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ABSTRACT

Determining the location of objects in Low-Earth Or-
bit (LEO) with earthbound sensors is a challenging task
due to the large distance of the targets to the Earth’s sur-
face. To this end, radar systems are an important modal-
ity since they are not restricted by weather conditions
and, depending on the architecture, can measure objects
at very high ranges. Networks of radars can be used to en-
hance the localisation accuracy but their architecture im-
plies a multimodal error distribution of the Direction of
Arrival (DoA), which might lead to ambiguous measure-
ments in case of low Signal-to-Noise Ratio (SNR) values.
This paper provides theoretical considerations about local
coherent radar networks, studying the multimodal nature
of the corresponding sensor models. Furthermore, it pro-
poses a tracking-based localisation method that integrates
the received information over time, hence mitigating the
influence of measurements that stem from the secondary
modes of the DoA distribution. It is shown in simulation
that the proposed tracking approach is able to provide a
significant increase in localisation accuracy in compari-
son to a monostatic setup, even if the number of mea-
surements is low.These preliminary results demonstrate
the high potential of using local coherent radar networks
for space situational awareness tasks.

Keywords: coherent radar networks, angle estimation,
multimodal measurement model, mixture of Gaussians.

1. INTRODUCTION

One of the most important modalities for the observation
and cataloguing of space debris is radar technology. From
a radar perspective, space debris observation is particu-
larly challenging due to the long distances between the
objects of interest and the observer on the one hand and
the small size of many objects on the other.

One method to increase the performance of a space debris
sensing system is to use a network of radars in a multi-
static setup [1]. Local coherent radar networks, whose
nodes are typically not further than a few hundred metres

apart, show a quasi-monostatic behaviour since the dis-
tance between the nodes is negligibly small compared to
the distance to the observed objects in Low-Earth Orbit
(LEO). Thus, we model the antennas of a coherent local
network as one big antenna array. However, if each node
of the network is equipped with an antenna array, the joint
array will become sparse. The elements of each individ-
ual array are usually densely spaced, i.e. neighbouring
elements are less than half a wavelength apart, exhibit-
ing low sidelobes in their spatial/angular response allow-
ing for estimates free of ambiguities. Elements of differ-
ent subarrays in the joint sparse array are much further
apart, which leads to high sidelobes in the joint response.
In particular, the estimated Direction of Arrival (DoA) is
distributed according to a network-specific function that
depends on the antenna architecture as well as the relative
location of the nodes. Usually, the DoA estimation er-
ror is assumed to be Gaussian distributed within a single
mode around the true value. In a sparse array, this distri-
bution becomes multi-modal, with the highest peak cen-
tred on the true DoA of the object surrounded by several
side lobes with significant amplitude, whose number and
location depend on the configuration of the network. The
effect of high sidelobes or grating lobes in sparse arrays
has been reported in the past [2]. Strategies to mitigate
the problem encompass the simultaneous use of multiple
carriers at sufficiently different wavelengths such that the
grating lobes are reduced [3].

Not considering the multi-modal nature of the error can
have a significant impact on the evaluation of estimation
results as well as any subsequent data processing such
as tracking to improve the estimates. The occurrence of
multi-modal errors is not limited to angular estimates in
coherent networks but always occurs when sampling, per-
formed in some domain, exhibits gaps or pauses. This is
discussed and illustrated for example in [4] for the es-
timation of radial velocities or Doppler shifts in pulsed
radars with sufficiently large duty cycles (ration between
pulse length and Pulse Repetition Interval (PRI)).

This paper first gives theoretical considerations about the
multi-modality of angular measurements obtained by lo-
cal radar networks (Sec. 2) and then proposes to use a
Bayesian approach to process the described multi-modal
DoA estimates over time (Sec. 3). Instead of trying to
reduce the level of the sidelobes, their effect is incorpo-
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rated into the signal processing scheme. In particular, the
sensor model is approximated as a mixture of Gaussians
corresponding to the underlying probability distribution
stemming from the architecture of the considered radar
network. In the filtering recursion, the current state is first
predicted according to a suitable motion model (e.g. Ke-
pler dynamics or a local near-constant velocity approxi-
mation) and then corrected with the incoming measure-
ment using the characteristic sensor model of the net-
work. This procedure is applied in simulation to different
examples of network configurations as a proof of con-
cept, including a monostatic baseline case, a triangular
network with three nodes, and a cross-shaped network
with five nodes. The simulations in Sec. 4 show that the
applied filtering is effective in resolving the modes, re-
sulting in a DoA error that is closer to a single Gaussian
distribution. The improved DoA accuracy due to the in-
creased aperture size of the coherent network is retained,
resulting in a smaller error covariance of a tracked target
in comparison to the monostatic scenario.

2. ANGULAR ESTIMATION USING LOCAL
RADAR NETWORKS

2.1. Problem description

In general, the estimation of the DoA is a two-
dimensional problem, i.e. the estimation of the azimuth
and elevation angles or u and v coordinates of an incom-
ing (or emitted) planar electromagnetic wave. An antenna
array receives the signal of the wave and creates spatial
samples at each of the elements of the array. The esti-
mation problem has a unique solution if each DoA cor-
responds to exactly one pattern of sampling values. If
such a mapping exists, the direction can be derived from
the received pattern in a unique manner. Ambiguities, on
the other hand, occur if multiple DoAs lead to the same
sampling pattern and hence cannot be distinguished. To
avoid such effects, conditions on the configuration of the
array can be formulated, e.g. a distance of less than half
of the incoming wavelength between two neighbouring
elements (Nyquist-Shannon sampling theorem).

In a local coherent radar network, one can interpret the
entirety of all individual elements of each network node
as one big array, which is sparse due to the distances be-
tween the different nodes. Like this, the DoA of an object
can be estimated not only at each individual node but by
the network antenna as a whole. Due to the distances be-
tween the nodes, the sampling condition is violated glob-
ally, however not at the individual arrays.

Another important factor that influences the performance
of the DoA estimation is that radar systems, as indeed all
sensors, are subject to noise stemming from the underly-
ing physical properties of the system. Additional noise
distorts the actual sampling pattern, which may lead to
wrong estimates or create ambiguities artificially. The in-
fluence of this effect depends on the intensity of the noise

(in terms of the Signal-to-Noise Ratio (SNR)) as well as
the cost function of the maximum-likelihood estimator.

2.2. An illustrative example

To illustrate the problem described in Sec. 2.1, let us con-
sider a periodic time domain signal in terms of a com-
plex phasor with unknown complex amplitude γ and fre-
quency f0:

u (t; f0) = γej2πf0t (1)

|f0| <
fp
2

(2)

The goal is to estimate the frequency of the signal based
on sampling which is influenced by additive white noise.
Samples are drawn equidistantly in a limited observation
window of length Th, as shown in Fig. 1 with a sampling
rate fp. It is further assumed that the Shannon-Nyquist
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Figure 1: Sinusoid signal with limited observation win-
dow.

sampling theorem holds, i.e. ambiguities due to aliasing
are excluded. The windowed signal can be represented
by

u (t; f0) · h (t− ta) = γs (t; f0) . (3)

The window function h (t− ta) is rectangular with a du-
ration of Th, starting at t = ta. A given sampling rate
t0 = 1/fp results in a predetermined number of sampling
points that are collected in a vector s. Furthermore, com-
plex white noise with given variance σ2

n is added, leading
to

x = s (f0) + n ∈ CM×1, (4)

n ∝ CN
(
0,Rn = σ2

nI
)
. (5)

To determine the frequency, a cost function based on
a scaled negative log-likelihood function is defined and
maximised:

l (x; γ, f) = (x− γs (f))
H
R−1

n (x− γs (f)) . (6)

Since only the frequency is of interest and γ is a lin-
ear parameter, it is possible to modify (6) according to
the considerations in [6], replacing γ by its estimate
γ̂ =

[
s (f)

H
R−1

n s (f)
]−1

s (f)
H
R−1

n x:

L (x; f)=xHR−1
n s(f)

[
s(f)HR−1

n s(f)
]−1

s(f)HR−1
n x,

(7)

f̂ = max
f

L (x; f) . (8)



In case the covariance matrix of the additional noise is a
scaled identity matrix, the problem can be further simpli-
fied to

f̂ = max
f

1∣∣s(f)∣∣2 ∣∣ s(f)Hx
∣∣2 . (9)

In order to solve (9), the cost function can be deter-
mined on any grid of frequencies by maximising over
all samples. A special case is the grid f = k 1

Th
; k =

[0, . . . ,M − 1] in combination with a rectangular win-
dow function, since the term |s(f)|2 is constant in this
case. This case corresponds to the DFT of the signal.
Figure 2 shows the cost function for an example with-
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Figure 2: Continuous spectrum with DFT as a special
sampling grid.

out noise. Here, the desired frequency f0 lies on one
of the sampling points of the DFT. This example shows
that, except for the actual frequency f0, all DFT sampling
values are close to zero. If another grid was used, the
secondary maxima of the window function would cause
higher returns. Additional noise would further distort
the cost function and cause the global maximum to shift
from f0 to another frequency. The difference between
the estimated and the true frequency hence depends on
the SNR and the shape of the cost function. According to
maximum-likelihood theory, the error can be modelled
asymptotically Gaussian, i.e. the deviation is approxi-
mally Gaussian distributed for high enough SNR [6].

It is further possible to expand the signal observation
to multiple windows that can be located in any config-
uration. An example with two observation windows is
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Figure 3: Sinusoid signal with two observation windows.

shown in Figure 3, where the gap between them is exactly
one window length (Tg = Th). This setup corresponds
to the DoA estimation in a local radar network with two
nodes, the two antenna arrays being situated exactly one
array width apart. The resulting cost function (without
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Figure 4: Cost function for observations with different
duration/gaps.

noise) results in the red pattern shown in Figure 4. Note
that the blue curve in Fig. 4 corresponds to the single-
window signal in Fig. 2, whereas the green curve rep-
resents a constellation with four concatenated windows
(i.e. without gaps). It can be seen that the main lobe is
significantly narrower if more than one window is used.
The first side lobe, however, is considerably stronger and
closer to the maximum of the cost function. If instead,
a large window with four times the width of the win-
dow size Th without gaps was used instead (see the green
curve in Fig. 4), this would result both in a narrow main
lobe and weak side lobes at the same time.

Hence it can be concluded that the width of the main lobe
is dependent on the effective observation time Teff , i.e.
the main lobe is as narrow as in the case of a big win-
dow of length Teff but without gaps. The envelope of the
side lobes still follows the curve for a single window in
this case. The width of the main lobe further decreases
if the gaps between the windows are increased, however
the secondary maxima increase as well and move closer
to the main lobe. This effect, in combination with criti-
cally low SNR, increases the risk of shifting the estimate
to one of the side lobes, which is less likely in a single-
window scenario. Still, the lobes are well-separated by
gaps caused by the roots of the cost function.

To visualise the estimation error with different gap
lengths, a simple Monte Carlo experiment was con-
ducted. The histogram of the estimation error is shown
in Fig. 5. The figure demonstrates that the gaps result
in a multi-modal estimation error. Furthermore, longer
gap lengths lead to a more narrow centre peak, but also
to a higher number of estimations in secondary maxima.
Note that the estimator is always unbiased independent of
the gap size, i.e. the expected value over all realisations
always coincides with the true value. Thus, it appears
useful to model the error distribution with a mixture of
Gaussians instead of a single Gaussian distribution since
each mode of the error function appears to be Gaussian
distributed.
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Figure 5: Histogram of the estimation error using differ-
ent window sizes. SNR = 9dB, Nmc = 10000.

3. GAUSSIAN-MIXTURE APPROXIMATION OF
MULTI-MODAL DOA MEASUREMENTS

As seen in the previous section, measuring the DoA can
be seen as a random experiment based on a multimodal
distribution which can in general be approximated with
a Gaussian mixture density. The random nature of the
problem implies that one measurement is not sufficient
to exclude samples from side lobes, therefore this pa-
per proposes a Bayesian approach which takes the tem-
poral evolution of the measurement into account. For
this purpose, let us describe the hidden state of the mea-
sured object of interest in the uv space, where xk|k =

[uk, u̇k, vk, v̇k] ∈ R4 represents the uv position [uk, vk]
and velocity [u̇k, v̇k] at discrete time steps k. A Bayes fil-
ter is composed of a prediction and an update step, with
which the current state xk−1 is first predicted to time k
using a transition model fk|k−1 and then updated w.r.t.
the incoming measurement zk using the sensor model
gk. In the present case, gk is a Gaussian Mixture with
G components N (xg

k|k, P
g
k|k), centred on xk|k, where

xg
k|k = xk|k + ∆g and P g

k|k ∈ R4×4 for all 1 ≤ g ≤ G.
The arrangement of the Gaussians is assumed to be given
by the ∆gs which depend on the network geometry and
constant over time. This makes it possible to use the well-
known Kalman prediction [5]:

xk|k−1 = Fkxk−1|k−1, (10a)

Pk+1|k = FkPk−1|k−1F
T
k +Qk (10b)

where Fk, Qk ∈ R4 are the transition and process noise
matrices, respectively. After receiving the new measure-
ment zk = [ûk, v̂k, r̂k], the respective innovation ygk with
covariance Sg

k is computed for each component g of the
sensor model:

ygk = zk −Hkx
g
k|k−1, (11a)

Sg
k = HkPk|k−1H

T
k +Rk, (11b)

where Hk ∈ R2×4 maps the target state xk into the mea-
surement space and Rk ∈ R2×2 denotes the covariance
of the additive measurement noise. If the measurement
falls into the 3σ gate of component g, i.e. yTS−1y <
chi2inv(0.99, 3), the Kalman gain Kg

k is computed and

to determine the corrected target state as follows:

Kg
k = Pk|k−1H

T
k S

−1
k , (12a)

xk|k = xk|k−1 +Kg
ky

g
k, (12b)

P g
k|k = (I −Kg

kHk)Pk|k−1. (12c)

4. EXPERIMENTS

4.1. Simulated network architectures

The following simulations with one moving target serve
to demonstrate the applicability of the filter-based resolu-
tion of multi-modal angular measurements. For this pur-
pose, a quasi-monostatic setup as well as two networks
with different architectures are tested. The main configu-
rations of the three systems are shown in Fig. 6. To deter-
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Figure 6: Configuration of receiver nodes in the three
tested networks.

mine the required size and location of the components of
the required Gaussian mixture for each network architec-
ture, a simulated static target is used. The Monte Carlo
simulation of the resulting measurements for a target with
9 dB SNR is shown in Figure 7 (coloured samples), along
with the fitted mixture (black ellipses). In case of the
cross configuration, the nine highest-weight components
are used, which are allocated in a 3×3 grid with a respec-
tive distance of 0.0214 in u and v. The central compo-
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Figure 7: Modes of the DoA estimation for a static target
with 9 dB SNR. The black ellipses represent the 3σ co-
variance gate.



nent is weighted with 0.5294, while the remaining com-
ponents receive a weight of 0.0588. All covariances are
assumed to have the same size, determined as the covari-
ance of the central cluster of estimates. In this example,
the covariance is determined to be cov(u, u) = 3.7483 ·
10−7, cov(v, v) = 3.7763 · 10−7 with off-diagonal terms
cov(u, v) = cov(v, u) = −9.8651 · 10−10.

The distribution function of the triangle configuration
also exhibits a central component, which receives a
weight of 0.5385. Due to the triangular allocation of
the nodes, only six side lobes manifest in the resulting
distribution, as seen in Figure 7b, which receive equal
weights of 0.0769. These side lobes form a hexagonal
pattern around the central lobe with a respective distance
of 0.0247 to it. The resulting covariance of the compo-
nents is four times bigger than that of the cross-shaped
network since the same u/v area is described by fewer
components in comparison.

The third setup of comparison is a monostatic sensor with
(approximate) unimodal error distribution. This distri-
bution, however, needs a 230-fold bigger covariance in
comparison to the triangle configuration described above.
Furthermore, the velocity covariance of each configu-
ration is set to cov(u̇, u̇) = cov(v̇, v̇) = 10−2 and
cov(ṙ, ṙ) = 10.0, respectively. Please note, that for suffi-
ciently low SNR also the monostatic sensor would exhibit
multiple modes as any practical likelihood function (with
finite measurement aperture) posses sidelobes although
they might be weak.

Note that alongside the angle, range measurements can
also be taken into account. However, the range error dis-
tribution is unimodal, hence it is not shown in the ex-
periments presented below. If Doppler measurements are
considered, multi-modality is in fact expected along the
Doppler dimension if a pulsed radar (with appropriate
duty cycle) is used. This case is presented in [4].

Note that the measurement function needs to be tai-
lored to the specific network architecture, i.e. a mixture
with suitable means and covariance matrices needs to be
found. In case an analytic solution cannot be found, it is
possible to use an expectation-maximisation approach to
optimise the mixture [8].

4.2. Initialisation of the tracker

Further assumptions need to be formulated to initialise
the tracking algorithm. The initial state estimate is cen-
tred on the position of the initial DoA measurement with
0 velocity in u and v, i.e. x0|0 = [û0, 0, v̂0, 0]. In the
following experiments, the orbit is approximated with a
Near-Constant Velocity (NCV) model with transition ma-

trix Fk = I2 ⊗
(
1 T
0 1

)
(cf. (10)). The standard devia-

tion of the acceleration noise is set to σacc = 10−5, while
the standard deviation of the measurement noise is cho-
sen to be σu/v = 0.001. Both the target state as well as

the measurements are handled in u/v space, i.e. the mea-

surement matrix has the form Hk =

(
1 0 0 0
0 0 1 0

)
.

4.3. Results

Figure 8: Illustration of the quasi-monostatic setup with
two possible target orbits.

As described before, the following experiments are con-
cerned with a single moving target as shown exemplarily
in Figure 8. The receiver nodes are placed according to
the configurations in Figure 6 and a Kepler orbit is simu-
lated that traverses the zenith of the central receiver. The
total observation length is restricted to 10 s, leading to the
angular positions shown in Figure 9.
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Figure 9: Simulated angular position of an example orbit
in u and v coordinates over time.

An important parameter for the simulation is the time
delta between the measurements. In this paper, the two
cases ∆t = 23.3ms and ∆t = 233ms are consid-
ered. The choice of these values is based on the as-
sumption that the target is located at a maximum dis-
tance of 3500 km from the radar, resulting in a PRI of
2rmax/c0 ≈ 23.3ms. The other ∆t value, on the other
hand, assumes a Coherent Processing Interval (CPI) over



ten pulses. For the simulations, noisy measurements
are generated from the ground truth assuming a given
SNR and the angles are determined iteratively with a
maximum-likelihood estimator.
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Figure 10: Estimated trajectories, SNR 14 dB, ∆t =
233ms. Measurements of the cross, triangle and monos-
tatic setups are marked as +, △ and ◦, respectively.

−4 −2 0 2 4
0

0.01

0.02

0.03

0.04

t[s]

er
ro

r

cross
triangle
monostatic

Figure 11: Angle error |[û; v̂]− [uGT; vGT]|F with tem-
poral mean and variance for the three configurations,
SNR 14 dB, ∆t = 233ms.

Figure 10 displays the results for the different network
configurations as shown in Figure 6, assuming an SNR
of 14 dB and an assumed coherent integration over 10
pulses. The true values are depicted in black, the filtered
results in red, green, and blue and the corresponding mea-
surements as +, ∆ and ◦ symbols, respectively. The rea-
son for the choice of a relatively high SNR is that in real-
ity, the monostatic benchmark case also has a multimodal
nature, however for higher SNR values > 10 dB the
distribution is sufficiently approximated by a unimodal
Gaussian [6].

In Figure 10 it can be seen that because of the high SNR,

the vast majority of detections originate from the central
mode in all configurations. Since the monostatic case has
a much wider central mode than the networks, its angle
estimations (◦) are much less accurate than in the cross
(+) and triangle (△) configurations. On the other hand,
a few estimates of the networks originate from secondary
modes. The estimated trajectories (Figure 10, coloured
lines) and the corresponding error plots (see Figure 11)
reflect this behaviour: If the tracker uses angular mea-
surements from one of the network configurations, the
trajectories follow the ground truth much more closely,
however a measurement from a side lobe results in a
sharp increase in error. The monostatic measurements,
on the other hand, have no side lobes but still lead to a
much higher estimation error overall. The error can
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Figure 12: Estimated trajectories, SNR 14 dB, ∆t =
23.3ms. Measurements of the cross, triangle and mono-
static setups are marked as +, △ and ◦, respectively.
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Figure 13: Angle error |[û; v̂]− [uGT; vGT]|F with tem-
poral mean and variance for the three configurations,
SNR 14 dB, ∆t = 23.3ms.

be reduced even further with smaller time intervals of
23.3ms, as shown in Figure 12 and Figure 13. While the



cross and triangle network configurations receive more
estimates from secondary modes as seen in Figure 12,
the resulting tracks are much more stable since more in-
formation is available overall. It can be observed that the
cross configuration is the most accurate in this case since
it has the highest amount of information available. The
monostatic case, however, still needs to compensate for
the wide main lobe, causing a much higher error.

In both presented cases it can be noted that the tracker us-
ing monostatic measurements needs much more time to
converge and hence the average error (dashed line) and
its variance (shaded area) is much higher than for the
multistatic cases. It can be concluded that the combi-
nation of using a multistatic framework with a tracking
approach leads to a faster and more accurate target lo-
calisation. While short PRIs are beneficial for high ac-
curacies, longer coherent processing intervals can still be
used to save resources for other tasks, given that the aver-
age error of the monostatic case with ∆t = 23.3ms still
has a higher error (0.013 radians) than the networks with
∆t = 233ms (0.010 and 0.009 rad, respectively).

5. CONCLUSION

This paper presented a method to process multimodal an-
gular measurements that result from using local coherent
radar networks for orbit determination and tracking ob-
jects in LEO. A simple example was given to explain
how multimodal measurements result in ambiguities if a
multistatic radar system is subject to high levels of noise.
Then, a Gaussian mixture approach was presented that
models the sensor in terms of a sum of Gaussian distri-
butions. This mixture represents the error distribution
in the received DoA values, which is dependent on the
array architecture as well as the network configuration.
To analyse the proposed tracking approach, a simple sce-
nario was created, measuring an object travelling over the
zenith of a radar network. Two architectures, namely a
cross-shaped setup with five nodes and a triangular setup
with three nodes, were simulated and compared with a
monostatic setup. The provided results showed that us-
ing a local radar network brings much higher localisation
accuracies even in the presence of measurements com-
ing from a multimodal sensor model. It is even possible
to obtain lower errors with local networks with a coher-
ent processing interval of ten pulses in comparison with
using each pulse of the corresponding monostatic setup.
This effect stems from the much smaller principal mode
of the error distribution, which even compensates for the
spontaneously occurring measurements from secondary
modes. An important aspect is the temporal integration
achieved by the Bayesian approach, which is able to mit-
igate the side lobe measurements.
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