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ABSTRACT

In this work, we have developed a 6-dimensional joint
probability density function for the 3-dimensional posi-
tion and 3-dimensional velocity vectors of space objects
in the Low Earth Orbit (LEO) based on the Principle of
Maximum Entropy (MaxEnt), adhering to the principle
of energy conservation. For the problem under consid-
eration, maximizing entropy subject to energy conser-
vation ensures that the derived probability density func-
tion (PDF) is the best representation of the uncertainty
of a space object while the sampled position and veloc-
ity vectors from the PDF adhere to the orbital dynamics.
We approach the entropy maximization by constructing
a Lagrangian functional incorporating the energy conser-
vation constraint and the normalization constraint of the
PDF using Lagrange multipliers, setting the functional
derivative of the Lagrangian to zero. This PDF can be
used to generate position and velocity samples for space
objects without any prior assumption and can further be
utilized for orbital uncertainty propagation either using
the Monte-Carlo method or by direct propagation of the
PDF through the Fokker-Planck Equation.

Keywords: Principle of Maximum Entropy, Low Earth
Orbit (LEO), Space debris, Collision risk assessment,
Probability density function (PDF), Orbital uncertainty
propagation, Energy conservation.

1. INTRODUCTION

The exponential growth of satellite deployments in LEO
has led to a significant rise in the risk of collisions in
space. As of today, there are approximately 11,050 active
satellites, with the majority operating in LEO. In addition
to active satellites, the orbital environment is cluttered
with millions of debris fragments, including those smaller
than 10 cm in diameter, which pose a substantial threat to
operational spacecraft. These small debris are difficult
to track accurately, making collision avoidance a com-
plex challenge. Predicting the probabilistic distribution
of space objects—including both satellites and debris—is
critical for ensuring safe orbital operations. However, the
uncertainties in their position and velocity make tradi-

tional deterministic tracking methods inadequate. Typi-
cally, Gaussian distributions are assumed to model these
uncertainties, but they often fail accurately to capture the
highly nonlinear and dynamic nature of orbital motion,
which is governed by orbital mechanics and perturbative
forces. To overcome this limitation, we propose a novel
MaxEnt approach to derive a joint 6D PDF for the 3D
position and 3D velocity of space objects in LEO. Max-
Ent states that when estimating a probability distribution
with incomplete information, one should select the dis-
tribution that maximizes entropy while satisfying some
constraints. In our case, we maximize entropy subject to
energy conservation, ensuring that the derived PDF ac-
curately represents the uncertainty in a physically consis-
tent manner. Energy conservation, a key concept in clas-
sical and orbital mechanics, states that in a space object
in orbit, the total specific mechanical energy—defined as
the sum of kinetic energy and potential energy remains
constant unless acted upon by external forces such as at-
mospheric drag, solar radiation pressure, or gravitational
perturbations. By applying energy conservation in a PDF,
we align the model with fundamental physical laws, im-
proving its physical relevance and predictive accuracy.
We formulate this problem as a constrained optimization
problem, where entropy maximization is performed us-
ing the Lagrangian method with energy conservation as a
constraint. By solving the resulting functional derivative
equation, we obtain an analytical expression for the prob-
ability distribution that is efficient enough to represent
the orbital uncertainties. This MaxEnt-derived PDF al-
lows us to generate position and velocity samples without
making Gaussian assumptions, providing a more general
framework for orbit uncertainty propagation. The result-
ing PDF can be propagated using Monte Carlo methods
or directly through the Fokker-Planck equation, making it
applicable to a wide range of space situational awareness
problems.

One of the most widely used techniques in space object
uncertainty representation is the Gaussian distribution as-
sumption. The covariance-based uncertainty propagation
model [1] assumes that position and velocity uncertain-
ties follow a normal distribution, allowing easy propa-
gation using the Fokker-Planck Equation. However, this
assumption breaks down in long-term propagation due
to nonlinear perturbations (e.g., atmospheric drag, third-
body effects) that introduce non-Gaussian behaviour [2].
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To improve accuracy, researchers have proposed higher-
order Gaussian mixture models [3] or the Unscented
Transform [4] to approximate nonlinear effects. How-
ever, these methods still rely on Gaussian assumptions
and do not fully account for the constraints imposed by
the law orbital mechanics.

Due to the limitations of Gaussian models, researchers
have explored non-Gaussian uncertainty representations.
The Polynomial Chaos Expansion (PCE) method [5] and
Monte Carlo sampling [6] allows for more flexible mod-
elling of space object distributions. While these methods
improve accuracy, they require significant computational
resources and do not provide a systematic way to deter-
mine the most unbiased probability distribution.

The Fokker-Planck equation (FPE) has also been used to
model the evolution of probability density functions over
time [7]. However, solving the FPE requires strong as-
sumptions about force models and may not always yield
closed-form solutions.

The Principle of Maximum Entropy (MaxEnt) provides a
powerful framework for estimating probability distribu-
tions when only partial information is available. Initially
introduced by Jaynes [8], MaxEnt has been applied in
statistical mechanics, signal processing, and information
theory [9]. In orbital mechanics, it has been explored for
trajectory prediction but is not widely used for position-
velocity uncertainty modelling.

Recent works have applied entropy-based methods to
space situational awareness, such as the use of Rényi en-
tropy for sensor fusion [10] and entropy minimization for
orbit determination [11]. However, these works do not
explicitly derive a joint position-velocity PDF under en-
ergy conservation constraints.

While previous methods have focused on Gaussian-based
models, non-Gaussian numerical techniques, or entropy-
based sensor fusion, our approach uniquely applies the
MaxEnt principle to derive an analytical probability den-
sity function for space objects while explicitly enforcing
energy conservation. This method ensures that the re-
sulting distribution is the most unbiased representation of
uncertainty while maintaining physical consistency with
orbital mechanics.

2. PROBLEM STATEMENT AND MATHEMATI-
CAL FORMULATION

The primary objective of this work is to derive a 6D joint
PDF for the position (r) and velocity (v) vectors of space
objects in LEO, ensuring that the PDF satisfies the princi-
ple of maximum entropy and conserves the energy func-
tional. later in this work we will validate the derived PDF
through numerical simulations to assess its applicability
in predicting collision probabilities. Here we aim to con-
struct the joint pdf p(r, v) where r = (x, y, z) is the 3D
position vector and v = (vx, vy, vz) is the 3D velocity

vector of a space object; we define its entropy as:

S[p] = −
∫
R3

∫
R3

p(r, v) ln p(r, v) d3r d3v (1)

The pdf must satisfy the normalization constraint:∫
R3

∫
R3

p(r, v) d3r d3v = 1 (2)

This is the normalization constraint that ensures the total
probability to one over all possible states. Moreover this
pdf will also ensure the total specific mechanical energy
E is conserved, satisfying the energy constraint:∫

R3

∫
R3

p(r, v) E(r, v) d3r d3v = E0 (3)

where E0 is the integral constant that ensures the expecta-
tion of total energy over the distribution must match this
value. In a two-body orbital system, the total specific or-
bital energy (sum of kinetic and potential energy per unit
mass) is:

E(r, v) =
1

2
|v|2 − µ

|r|
(4)

Where µ= GM. Here we define a new constraint i.e
E(r, v) = E(r,v)

µ = v2

µ − 1
r2 = E0. In our work, we

will use this term as an energy functional throughout the
calculations. Now, to solve this constrained optimization
problem, we introduce the Lagrange multipliers λ1 and
λ0 and formulate the Lagrange functional:

L[p] = −M+ λoN + λ1Q (5)

Where M =
∫
R3

∫
R3 p(r, v) ln p(r, v)d3r d3v,

N = 1 −
∫
R3

∫
R3 p(r, v)d

3r d3v and Q = E0 −∫
R3

∫
R3 p(r, v)E(r, v)d3r d3v. Solving the Lagrange

Functional with functional derivative setting δL
δp = 0 we

get :
p(r, v) = e[−1−λ0−λ1E(r,v)]

p(r, v) = Ae[−λ1E(r,v)] (6)

Where A = e[−1−λ0]. To derive the value of A using the
normalization constraint we substitute the value of p(r,v)
in Eq 2. Hence, we get:

A

∫
R3

∫
R3

e−λ1E(r,v) d3r d3v = 1 (7)

Now, we are defining a partition function:

Z[λ1] =

∫
R3

∫
R3

e−λ1E(r,v) d3r d3v (8)

Thus it becomes A = 1
Z[λ1]

. Hence we can say that

p(r, v) = 1
Z[λ1]

e−λ1E((r,v)

Now, we have to compute the value of the Lagrange mul-
tiplier λ1 with the help of the energy constraint. Substi-
tuting the value of p(r, v) in the Eq 3 we get:

1

Z[λ1]

∫
R3

∫
R3

e−λ1E((r,v)E(r, v) d3r d3v = E0 (9)



Differentiating the Eq 8 with respect to λ1 we get :

dZ[λ1]

dλ1
= −

∫
R3

∫
R3

E(r, v) e−λ1E(r,v)d3r d3v (10)

Therefore Eq 9 becomes

E0 = − 1

Z(λ1)

dZ[λ]

dλ1
=⇒ E0 = −d ln Z[λ]

dλ1
(11)

Putting the values of E(r, v) in Eq 8 we get:

Z(λ1) =

∫
R3

∫
R3

e−λ1(
1
2µ |v|2− 1

|r| )d3rd3v (12)

For the betterment of understanding and calculation, if
we break the integral into two parts we get the following:

Iv =

∫ ∫ ∫
e(

−λ1|v|2
2µ ) dvxdvydvz (13)

Ir =

∫ ∫ ∫
e(

λ1
|r| ) drxdrydrz (14)

Converting the velocity integral into a spherical coordi-
nate and solving the first integral in equation 13 we get

Iv =
(

2π
λ1

) 3
2 √

µ.

Similarly, while equating the position integral in equa-
tion 14, we need to convert it into the spherical coordi-
nate system. In spherical coordinate system the equation
becomes:

Ir =

∫ r2

r1

∫ π

0

∫ 2π

0

e(
λ1
ρ )ρ2 sinθ dϕdθdρ (15)

where r1 > 0 and r2 < ∞. Solving the first two angular
integrals, we get:∫ π

0

∫ 2π

0

sinθ dϕdθ = 4π (16)

Now using the exponential series expansion e(
λ1
ρ ) can be

expanded and the integral becomes:

4π

∫ r2

r1

ρ2

[
1 +

λ1

ρ
+

1

2!

(
λ1

ρ

)2

+
1

3!

(
λ1

ρ

)3

+ ...

]
dρ

(17)

Now approximating the equation 17 upto second order
we get:

Ir ≈ 4π

∫ r2

r1

ρ2

[
1 +

λ1

ρ
+

1

2!

(
λ1

ρ

)2
]
dρ (18)

Finally the position integral becomes: Ir ≈
2π(r2 − r1)

[
2
3 (r

2
2 + r2r1 + r21) + λ1(1 + r2 + r1)

]
and

the value of Z(λ1) becomes:

Z[λ1] =(
2π

λ1

)( 3
2 ) √

µ 2π [
2

3
(r22 + r1r2 + r21) + λ1(1 + r2 + r1)]

(19)

Now if we simplify the structure of Z[λ1] then it be-

comes C1λ
−( 3

2 )
1 + C2λ

−( 1
2 )

1 where the value of C1 =
2
3 (2π)

5
2
√
µ(r2 − r1)(r

2
2 + r1r2 + r21) and C2 =

2
3 (2π)

5
2
√
µ(r2 − r1)(1 + r2 + r1). Now differen-

tiating Z[λ1] with respect to λ1 we get d[Z[λ1]]
dλ1

=

−( 32 )C1λ
−( 5

2 )
1 + −( 12 )C2λ

−( 3
2 )

1 . Here we assume
−( 32 )C1 = A1 and −( 12 )C2 = A2 which leads to the
value of λ1 to be:

λ1 =
2A1

−(A2 − E0C1)±
√

(A2 − E0)2 + 4A1E0C1

(20)
Now we look into the square root term of the denomina-
tor of λ1. We can see that the value of A2 is an extremely
large one. Hence we can say (A2 − E0)2 ≈ A2

2. Simi-
larly, the term 4A1E0C1 is also very small to A2

2. There-
fore, we can neglect that term, too. Thus it becomes:√

(A2 − E0)2 + 4A1E0C1 ≈
√
A2

2 = A2

Hence finally the value of λ1 can be written as:

λ1 ≈ 2A1

−A2 + E0C1 ±A2
(21)

We are getting two values of λ1 here i.e. λ11 ≈ 2A1

E0C1
and

λ12 ≈ 2A1

E0C1−2A2
.

While validating the PDF λ11 is producing an extremely
small value. Hence λ12 becomes an appropriate one pro-
viding a much more feasible PDF value.

Thus the final PDF is in the form p(r, v) =
1

Z[λ1]
e−λ1E((r,v) where the values of Z[λ1], λ1, E0 &

E(r, v) have already been deduced and mentioned above.

3. RESULTS AND DISCUSSION

Our study successfully derived a 6-dimensional PDF to
model the uncertainty in the position and velocity of
space objects in Low Earth Orbit (LEO). By applying
the MaxEnt, we formulated a distribution that adheres to
energy conservation while capturing the inherent uncer-
tainties in orbital dynamics. The resulting PDF provides
a robust framework for predicting collision risks and as-
sessing orbital uncertainties without relying on restrictive
assumptions about the underlying dynamics.



A key challenge in this work was handling the expo-
nential terms in the PDF, which could lead to numerical
instabilities when the Lagrange multiplier λ1 becomes
large. To address this, we employed approximations in
some places . This approach ensured that the PDF re-
mained well-behaved and computationally tractable, even
for high-energy constraints.

Figure 1. Distribution of Samples in 3 dimension

To test the PDF numerically, we fetched TLE data of Irid-
ium 136 (NORAD 42962) from spacetrack.org. We gen-
erated 1000 samples of around the position mean (fig:1)
and tested the PDF for both the values of λ1. As a result
we found that for λ11 the PDF is almost converging to
zero (fig 3, which is not expected. But the value of the
PDF for λ12 was quite decent (fig: 2).

Figure 2. PDF for λ12

Finally, we also tested the accuracy of the PDF in fig: 4,
adding randomly large noise to the position mean of the
TLE data, which led to the PDF values being almost zero.
Hence it validates our PDF through numarical testing.

Figure 3. PDF for λ11

Figure 4. Validation of the PDF for λ11 & λ12

Our analysis also highlighted the importance of selecting
appropriate constraints while maximizing entropy. By
carefully balancing the energy conservation requirement
with the need for a physically meaningful distribution,
we obtained a PDF that accurately reflects the statistical
behaviour of space objects. Numerical validation con-
firmed that the derived distribution effectively captures
the expected energy fluctuations while maintaining sta-
bility across different orbital regimes.

4. CONCLUSION

This study presents a novel approach to modelling orbital
uncertainty using maximum entropy principles, offer-
ing a flexible and physics-based alternative to traditional
Gaussian approximations. The derived six-dimensional
PDF provides a foundation for advanced collision risk
assessment and uncertainty propagation in LEO, where
the growing number of satellites and debris demands im-
proved predictive tools. Future research will focus on
refining approximations as well as integrating real-time
tracking data to enhance space traffic management, ulti-
mately promoting safer and more sustainable space oper-
ations. By bridging the gap between statistical mechanics
and orbital dynamics, this research will contribute to the
betterment of space situational awareness in such an in-
creasingly congested orbital environment.

spacetrack.org
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