total energy, incorporating U . Finally, the elements q1
and q2, analogous to the classical equinoctial elements p
and q, complete the six-element GEqOE state vector:

χ = [ν, p1, p2, q1, q2,L] . (16)

These are used here purely for state representation pur-
poses, so there is no need to consider the equations of
motion presented in [9].

The transformation and its inverse between Cartesian and
EQCM coordinates (C ↔ E) are defined in [11], though
the Jacobian of these transformations was not provided in
the original work. While this Jacobian has been analyt-
ically derived in [13], the formulation has been omitted
here for brevity. The EQCM representation is a modi-
fied version of the linear Hill' s frame that accounts for
the reference state' s orbital eccentricity. Unlike tradi-
tional linear frames, EQCM measures distances along the
YEQCM and ZEQCM axes following curved paths rather
than straight lines, as illustrated in Figure 2. This cur-
vature adaptation allows uncertainty regions that appear
“banana-shaped” in Cartesian space to be represented as
more Gaussian-like distributions in EQCM coordinates.



Figure 2. This is a representation of the intermediate transformations required to express the state of a deputy (or chaser)
in the EQCM curvilinear frame spawned from the chief spacecraft state (point 1). The “2” intermediate local RSW frame
is placed along the keplerian orbit of the chief.

5. ENHANCED INITIAL ORBIT DETERMINA-
TION

This work leverages an algorithm for Initial Orbit Deter-
mination (IOD), published in [14], that employs a J2-
corrected dynamical model to fit various satellite state-
derived variables and radar observables from a single
track. The radar, characterized by a specific Field of Re-
gard (FoR) and revisit time rt, generates a track of N
consecutive observations when a RSO passes through its
FoR. The measurements include range ρm, azimuth Azm,
elevation elm, and range-rate ρ̇m, each with an associated
covariance matrix Czm .

5.1. Direct linear estimation (Traditional IOD)

The IOD process transforms radar measurements into a
state estimate through an iterative linear least-squares ap-
proach. While this could accommodate any dynamical
model, [14] developed an accurate short-term Taylor ex-
pansion propagator that incorporates the J2 perturbation,
which efficiently maps the radar track data (characterized
by mean z̃ and covariance Cz) to a state estimate:

(XE ,PE) = FIOD(z̃,Cz), (17)

where XE = [r,v] is the estimated Cartesian state at the
track' s midpoint (tref) and PE is its covariance. While the
IOD function assumes linearity during the iterative fitting
process and uses first-order derivatives to approximate
the output distribution, the actual transformation from
measurement to state space is inherently non-linear. This
limitation in uncertainty representation motivates the en-
hanced methods proposed in this work.

5.2. Advanced methods (UT, Taylor algebra)

To improve the uncertainty representation in IOD, two al-
ternative approaches are proposed: the Unscented Trans-
form and Taylor algebra. The UT provides a third-order
approximation of the non-linear IOD transformation by

considering not just the measured values in z̃, but a set of
carefully chosen sigma points through the fitting process:

(XE ,PE) = UTreconstruct({FIOD(zi,Cz)}2nz+1
i=1 ), (18)

where zi are the sigma points sampled from N (z; z̃,Cz),
and UTreconstruct is the process in (13). Unlike typical or-
bital state transformations, where n = 6, here the di-
mension nz = 4N depends on the track length, poten-
tially becoming much larger. The computational effi-
ciency of the original IOD algorithm makes this approach
viable despite the increased dimensionality. This method
better captures non-linear effects in the measurement-
to-state transformation without requiring explicit higher-
order derivatives.

The Taylor algebra method leverages automatic differen-
tiation to compute derivatives through algebraic opera-
tions. The function FIOD has been implemented in Hip-
parchus, a programming language supporting this func-
tionality. The result is an enhanced function FT

IOD that
provides both the state XE and its derivatives with re-
spect to z̃ up to any desired order. Let us call this com-
bined information the XT

E Taylor map.

While these derivatives could compute statistical mo-
ments as in [1], here the Taylor map XT

E is directly
sampled over the measurements distribution, obtaining a
representative point cloud to estimate mean and covari-
ance. Since sampling involves only polynomial evalua-
tions, this method is computationally faster than UT for
moderate map orders. This alternative mean-covariance
computation is compared against linear and UT methods
in subsequent tests.

The output from any IOD method (Linear, Taylor algebra,
UT) is compatible with all orbital representations consid-
ered in this work. Although the implemented IOD pro-
duces Cartesian coordinates directly, transformations de-
scribed in Section 4.2 may be applied prior to evaluating
the detection metric. For the Taylor algebra (TA) method
specifically, implementing T T

A/B converts the Taylor map
XT

E to the desired representation, after which sampling
generates the necessary mean and covariance.



6. COVARIANCE CONSISTENCY VALIDATION

A practical way to check whether a Gaussian approxi-
mation remains valid after a general non-linear transfor-
mation is to examine the distribution of squared Maha-
lanobis distances [4, 5]. Let an n-dimensional Gaus-
sian distribution N (x;µ, P ) be sampled to obtain points
{xi}. By definition, the quantity

k2i = (xi − µ)T P−1 (xi − µ)

follows a chi-square distribution with n degrees of free-
dom. Consequently, the sample mean of k2i should be n,
and its sample variance 2n.

After applying any non-linear mapping f(·) to the ini-
tial distribution it is convenient to approximate the result
by a new Gaussian N (x,m, Q), which in the context of
this work is ever present. If this approximation is consis-
tent with the actual distribution of f(xi), the new squared
Mahalanobis distances

k̃2i =
(
f(xi)−m

)T
Q−1

(
f(xi)−m

)
, (19)

should again be distributed approximately as χ2
n. There-

fore, by comparing the empirical distribution of k̃2i with
a χ2

n reference, one assesses covariance consistency. If
the sample statistics (mean, variance) or more formal
goodness-of-fit tests reveal large deviations from χ2

n, the
new Gaussian approximation is deemed poor, indicat-
ing a breakdown in linearity assumptions. The tests
presented in this section serve as preliminary validation
of the Gaussian consistency assumption. A more com-
prehensive assessment of covariance realism is incorpo-
rated into the detection metric testing in Section 7, where
the practical implications of these assumptions are thor-
oughly evaluated under operational conditions.

6.1. Prediction covariance consistency

In order to evaluate the propagation methods and state
representations from Section 4, a LEO test case is defined
with a = 7000 km and e = 0.001. The initial state dis-
tribution employs a position-aligned diagonal covariance
in the satellite local frame (σr = 20m, σv = 0.01m/s),
which is then converted to Earth-Centered Inertial coor-
dinates 2 to obtain P0. The dynamical model follows the
Prediction dynamics of Table 2, using a numerical propa-
gator from Orekit [18]. A total of 20,000 samples is gen-
erated to verify that the initial ki distribution conforms
to a χ2 law and to observe its subsequent evolution, as
illustrated in Figs. 3 and 4.

A graphical assessment of χ2 consistency is carried out
instead of performing formal goodness-of-fit tests. Note

2Note that a diagonal covariance in local RSW axes will show cor-
relations between position and velocity after conversion to the inertial
frame due to the position dependent velocity of said local frame as de-
fined in [7].
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Figure 3. Propagated state k2 consistency test for three
different state representations using LCP method.

that only the Cartesian representation must strictly satisfy
the χ2 behavior at t0, since the distribution is initially
Gaussian in that frame; however, the relatively small
initial spread ensures approximate Gaussianity remains
valid upon transformation to EQCM and GEqOE.
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Figure 4. Propagated state k2 consistency test for
three different state representations using UT propaga-
tion method.

Focusing on the LCP approach, the Cartesian represen-
tation quickly breaks the Gaussian assumption—its k2

mean and variance diverge from the χ2 expectation in un-
der a quarter of a day. The EQCM representation remains
consistent considerably longer (close to a full day) but
then also exhibits noticeable deviations. In contrast, the
GEqOE-based LCP preserves an almost-Gaussian shape
throughout the entire 1.5-day span. This behavior con-
firms that a simple linear propagation in the Cartesian
state can lead to severe overconfidence unless the distri-
bution is kept very small in the first place.

Figure 4 illustrates how the UT further improves consis-
tency of the propagated covariance—especially for non-



Cartesian states—by capturing a wider range of non-
linear effects3. Even in Cartesian coordinates, UT-based
propagation retains a believable match to the reference
χ2 distribution (albeit with slightly higher variance) for
a longer duration than LCP. Unsurprisingly, combining
UT with either EQCM or GEqOE yields the best results:
they remain close to the χ2 baseline for nearly the entire
simulation, confirming that these more naturally defined
orbital coordinates—together with a higher-order propa-
gation technique—can mitigate certain pitfalls of model-
ing orbital uncertainty as a single Gaussian over extended
time intervals.

In conclusion, these numerical checks reinforce that us-
ing a curvilinear state representation (EQCM or GEqOE)
along with higher-order propagation (e.g., the UT) is
preferable for preserving Gaussian consistency over
propagation timescales of a day or more. If a strictly lin-
ear approach must be used, the GEqOE fare better than
the alternatives [16]. This findings are consistent with
prior results on the limitations of linearized covariance
mappings in orbital mechanics and highlight the benefits
of more refined propagation approaches [20].
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Figure 5. IOD k2 consistency test for the Cartesian rep-
resentation using a single track of 6 measurements.

6.2. IOD covariance consistency

The measurement distribution N (z; z̃,Cz) is evaluated
through the IOD transformation using each method from
Section 5 across all state representations. The k̃2 distri-
bution (Equation 19) is computed via Monte Carlo (MC)
sampling for Linear, Taylor Algebra (TA), and Unscented
Transform (UT) methods. Additionally, the mean and
covariance of the MC cloud serves as a baseline, repre-
senting the optimal Gaussian approximation of the trans-
formed distribution.

3The parameters used for the UT in this case are α = 1/
√
n, β = 2

and κ = 3− n
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Figure 6. IOD k2 consistency test for the EQCM repre-
sentation using a single track of 6 measurements.
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Figure 7. IOD k2 consistency test for the GEqOE repre-
sentation using a single track of 6 measurements.

The analysis focuses on short radar tracks where lin-
ear approximation typically underperforms [14]. Fig-
ures 5, 6, and 7 present results from a simulated six-
measurement track with 7-second intervals, using the
radar station characterized in Table 4.

Figure 5 confirms the expected underperformance of lin-
ear approximation in Cartesian representation. Both TA
and UT alternatives demonstrate substantial improve-
ment, approaching the MC baseline performance. No-
tably, even the MC-derived Gaussian cannot perfectly
represent the actual distribution due to inherent non-
linearities. For the UT implementation, parameters α =
1, β = 0, and κ = 0 yield excellent results regardless of
track length, differing from those used in propagation UT
(Section 6.1).

The alternative state representations (Figures 6 and 7)
also perform adequately with higher-order methods,



Figure 8. IOD estimation Linear approximation vs full
MC representation for Cartesian using a single track of
6 measurements. Every sub-plot is a two component pro-
jection of the full state space. Non-linearities are more
pronounced in the velocity space.

though TA shows slightly reduced accuracy in GEqOE.
Interestingly, the linear approximation in GEqOE per-
forms worst among all alternatives—contrasting with
this representation' s excellent performance in uncer-
tainty propagation even with linear covariance propa-
gation. Throughout all tests, the TA method employs
a second-order map, providing close approximation to
second-order accuracy when using sufficient samples to
compute the resulting mean and covariance.

Figures 8, 9 and 10 illustrate the non-linear transforma-
tions affecting the measurement distribution, particularly
pronounced in GEqOE space. Each sub-plot is a bidimen-
sional projection of the six-dimensional state space, with
a total of 15 different combinations. These visualiza-
tions qualitatively explain the poor performance of linear
approximation methods for short-track IOD processes.
While longer track examples are omitted for brevity, it
should be noted that non-linearities generally diminish
with track length, becoming negligible for tracks of 10
or more measurements.

7. DETECTION METRIC TESTING

This section evaluates the k2 detection metric' s perfor-
mance in realistic operational environments where mul-
tiple sources of uncertainty coexist: initial state esti-

Figure 9. IOD estimation Linear approximation vs full
MC representation for EQCM using a single track of 6
measurements.

Figure 10. IOD estimation Linear approximation vs full
MC representation for the GEqOE using a single track of
6 measurements. Here non-linearities are more general-
ized among all components.



Table 1. Scenario configuration: orbital and epoch
ranges for real satellite state at t0.

Parameter Range

Semi-major axis [km] 6900 – 7500
Eccentricity [–] 0.001 – 0.01
Inclination [deg] 40 – 120
RAAN [deg] 0 – 360
Argument of perigee [deg] 0 – 360
Mean anomaly [deg] 0 – 360
Epoch range (YYYY/MM/DD) 2020/01/01 – 2025/01/01

mation, satellite drag modeling, dynamical environment,
and measurement noise. The testing systematically ex-
amines the metric against low-magnitude maneuvers (as
small as 2 cm/s) to establish practical detection limits and
reliability boundaries.

The reliability of detection methods—specifically their
false positive rates—is the primary focus. A properly
calibrated metric with a detection threshold set at confi-
dence level (1− δ) should exhibit false positive rates not
exceeding δ. When empirical false positive rates consis-
tently exceed this threshold, it indicates violation of un-
derlying assumptions (particularly Gaussianity) and in-
validates statistical confidence in detection outcomes.

Through comprehensive testing across varied orbital
regimes and track lengths, this section establishes con-
crete guidelines for applying different state representa-
tions and uncertainty propagation methods to maximize
both sensitivity and reliability in operational scenarios.

7.1. Simulated scenario design

The testing framework incorporates variability across pa-
rameters that influence detection metrics. At a high level,
a scenario encompasses a range of orbital regimes, as
shown in Table 1, with the lowest altitude at approxi-
mately 453 km—well within the region of significant at-
mospheric perturbation.

From this scenario, multiple test cases are generated,
each defined by a specific orbital state sampled from
the scenario' s parameter space. These cases produce
one synthetic radar track through “high-fidelity” trajec-
tory simulation using the Real dynamics model described
in Table 2. The satellite is modeled using a cannonball
approach with parameters specified in Table 3, which
defines the cross-sectional area, mass, and drag coeffi-
cient used in the atmospheric and solar radiation pres-
sure perturbations. By construction of the sampling, a
subset of cases (70% of the total population) includes
an impulsive prograde maneuver with magnitude ∆V ∈
[2, 35] cm/s, while the remaining 30% represent non-
maneuvered cases used to validate false positive rates.

To introduce realistic uncertainty in the testing process,
each case incorporates variability in multiple dimensions.
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Figure 11. Monte Carlo of the position error distribution
when only the satellite' s model uncertainty is introduced
in simulation against the ground truth (Real vs Simulated
dynamics) for a 650 Km orbit.

Both the real satellite and the perfect radar measure-
ments are sampled to generate the measurement distribu-
tion N (z; z̃,Cz), the state prior estimate N (x;X0,P0),
and the ballistic coefficient p.

The radar measurements are sampled using the uncer-
tainty values specified in Table 4, producing both the ob-
served values z̃ and their associated covariance matrix
Cz . The initial satellite state and ballistic coefficient are
sampled using standard deviations shown in Table 3. For
these tests, the initial state uncertainty is defined by po-
sition and velocity standard deviations of σr = 10m and
σv = 0.005m/s respectively in the satellite local frame,
which are then converted to the inertial frame to compute
P0 and X0 from it. This approach ensures that neither
the initial state estimate X0 nor the parameters p used
for prediction exactly match the real satellite. The sub-
sampling within each case is repeated 50 times, and the
metric computed in each of those experiments, to provide
statistical significance to the results.

As explained in Section 4.1, only the uncertainty in the
initial conditions is accounted for when estimating the
satellite' s state distribution at tref. The discrepancies in
both the dynamics (Prediction model in Table 2) and the
satellite ballistic coefficient introduce systematic biases
that depend primarily on the atmospheric perturbation' s
relative importance. Figures 11 and 12 illustrate the posi-
tion error distributions resulting from these combined un-
certainties (dynamics and ballistic coefficient) at two dif-
ferent orbital altitudes. The reference error represents the
deviation between Prediction and Real dynamics when
using identical satellite parameters p and initial state X0.
This testing approach deliberately introduces deviations
from the core assumption of supposed covariance real-
ism, as the propagation step does not account for these
discrepancies, allowing evaluation of their effect directly
on metric performance.



Table 2. The two dynamical models defined, one for the real trajectory and another for predictions. SRP stands for Solar
Radiation Pressure.

Model Earth harmonics Atmosphere Sun Moon SRP
Real [10, 10] Harris-Priester yes yes yes
Prediction [9, 9] Harris-Priester no no no

Table 3. Satellite model and uncertainty parameters. The
position/velocity (r and v) standard deviations are de-
fined in local RSW axis (position-oriented).

Parameter Value
Mass [kg] 420
Cross-sectional area S [m2] 4
Drag coefficient CD 2.3000
SRP area [m2] 4
σmass [kg] 1.41
σCD

0.09
σr [m] 10
σv [m/s] 0.005

Table 4. Characterization of simulated radar, Field of
Regard is omitted.

Parameter Value
(λ, ϕ) (°) (−5.59, 37.17)
h (m) 142.32
σρ (m) 7
σρ̇ (m/s) 0.4
σAz (°) 0.3
σel (°) 0.2
ξAz,el 0.043
rt (s) 7

Figure 13 presents the distribution of key parameters
across the experimental population. Some parameters
follow the intended design constraints, such as orbital el-
ements and impulse magnitudes, which were generated
with uniform probability distributions. Other parameters,
particularly simulation duration, exhibit distributions that
emerge as consequences of the scenario configuration.
These emergent distributions primarily result from the in-
teraction between radar placement and orbital altitudes,
where higher orbits demonstrate increased probability of
entering the radar' s Field of View (FoV).

7.2. Statistical results of k2 metrics

For the results presented in this document, the LCP
method for uncertainty propagation has been excluded for
conciseness. All k2 metrics employ the Unscented Trans-
form (UT) for prediction computation, as it provides a
more conservative approach. Of particular importance is
the selection of the reference state when using the EQCM
representation. In all cases the default reference frame is
that of the IOD estimate, as it is typically the one with
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Figure 12. Monte Carlo of the position error distribution
when only the satellite' s model uncertainty is introduced
in simulation against the ground truth (Real vs Simulated
dynamics) for a 450 Km orbit.

less uncertainty.

Each k2 evaluation experiment yields only two relevant
outcomes for this analysis. When the metric value ex-
ceeds the threshold defined in Equation 6, the result is
classified as a Detection (True Positive) in maneuver
cases, or as a False Positive otherwise. Complementary
results (False Negatives or True Negatives) are not explic-
itly presented. Therefore, Detection percentages repre-
sent the proportion of correctly identified maneuvers rel-
ative to the total number of maneuvered cases under con-
sideration (subject to parameter-specific filtering). Simi-
larly, False Positive percentages reflect the proportion of
incorrectly identified maneuvers among non-maneuvered
cases.

The more general statistics can be found in Table 5. Each
row includes the results by state representation (which is
by definition the same in both prediction and IOD), while
each column corresponds to the method used in the IOD
step. Note that these have been computed at 95% con-
fidence level, indicating that the theoretical or expected
rate of False positives should not exceed 5% if all basic
assumptions presented in Section 3 are met. In that note,
the first analysed outcome should always be the False
Positives, as this is the main indicator of reliability.

Examination of the Cartesian results reveals only
marginal advantages for the UT-based IOD method com-
pared to alternatives, with improvements insufficient to
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Figure 13. Histograms depicting the distributions of key experimental parameters on the scenario used for Section 7.2
results. Each subplot shows the frequency distribution for a specific variable.

establish any method as reliable. Contrary to expecta-
tions, EQCM demonstrates inferior performance, exhibit-
ing an approximately 3% elevation in false positive rates
across all scenarios. The GEqOE framework, however,
presents promising alternatives, with both UT and Taylor
algebra approaches achieving performance metrics ap-
proximating optimal outcomes.

These systematic underperformances were expected, as
the employed propagation methodology does not account
for model discrepancies or inaccuracies in the satellite' s
dynamic environment. This limitation leads to overly op-
timistic covariance estimates and consequently unrealis-
tic predictions. The results support the hypothesis that the
k2 metric tends to misclassify non-maneuvered cases due
to overconfident covariance propagation and inadequate
representation of dynamical divergence between the pre-
dicted and true trajectories. In this context, the strong
performance exhibited by the GEqOE representation is
particularly noteworthy.

A comprehensive explanation of these results necessi-
tates statistical analysis as a function of key scenario pa-
rameters. The atmospheric perturbation emerges as a
primary contributor to prediction errors within this sce-
nario. Figure 14 confirms this relationship, revealing pro-
nounced spikes in False Positive rates for both Cartesian
and EQCM representations at lower altitudes. The ap-
parent immunity of GEqOE to these effects likely stems
from two complementary factors.

First, as demonstrated in Figure 4, the GEqOE orbital
representation maintains covariance consistency substan-
tially longer than alternative formulations, suggesting en-
hanced resilience to dynamics mismodeling. Second, the
detection metric is significantly influenced by the IOD
methodology itself. The observed performance may re-
sult from compensatory effects in the UT and Taylor al-
gebra approaches when characterizing error distributions,
which effectively counterbalance divergence in the pre-
diction component.

A more rigorous investigation into these results, partic-
ularly regarding the covariance realism properties across
different state representations, remains essential for de-
veloping a definitive analysis of these phenomena.

The sensitivity to maneuver detection merits detailed
consideration exclusively in the context of GEqOE, as
it represents the only alternative exhibiting close corre-
spondence with expected False Positive rates (when ex-
cluding the linear method from consideration). Figure 15
indicates that maneuvers exceeding 15-50 cm/s consis-
tently trigger the detection threshold, demonstrating the
sensitivity of this methodology when employing an opti-
mal combination of orbital state representation and IOD
method. These significant performance improvements
are attributable directly to the incorporation of higher-
order approximations in the IOD calculation process, ex-
tending beyond conventional linear approaches.



Table 5. Detection and False Positive rates by orbital representation and IOD Method (95% Confidence Level) for all test
cases.

Linear UT Taylor Algebra

Representation Detection (%) False Positive (%) Detection (%) False Positive (%) Detection (%) False Positive (%)

Cartesian 95.70 20.61 93.61 15.82 95.69 20.54
EQCM 95.92 23.07 94.01 18.21 95.85 23.16
GEQOE 96.65 43.79 83.73 8.57 84.53 9.39
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Figure 14. False positives rates for the three orbital representations and IOD methods with the perigee height. Each data
point corresponds to a 50 Km interval from 450 Km.

8. CONCLUSIONS

This work has demonstrated that the effectiveness of ma-
neuver detection metrics in LEO surveillance operations
significantly depends on both state representation and un-
certainty propagation methods. Our comprehensive test-
ing reveals that Generalized Equinoctial Orbital Elements
(GEqOE) substantially outperform both Cartesian and
EQCM representations in maintaining Gaussian consis-
tency during extended propagation periods. When com-
bined with the Unscented Transform or Taylor algebra
methods for Initial Orbit Determination, GEqOE enables
reliable detection of maneuvers as small as 15-20 cm/s
while maintaining false positive rates near theoretical ex-
pectations (8-9% versus the theoretical 5% at 95% confi-
dence).

Particularly notable is GEqOE' s resilience to altitude-
dependent atmospheric perturbation effects that severely
compromise both Cartesian and EQCM approaches. Ad-
ditionally, advanced IOD techniques—especially UT-
based methods—offer substantial improvements over
traditional linear methods, particularly for short radar
tracks where non-linearities dominate measurement-to-
state mapping.

These findings provide practical guidelines for opera-
tional implementations: maneuver detection in LEO en-
vironments should employ GEqOE representation with
UT-based uncertainty propagation, complemented by ei-

ther UT or Taylor algebra for IOD processing. Future
work should focus on further improving uncertainty re-
alism by explicitly accounting for dynamical model dis-
crepancies, which remain the primary limitation of the
current approach.
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