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ABSTRACT 

This paper addresses the concept of “Orbital Carrying 

Capacity” (OCC), in light of the increasing reliance of 

today’s activities on space technologies and consequent 

recent growth of the satellites’ population. Although 

there is no internationally agreed-upon definition, OCC 

generally refers to the maximum sustainable use of 

orbital resources, safeguarding their availability for 

future generations. Rather than elaborating a new, 

competing definition of OCC, this paper focuses on 

comparing a number of existing models already available 

in literature to measure OCC, with the aim to offer clear 

insights into their effectiveness when evaluated across 

different scenarios of future space activity. To ensure a 

robust comparison, a consistent underlying objects 

population model is used across all analyses, 

guaranteeing that any differences in results stem solely 

from the way OCC is measured in each of the studied 

models. The ultimate goal is to offer further means for 

making informed decisions when selecting appropriate 

models for measuring orbital resource consumption, 

considering the different nature and characteristics of the 

space systems involved. 

1 INTRODUCTION 

The recent rapid increase in human dependence on space 

activities and the resulting growth of satellite population 

have led the space community to question the residual 

availability of space resources and to attempt defining the 

concept of “Orbital Carrying Capacity (OCC).” 

Currently, there is no internationally-agreed definition of 

OCC, although it can be stated that, in general, the 

concept refers to the maximum physical occupancy 

available for space missions that, given the way space 

assets are designed, deployed, operated and disposed of, 

ensures a long-term sustainable evolution of the orbital 

environment, so that future generations can continue to 

access it. While there is general agreement on the 

meaning of OCC, how to measure it is widely debated, 

given the complexity of the problem at hand.  

Several attempts have been made to define metrics and 

associated thresholds for OCC. In some cases, these 

efforts have even led to proposals for methodologies to 

manage residual orbital resources [1]. From the authors' 

perspective, there are two main approaches to measuring 

OCC in literature. The first, referred to as the “object-

based” approach in this paper, quantifies the OCC as the 

maximum number of satellites that can be deployed in 

orbit in a sustainable way within altitude shells defined 

arbitrarily. The second approach, referred to as “risk-

based,” correlates the residual availability of orbital 

resources with the cumulative risk to the orbital 

environment posed by the current and projected 

populations of spacecraft. This latter approach further 

branches into several formulations, each considering a 

different definition of risk [2]. 

In this context, Telesat, similar to other stakeholders 

[3][4][5], believes that there is the need to carry out 

technical studies to provide a more comprehensive 

understanding of existing models for quantifying OCC, 

rather than define yet a new model that would risk to add 

further divergence in literature. Therefore, the primary 

objective of this paper is to provide additional insights on 

how the different OCC models compare, with the 

ultimate goal of providing means to interpret the results 

these models provide and of ensuring greater awareness 

on the topic. This would enable the possible use of the 

concept of orbital carrying capacity within a regulatory 

context, should this be ever needed, in a manner that is 

responsible and based on scientific evidence. 

The paper is organized as follows: Section 2 introduces 

the objects’ population model adopted in this study to 

support the analysis of the OCC modelling approaches. 

Section 3 presents the investigated OCC formulations 

from a theoretical viewpoint. Section 4 provides the 

results of their application and compares the various 

formulations under different scenarios. Finally, Section 5 

summarizes the key findings of this work based on the 

authors' interpretation of the relevant results. 

2 OBJECTS POPULATION MODEL 

This section provides a concise overview of the objects’ 

population model used for the analyses of OCC presented 

in this paper. The approach used to characterise the in-

orbit spacecraft population belongs to the category of 

source-sink debris evolutionary models, often referred to 

as Particle-In-a-Box (PIB) models, which encompass 

various formulations that have been developed over the 

years and can be found in literature. Examples are the 

PODEM [6], STAT [7], MISSD [8] and MOCAT [9] 

models. In this work, the formulation proposed by Sturza 
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et al. (2022) [10] has been used as reference, although 

some modifications have been made to enhance the 

accuracy compared to the original model, at least from 

the authors' perspective. 

Compared to more complex evolutionary models that 

account for the individual dynamics of each object 

[11][12], the PIB models mentioned above offer a 

significant advantage in terms of computational 

efficiency. Despite a less accurate definition of the 

satellites’ mission profiles and a simplified 

representation of orbital dynamics, their efficiency 

makes them highly valuable for preliminary assessments.  

Data on the population of objects currently in orbit is 

obtained from publicly available databases. In the current 

implementation, the software that Telesat has developed 

(the “Telesat software tool”) and that this paper is based 

on automatically queries both SpaceTrack.org [13] and 

DISCOS [14] databases to collect information on the 

type, name, orbital parameters, physical characteristics, 

and launch/release epochs of catalogued space objects. 

This population is then classified into distinct categories. 

With respect to the approach outlined in [10], this study 

employs a more refined classification that distinguish 

some of the existing satellite constellations (e.g., Starlink 

and OneWeb) from the broader category of active 

payloads. This distinction allows to specify 

independently their characteristics, such as size, 

manoeuvrability and post-mission disposal rate, given 

their significant share of satellites currently in orbit. As a 

result, a total of nine classes are considered: active and 

inactive Starlink satellites, active and inactive OneWeb 

satellites, other active payloads, inactive payloads, rocket 

bodies, Lethal Trackable (LT) and Lethal Non-Trackable 

(LNT) debris. It is important to note that the Telesat 

software tool, which operates with clearly defined input 

files, allows for modelling as many classes as desired, 

although this will come at the expense of increased 

computational burden. Additionally, categories that do 

not belong to missions currently in orbit can be included 

to simulate the deployment of new systems, specifying a 

deployment rate along with all other relevant 

characteristics.  

The Low-Earth Orbit (LEO) region is divided into a user-

defined number of equally-spaced altitude shells (the 

analyses in Section 3 consider a shell thickness of 25 km), 

and every class of objects is modelled as a 𝑁 × 1 state 

vector, with elements representing the number of objects 

in each altitude shell. Differential equations are 

formulated for every objects’ class, with the expression 

of each depending on the class’ type.  

For classes of active satellites, the following equation 

applies [10]: 

 
𝜕𝑨

𝜕𝑡
=

𝒂 − 𝑨

𝜁𝐴

− 𝑭𝐴 − 𝑮𝐴 (1)  

where 𝑨 is the state vector of one of the active satellites’ 

classes; 𝒂 is the number of satellites launched over a 

period of time equal to the satellite’s lifetime, 𝜁𝐴; 𝑭𝐴 and 

𝑮𝐴 denote the catastrophic and non-catastrophic collision 

rates, respectively. The difference between these two 

types of collisions, as modelled in this work, is that 

catastrophic events result in the complete destruction of 

the satellite and subsequent ejection of fragments, while 

non-catastrophic events render a satellite unfunctional 

without releasing any debris. All these variables are 

vectors with dimension 𝑁 × 1, where each element 

represents the related quantity in one altitude shell.  

For inactive satellites’ classes, the corresponding 

differential equation reads as: 

 
𝜕𝑰

𝜕𝑡
=

(1 − 𝛿𝐴)

𝜁𝐴

𝑨 − 𝚽[𝒅𝐼 ⋅ 𝑰] − 𝑭𝐼 + 𝑮𝐴 (2)  

where 𝑰 is the state vector of one of the inactive satellites’ 

class and 𝑭𝐼 the related catastrophic collision rate vector; 

𝑨 refers to the active satellites’ counterpart of 𝑰, and 𝑮𝐴 

is its associated non-catastrophic collision rate vector; 𝒅𝐼  

is the 𝑁 × 1 decay rate vector to account for the orbits’ 

contraction induced by atmospheric drag, which depends 

on the average area-to-mass ratio of the satellites in the 

𝐼 class; 𝛿𝐴 is the post-mission disposal rate of the active 

satellites of the 𝐴 class; 𝚽 is a 𝑁 × 𝑁 matrix that models 

the transition of naturally decaying objects to the next 

lower altitude shell, which takes the form: 

 Φ = 𝑰 − 𝑼𝑵 (3)  

where 𝑰 and 𝑼𝑵 are the identity and upper shift matrices, 

respectively.  

For classes of derelict intact objects which do not have an 

active counterpart, like rocket bodies, the differential 

equation can be obtained by eliminating from Eq. (2) any 

term associated with the 𝐴 class.  

Finally, for the two debris classes the following equation 

holds: 

 
𝜕𝑫

𝜕𝑡
= −𝚽[𝒅𝐷 ⋅ 𝑫] − 𝑭𝐷 + 𝜣𝑪𝐷 (4)  

The first two terms have the exact same meaning as in 

Eq. (2) but here refer to one of the two classes of debris. 

The last term describes the creation and dispersion of 

fragments due to catastrophic collision events from 

interactions between objects of every class. In particular, 

𝑪𝐷 is the 𝑁 × 1 debris creation rate vector, and 𝜣 the 

collision coupling matrix, which distribute the ejected 

fragments from collisions in one shell to all modelled 

shells. It is derived from fragments dispersion analyses 

with NASA Standard Breakup Model (SBM) [15]. 

Details on the equations used for evaluating every term 

in Eqs. (1)-(4) can be found in [10], and they are omitted 

here for brevity. 
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The state vector for each objects’ class is initialized based 

on the orbital parameters of the objects’ population 

currently in orbit. Since, data relative to non-trackable 

debris is not available in the databases by definition, the 

number and distribution of these small particles is 

initialized as a multiple of the trackable ones. According 

to the NASA SBM, the number of fragments ejected by 

a collision event of dimension 𝐿𝐶  or larger is: 

 𝑁(𝐿𝑐) = 0.1𝑀0.75𝐿𝑐
−1.71 (5)  

with 𝑀 sum of the masses of the objects involved in the 

collision. Hence, if 𝑑𝐿𝑁𝑇 and 𝑑𝐿𝑇 are the minimum 

diameters considered for non-trackable and trackable 

debris (1 cm and 10 cm, respectively, in this work), and 

𝑑max a reasonable maximum debris size, the non-

trackable/trackable debris ratio can be obtained as: 

 

𝛽 =
𝑁(𝑑𝐿𝑁𝑇) − 𝑁(𝑑𝐿𝑇)

𝑁(𝑑𝐿𝑇) − 𝑁(𝑑max)
 

=
𝑑𝐿𝑁𝑇

−1.71 − 𝑑𝐿𝑇
−1.71

𝑑𝐿𝑇
−1.71 − 𝑑max

−1.71 
   

(6)  

If 𝑫𝐿𝑇 is the state vector for the LT debris, the state vector 

representing the LNT debris population is initialized to 

𝑫𝐿𝑁𝑇 : = 𝛽𝑫𝐿𝑇. 

One of the key assumptions of PIB models is that all 

elements within a class are assumed to have identical 

characteristics. For intact objects, the physical properties, 

such as mass and cross-sectional area, are set based on 

average values from the objects currently in orbit 

(excluding inhabited space stations). Other 

characteristics, like lifetime, Post-Mission Disposal 

(PMD) and Collision Avoidance (CA) rates are assumed 

based on available information. Assumed values for the 

considered active objects’ classes are summarized in 

Table 1. Note that the disposal of rocket bodies is not 

modelled as none of the studied scenarios considers a 

future launch traffic for this category of objects. Hence, 

given that rocket bodies do not have an operational 

lifetime, those already in orbit are assumed to have 

already performed PMD manoeuvre. Lifetime, PMD rate 

and unavailability of CA for satellites not belonging to 

constellations are set based on observed trends [16][17]. 

Table 1. Post-mission disposal rate, collision avoidance 

rate and lifetime of modelled active satellites' classes. 

Class PMD rate CA rate 
Lifetime 

[years] 

Starlink 95% 99.9999% 5 

OneWeb 95% 99.9999% 10 

Other 

satellites 
40% N/A 8 

A different approach is followed for defining the physical 

properties of the debris’ classes, as mass and size data is 

not available for the vast majority of orbiting fragments. 

Space debris are modelled as spheroids with material 

density 𝜌 of 2,000 kg/m3. Weighted averages for mass, 

𝑀, cross-sectional area, 𝐴𝑐, and area-to-mass ratio, 𝐴/𝑀, 

are evaluated as: 

 

�̅�(𝑑1, 𝑑2) =

𝜌𝜋
6 ∫ 𝑤(𝑥) 𝑥3 d𝑥

𝑑2

𝑑1

∫ 𝑤(𝑥) d𝑥
𝑑2

𝑑1

 

𝐴𝑐
̅̅ ̅(𝑑1, 𝑑2) =

𝜋
4 ∫ 𝑤(𝑥) 𝑥2 d𝑥

𝑑2

𝑑1

∫ 𝑤(𝑥) d𝑥
𝑑2

𝑑1

 

𝐴/𝑀̅̅ ̅̅ ̅̅ (𝑑1, 𝑑2) =

3
2𝜌 ∫ 𝑤(𝑥) 𝑥−1 d𝑥

𝑑2

𝑑1

∫ 𝑤(𝑥) d𝑥
𝑑2

𝑑1

 

(7)  

where 𝑤(𝑥) is the weight function, which derives from 

Eq. (5), and can be expressed as: 

 𝑤(𝑑) =
𝑑−1.71 − 𝑑1

−1.71

𝑑2
−1.71 − 𝑑1

−1.71   (8)  

The three functions in Eq. (7) must be evaluated for both 

debris’ classes, using 𝑑𝐿𝑁𝑇 and 𝑑𝐿𝑇 as integration limits 

for the LNT debris’ class, and 𝑑𝐿𝑇 and 𝑑max for the LT 

debris’ class. 

It is important to address a final point regarding the 

modelling of collision events. As mentioned earlier in 

this section, the object population model used in this 

work differentiates between catastrophic and non-

catastrophic events. Consistent with standard practice 

[15], an energy-to-mass threshold of 40 J/g is used to 

determine whether an impact results in the complete 

destruction of the colliding objects. In other words, for 

any two categories of objects, 𝑋 and 𝑌, with 

corresponding masses 𝑚𝑋 and 𝑚𝑌, a collision is 

considered catastrophic if the following condition holds: 

 EMR =
1

2

min(𝑚𝑋, 𝑚𝑌)

max(𝑚𝑋, 𝑚𝑌)
𝑣rel(ℎ)2 > 40

J

g
   (9)  

with 𝑣rel average relative velocity of impact in the shell 

at altitude ℎ. From Eq. (9) follows that, since a single 

mass value is assigned to each class, impacts between 

objects of the classes 𝑋 and 𝑌 at a given altitude ℎ are 

either all catastrophic or all non-catastrophic.  

3 APPROACHES FOR MEASURING 

ORBITAL CARRYING CAPACITY 

This section outlines the two primary approaches to the 

evaluation of OCC that the authors identified. Section 3.1 

focuses on “object-based” models, with particular 

reference to the methodology proposed in [10]. In Section 

3.2, the “risk-based” approach is examined, with an 

overview of various risk formulations presented in 

literature and considered in this study. 
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3.1 Object-based approach 

Two models fall within this category. A model proposed 

by the Massachusetts Institute of Technology (MIT) [9] 

relies on determining equilibrium points for the 

Institute’s internal source-sink debris evolutionary 

model, “MOCAT-3”. The equilibria are reached when 

space activity is such that the rate at which derelict intact 

objects and debris are created equals their decay rate, 

preventing their growth in the future. Consequently, 

meaningful stable points can only be found in regions 

where atmospheric drag has a significant effect, 

practically limiting the analysis to altitudes below 800 

km, when all possible solar activities are considered. 

Sturza et al. [10] proposed an alternative formulation 

that, according to their analysis, guarantees general 

validity within the LEO region. For this reason, only this 

approach is considered in the comparison campaign 

presented in this paper. For each altitude shell, the 

maximum number of satellites that can be sustainably 

placed in orbit is the one that ensures the rate at which 

satellites are consumed by collisions is equal to or lower 

than a specified fraction 𝑓 of the constant rate at which 

satellites are launched, over a sufficiently long timeframe 

(e.g., 100 years). In other words, the orbital environment 

is propagated into the future using the source-sink model 

presented in Section 2, including two additional classes 

of objects representing a family of “probe” satellites 

(both active and inactive) used to test the OCC. Both state 

vectors are initialized to zero, and launches are performed 

within a single altitude shell. The deployment rate is 

gradually increased until the following condition is met: 

 𝐹𝑃 + 𝐺𝑃 ≥ 𝑓
𝑝

𝜁𝑃

   (10)  

where 𝑝 is the launch rate, and the subscript “P” indicates 

that the quantities refer to the probe satellites. The 

maximum number of satellites that can be sustainably 

deployed corresponds to the last launch rate value for 

which Eq. (10) is not satisfied. This process is applied to 

each altitude shell, ultimately yielding a curve that 

illustrates the relationship number of satellites-altitude.  

3.2 Risk-based approach 

Risk-based models rely on the use of metrics, often 

referred to as “space debris indices”, which are 

formulations designed to quantify the potential threat that 

a space mission poses to the orbital environment. By 

aggregating risk values, the metrics can be extended to 

assess the overall threat presented by the entire 

population of spacecraft in orbit at any given time. When 

combined with long-term simulations of the orbital 

environment, these metrics can be used to project how the 

orbital health evolves over time. However, this alone is 

not enough to establish potential orbital capacity metrics 

and associated thresholds or management strategies. As 

highlighted in [1], a critical aspect is the identification of 

an acceptable and sustainable evolution of the orbital 

environment, which provides the foundation for applying 

these metrics. For example, if an agreed acceptable 

scenario results in an increase in the threat of a given 

quantity 𝑌 over 𝑋 years, the approach would suggest that 

the yearly launch rate should be limited to a level that 

ensures the yearly increase of risk does not exceed 𝑌/𝑋.  

However, it is important to note that there is no universal 

definition of risk, and it is unlikely that such a definition 

would ever exist, given the complexity and context-

specific nature of the issue. The following subsections 

introduce the metrics used in this work. While not 

intended to be an exhaustive list of all indices developed 

in literature, the metrics have been selected to highlight 

the various elements of risk and their effects under 

different scenarios. Such elements, along with the risk 

principle(s) underlying each of them from the authors’ 

perspective, are reported in Table 2. 

Table 2. Elements of risk and associated principles. 

Element name Meaning Risk Principle 

Lifetime Object’s natural de-orbit time 
The longer an object remains in orbit, the higher the 

cumulative risk it poses to other objects 

Mass Object’s mass 
The greater the mass of an object, the more fragments it could 

potentially generate if it breaks up 

Probability Probability of object’s breakup 
The higher the probability of an object’s breakup, the more 

likely it is to release fragments into orbit following a collision 

Lifetime2 Persistence in orbit of 

potentially released fragments 

The longer the fragments generated by an object’s breakup 

persist in orbit, the longer the exposure of other satellites to 

the flux associated with such fragments 

Congestion 
Congestion of spacecraft at the 

objects’ altitude 

The more congested the orbital environment around an object, 

the greater the risk the object poses to the safe operation of 

other spacecraft in the event of its failure and/or breakup 
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The considered metrics are presented in increasing order 

of complexity, and for each metric, the key elements of 

risk it describes are identified. It is worth clarifying that, 

by no means, the authors intend suggesting or implying 

that “increasing complexity of a metric” necessarily 

equates to a “better metric.”  

3.2.1 Undisposed Mass Per Year 

The Aerospace Corporation proposed the Undisposed 

Mass Per Year (UMPY) metric, which correlates the risk 

posed by a derelict object with its lifetime and mass. The 

mathematical expression for this metric reads as [18]: 

UMPY = ℱ(Lifetime, Mass)                                  

           =
1

𝑡𝑠𝑖𝑚

∑ [
exp (𝑥

𝑡𝐿(ℎ𝑖)
𝑡𝑠𝑖𝑚

) −1

exp(𝑥) − 1
]

𝑁𝑖𝑛.  𝑜𝑏𝑗.

𝑖=1

𝑚𝑖 
(11)  

where 𝑁𝑖𝑛.  𝑜𝑏𝑗. is the total number of inactive objects; 

𝑡𝑠𝑖𝑚 is the time period over which the orbital environment 

is propagated; 𝑡𝐿 is the object’s lifetime computed from 

an orbit altitude ℎ𝑖, and 𝑚𝑖 its mass; 𝑥 is the lifetime 

scaling exponent, which is set to 4 as in [18].  

3.2.2 Criticality of Spacecraft Index 

The Criticality of Spacecraft Index (CSI), proposed by 

Rossi et al. [19], introduces a dependency on the 

probability that the derelict object may fragment under 

the effect of an in-orbit collision. Such Probability of 

Collision (PoC) does not practically appear in the 

formulation, but rather a simple dependency on the 

spatial density, 𝑛𝒓, at the object altitude (upon which the 

PoC depends) is included. The metric equation is as 

follows [19]: 

CSI = ℱ(Lifetime, Mass, Probability) 

           = ∑ 𝑚𝑖  𝑡𝐿(ℎ𝑖) 𝑛𝒓(ℎ𝑖)

𝑁𝑖𝑛.  𝑜𝑏𝑗.

𝑖=1

                  
(12)  

Note that, in the original formulation, each of the terms 

in the equation is scaled by a reference value to obtain a 

non-dimensional formulation. Such terms are here 

omitted, as any result shown in Section 6 is presented in 

relative terms with respect to a reference scenario. 

3.2.3 Fragment-Years  

The Fragment-Years (FRY) index, that the European 

Space Agency proposed in [1], introduces the squared 

dependency on the lifetime, by including in the 

formulation the integral of a function 𝑃(𝑡, ℎ), which 

describes the percentage of the fragments larger than 10 

cm still in orbit after a given time 𝑡  following the object’s 

breakup. The function 𝑃(𝑡, ℎ) is obtained by least square 

fitting of the results on decay time of fragmentation 

clouds simulated with the NASA SBM. The FRY index 

takes the form: 

FRY = ℱ(Lifetime2, Mass, Probability)              

  = ∑ 𝐹𝑐,𝑐𝑎𝑡(ℎ𝑖) 𝐴𝑐𝑖
 𝑡𝐿(ℎ𝑖) 5.13𝑚𝑖

0.75

𝑁𝑜𝑏𝑗.

𝑖=1

 

× ∫ 𝑃(𝑡, ℎ𝑖) d𝑡
𝑡𝑠

0

              

(13)  

with 𝑁𝑜𝑏𝑗. number of intact objects, 𝐹𝑐,𝑐𝑎𝑡  flux of objects 

capable to trigger the catastrophic collision of the object, 

and 𝐴𝑐𝑖
 object’s average cross-sectional area. The 

exponent of the mass, 0.75, and the multiplicative factor, 

5.13, result from the number of fragments generated by a 

collision as predicted by the NASA SBM [15] - see Eq. 

(5). The multiplicative factor is obtained when setting the 

minimum characteristic length 𝐿𝑐 to 10 cm. 

3.2.4 University of Strathclyde Index  

The index proposed by Wilson et al. [20] of the 

University of Strathclyde, here referred to as IDX-STR, 

while keeping the already introduced key elements of 

risk, includes the dependency on the congestion of 

satellites at the altitude of the probe object, in the attempt 

to measure the incremental risk that its potential breakup 

would cause on other orbiting spacecraft. With respect to 

the original formulation of the index proposed in [20], a 

different approach is here used for evaluating the 

probability of collision, in order to keep consistency on 

how this aspect is modelled across the considered 

metrics. Indeed, the original paper uses a methodology 

based on the Minimum Orbital Intersection Distance 

(MOID), while this work adopts a flux-based approach. 

Therefore, in this paper, the index has the following 

mathematical expression: 

IDX − STR
= ℱ(Lifetime2, Mass, Probability, Congestion) 

= ∑ 𝐹𝑐,𝑐𝑎𝑡  𝐴𝑐𝑖
 𝑡𝐿(ℎ𝑖)

𝑁𝑜𝑏𝑗.

𝑖=1

𝑎 𝑚𝑖
0.75𝑛𝒓(ℎ𝑖)

𝑏𝑡𝑑𝑒𝑐𝑎𝑦(ℎ𝑖) 

(14)  

where the last term is the decay time function for 

fragmentation clouds generated at the altitude of the 

object ℎ𝑖, and 𝑎 and 𝑏 are factors, which the authors set 

to 2.31 × 104 and 0.229, respectively, to model objects 

orbiting within the LEO region. 

3.2.5 THEMIS Index 

The THEMIS index [21][22], developed within the 

homonymous ESA’s project carried out by Politecnico di 

Milano in collaboration with DEIMOS UK, treats the 

congestion term in a more elaborated form. The effect of 

the potential fragmentation of the object is measured as 

incremental collision probability for the active satellites 

with which the orbit of the ejected fragments can 

intersect. Hence, this index provides a direct measure of 

the consequences of a breakup as potential loss for 

spacecraft operators. The THEMIS index takes the 
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following form: 

THEMIS
= ℱ(Lifetime2, Mass, Probability, Congestion)              

= ∑ 𝐹𝑐,𝑐𝑎𝑡  (ℎ𝑖)𝐴𝑐𝑖
 𝑡𝐿(ℎ𝑖) ∑ 𝑃𝑐,𝑖𝑛𝑑.𝑖𝑗

(𝑡𝑝)

𝑁𝑎𝑐𝑡.𝑜𝑏𝑗.

𝑗=1

𝑁𝑜𝑏𝑗.

𝑖=1

  
(15)  

where 𝑁𝑎𝑐𝑡.𝑜𝑏𝑗. is the number of active objects, and 

𝑃𝑐,𝑖𝑛𝑑.𝑖𝑗
 is the PoC induced by the fragmentation cloud 

associated to the breakup of the ith object on the jth active 

satellite.  

Since IDX-STR and THEMIS evaluate the consequences 

of a potential fragmentation of an object on other 

spacecraft, they offer flexible analysis depending on the 

desired focus. For example, let us consider the case of 

evaluating the impact of a satellite constellation. If the 

purpose of the analysis consists in determining the effect 

on “neighbouring” operators, the analysis would focus 

solely on measuring the impact of potential 

fragmentation of the constellation’s satellites on the other 

orbiting satellites, excluding the constellation’s own 

satellites. The operator of the constellation, on the other 

hand, may be more concerned with assessing the 

consequences of imperfect management on its business 

case. In this case, only the risk to its own satellites, 

referred to as the “self-effect,” would be calculated. 

Finally, if evaluating the consequences on the orbital 

environment, particularly in terms of increased debris 

pollution, the combined effect would be analysed. 

Section 4 will provide results from analyses that include 

or exclude such self-effect. 

4 COMPARING ORBITAL CARRYING 

CAPACITY MODELS 

This section focuses on the OCC models introduced in 

Section 3. First, it evaluates the maximum number of 

satellites that can be placed sustainably within defined 

altitude shells, following the object-based approach 

outlined in Section 3.1. Next, it provides a detailed 

analysis of the various risk metrics presented in Section 

3.2, examining how the deployment of satellite 

constellations at different altitudes is assessed by the 

considered risk formulations and evaluating how 

variations in constellation characteristics and control 

parameters influence the perceived risk. Finally, it 

compares the two primary approaches to OCC 

measurement identified by the authors. 

4.1 Object-based approach: Satellite-altitude 

curve 

The object-based approach discussed in [10] and 

introduced in Section 3.1 is used to derive the curve 

representing the maximum number of satellites that can 

be sustainably placed in orbit as a function of altitude. It 

is important to note that this curve is not uniquely 

defined. In fact, it inherently depends on the specific 

characteristics of the probe satellites being considered, 

including their size, mass, operational lifetime, PMD 

success rate, and collision avoidance capabilities. The 

results presented in the following sections are based on 

the arbitrary characteristics specified in Table 3.  

Table 3. Characteristics of the modelled probe satellites 

to test OCC models. 

Quantity Value 

Cross-sectional area [m2] 10 

Mass [kg] 500 

Lifetime [years] 10 

PMD rate 95% 

CA rate  99.9999% 

Additionally, the satellites-altitude curve is influenced by 

the accepted level of risk, which in the formulation 

presented in [10] is represented by the parameter 𝑓. This 

parameter denotes the accepted fraction of launched 

satellites that may be lost due to collisions over their 

lifetime. This condition must hold at any point in time 

throughout the considered timeframe, during which the 

in-orbit population is propagated. In this study, the 

propagation period is set to 100 years and the fraction 𝑓 

to 1%. In general, different assumptions on these two 

parameters are likely to lead to results different than what 

illustrated below. 

Figure 1 illustrates the satellite-altitude curve within the 

altitude range of 200-1600 km. According to the 

considered settings, the object-based approach predicts 

that an effectively infinite number of satellites can be 

placed below 450 km. Beyond this, an exponential 

decrease occurs in the altitude range of [450, 680) km, 

which drives the curve to zero in the highly congested 

region between 680 and 950 km. At higher altitudes, the 

curve shows an initial exponential increase in the range 

of [950, 1100) km, followed by a plateau in the high-LEO 

region. This plateau is primarily due to the combined 

effects of negligible atmospheric drag at these altitudes 

and the very low levels of satellite and debris traffic. 

The results illustrated in Figure 1 will be used in Section 

4.3 to compare the object-based approach with the risk-

based approach. 

4.2 Risk-based approach: Impact of 

constellations deployment 

The risk metrics presented in Section 3.2 are applied here 

to evaluate the risk increase across different scenarios in 

terms of satellite launch traffic. Specifically, this study 

seeks to determine how different risk formulations 

quantify the impact on the orbital environment resulting 

from the deployment of satellite constellations in LEO at  
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different altitudes (Section 4.2.1) and the sensitivity of 

these formulations to variations in constellation 

characteristics (Section 4.2.2). This will help in 

evaluating the suitability of these metrics for assessing 

the space sustainability of missions, depending on the 

characteristics of their orbits. It is important to note that 

this analysis aligns with the approach proposed in Section 

4.1, that considers the deployment of probe satellites with 

identical characteristics at the same altitude, which can 

be thought of as composing a unique constellation. This 

parallelism facilitates a comparison of the two 

approaches, as discussed in Section 4.3. 

4.2.1 Influence of deployment altitude on 

measured risk 

The cases analysed involve the deployment of satellite 

constellations at altitudes of 650 km and 1300 km.  

Although both constellations are in LEO, these scenarios 

differ significantly. At 650 km, atmospheric drag has a 

considerable impact on the orbital evolution of objects, 

offering a significant advantage from a space 

sustainability perspective, because satellites that fail at 

this altitude will re-enter the atmosphere after a certain 

time even if not subject to any manoeuvre. In contrast, at 

altitudes above 1000 km, the atmosphere is too thin to 

cause substantial orbital decay. However, low-altitude 

orbits are far more congested, meaning that poor space 

system management can lead to operational physical 

interference with neighbouring satellites. Therefore, 

understanding how the deployment of the two system is 

perceived by the various risk metrics and, thus, how these 

key differences in risk are captured by them, is essential 

for their appropriate application. This is the ultimate goal 

of this section. 

The risk metrics are compared based on the measured risk 

increment associated with the deployment of the two 

constellations relative to a baseline scenario. This 

baseline, referred to as Business-As-Usual (BAU), 

assumes a launch traffic that maintains the number of 

currently in-orbit active satellites constant over time. The 

risk increment is evaluated according to the following 

steps: 

1. The orbital environment is propagated under the 

BAU scenario. 

2. The orbital environment is also propagated by 

incorporating the deployment of the two 

satellite constellations mentioned above into the 

BAU launch traffic, each of them modelled in a 

separate simulation. These two scenarios, 

referred to as Low-Altitude Constellation 

Deployment (LACD) and High-Altitude 

Constellation Deployment (HACD), 

respectively, assume that both systems are 

deployed and continuously replenished to 

maintain a constant number of active satellites 

in orbit. 

3. The aggregate risk, defined as the sum of the 

risk of all objects in orbit, is computed for the 

three simulation scenarios at multiple times over 

the considered 100-year timeframe.  

4. The percentage risk increment, 𝛿𝑅%, due to the 

constellation deployment is calculated at any 

given time 𝑡 according to the following 

expression: 

 𝛿𝑅%(𝑡) =
𝑅(𝑡) − 𝑅BAU(𝑡)

𝑅BAU(𝑡)
⋅ 100  (16)  

where 𝑅BAU and 𝑅 are the aggregate risk for the 

BAU case and for either LACD or HACD cases, 

respectively, evaluated using each risk metric. 

For the nominal case, the same characteristics listed in 

Table 3 are applied to the satellites of both constellations, 

with the constellation size assumed to be as large as 1,000 

satellites. These parameters will be subsequently varied 

in Section 4.2.2 to test the sensitivity of the metrics to 

their variations.  

The dot chart in Figure 2, used to present all the results 

throughout this section, shows the maximum percentage 

risk increment over the simulation period, as measured 

by each of the risk metrics. It also includes other 

quantities derived directly from the simulations of the 

orbital environment. In particular, the chart reports the 

increase in both LT and LNT debris, as well as in the 

catastrophic and non-catastrophic collision rates. 

The first key observation is that the quantified risk 

increment varies significantly across the different metrics 

in both scenarios. Analysing each measured quantity in 

more details, it can be noted that HACD results in a larger 

population of in-orbit debris, primarily due to the absence 

of atmospheric drag and, hence, of a significant sink 

mechanism. However, this increased debris population 

does not lead to a notably higher threat in terms of 

collision events. While the rate of catastrophic collisions 

is slightly higher, the rate of non-catastrophic ones is 

Figure 1. Maximum number of satellites that can be 

sustainably placed in orbit as a function of altitude 

according to the formulation in [8]. 
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significantly lower. The HACD “performs” worse when 

assessed using metrics that relate risk to the persistence 

of uncontrolled spacecraft in orbit, such as CSI and 

UMPY. Conversely, the LACD “performs” worse when 

evaluated with metrics that focus on the risk posed to 

other satellites, such as IDX-STR and THEMIS when 

excluding self-effects. When the self-effect is included, 

similar risk values are observed, with the self-effect being 

more significant at higher altitudes. Interestingly, the 

FRY metric, which “bridges” formulations based on the 

persistence of derelict objects in orbit and those focused 

on secondary effects like induced collisions, estimates a 

similar risk increment for the two scenarios. 

 
Figure 2. Risk increment relative to BAU due to 

constellations deployment at different altitudes. 

Another important aspect to consider is how the risk 

increment evolves over time. In fact, it is crucial to 

recognize that when conducting long-term analyses (e.g., 

over 100 years), accurately predicting the future 

evolution of the space environment is extremely 

challenging and likely unattainable, given the 

unpredictable nature of launch traffic and technological 

advancement, with the latter inevitably influencing 

satellite design and operation (e.g., de-orbiting services 

may significantly reduce the burden associated with 

satellites failures and new design features may make 

spacecraft less likely to fragment following the impact 

with a space debris). In other words, the longer the 

propagation time, the larger the uncertainty in the results. 

Additionally, from the perspective of operators 

potentially affected by the constellation deployment, the 

evaluation of its effects in the shorter term would likely 

be deemed of greater interest. In this regard, Figure 3 

illustrates the difference in the percentage risk increment 

relative to BAU between the two constellation 

deployment scenarios. In mathematical terms, the figure 

displays how the metrics assess the following quantity: 

 Δ[H − L]% = 𝛿𝑅%
HACD − 𝛿𝑅%

LACD (17)  

with 𝛿𝑅%
HACD and 𝛿𝑅%

LACD risk increment relative to BAU 

for HACD and LACD scenarios, respectively. Since the 

focus is on the difference in risk increase, a null value 

indicates that both scenarios pose the same level of threat. 

Generally, during the first half of the simulation, the 

LACD results in a higher environmental threat as 

measured by the majority of the metrics (negative 

Δ[H − L]% values), with the data points shifting to the 

right (towards less negative or positive Δ[H − L]% 

values) over time. This outcome is expected: since the 

high-altitude region is less congested, it takes time for 

satellite failures due to unsuccessful post-mission 

disposal to accumulate, interact with each other and with 

the background debris population before leading to an 

observable threat. In other words, over time, the lack of 

atmospheric drag at 1300 km altitude leads to the 

accumulation of derelict spacecraft, causing the risk to 

gradually increase. In contrast, at low altitudes, the 

impact of the new system is immediately perceived. 

However, the risk increment over time is less pronounced 

because atmospheric drag plays a more significant role in 

mitigating risk. 

 
Figure 3. Difference in risk increment relative to BAU 

between LACD and HACD scenarios at multiple 

epochs.   

4.2.2 Sensitivity of metrics to constellation 

characteristics  

This section explores how variations in the 

characteristics of the constellations, from size to the 

effectiveness of mitigation measures, and the deployment 

of constellations in adjacent shells, impact the perceived 

risk as assessed by the considered risk metrics. 

Specifically, the dot charts that are presented below 

investigate how these variations shift the balance in 

differential risk between HACD and LACD. Therefore, 

within this section the quantity under analysis (i.e., the x-

axis of the dot charts), indicated with 𝜀,  takes the 

following form: 

 𝜀 =  Δ[H − L]%
mod. − Δ[H − L]%

nom. (18)  

where Δ[H − L]%
mod. and Δ[H − L]%

nom. are the 

differential risks between HACD and LACD considering 

the nominal (Table 3) and modified constellation 
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characteristics, respectively. The following 

considerations can be made regarding the variable 𝜀: 

- If 𝜀 ≈ 0, the analysed change in constellation 

characteristics does not affect the balance of 

differential risk between HACD and LACD 

scenarios. In other words, the relative risk 

remains the same as shown in Figure 3. 

- If 𝜀 < 0 (𝜀 > 0), the analysed change in 

constellation characteristics has a greater 

negative impact (i.e., a relative increase in risk) 

on the safety associated with the constellation at 

low (high) altitude. Naturally, the greater the 

difference, in absolute value, the higher the 

relative impact. 

Sensitivity to mitigation action 

First, the impact of variations in the post-mission 

disposal success rate and the effectiveness of collision 

avoidance manoeuvres is analysed. Figure 4 illustrates 

how the differential risk between HACD and LACD 

changes as the PMD rate decreases from 95% to 90%. 

With the exception of the two metrics that focus on the 

negative impact on neighbouring operators (i.e., IDX 

STR and THEMIS excluding self-effect), a reduction in 

de-orbiting reliability has a more significant impact on 

constellations at high altitudes. Naturally, the larger 

number of uncontrolled satellites remaining in orbit 

where atmospheric drag is negligible causes metrics like 

UMPY and CSI, which directly correlate risk to the 

number of abandoned spacecrafts, to increase linearly. 

The significant change in the value assessed by THEMIS, 

particularly the large difference compared to the case 

when self-effect is excluded, highlights that the most 

substantial negative impact is on the constellation 

satellites themselves. As noted previously, HACD 

accumulates risk in a non-linear fashion over time, with 

a shift towards long-term consequences. 

 
Figure 4. Effect of reduced post-mission disposal rate 

on the differential risk between HACD and LACD 

scenarios. 

Similarly, Figure 5 displays the effect of reducing the CA 

rate from 99.9999% to 99.99%. It is important to note that 

this reduction is considerably smaller than the one 

considered in the PMD analysis. The values used in the 

study are intended to represent realistic scenarios: an 

accepted risk threshold in the case of conjunction of more 

than 1:10,000 would be outside the current standards in 

practice. Less stringent CA measures have a greater 

negative impact on the constellation at low altitude, 

particularly in terms of increased risk for nearby 

operators. Instead, the small change in CA rate is not 

sufficient to cause a relevant increase in the number of 

failures; in fact, the balance between HACD and LACD 

scenarios is unchanged as monitored by UMPY and CSI 

metrics. 

 
Figure 5. Effect of reduced collision avoidance rate on 

the differential risk between HACD and LACD 

scenarios. 

Sensitivity to constellation and satellite size 

The effect of increasing the number of satellites in the 

two constellations, from 1,000 to 2,000 satellites, and the 

size of the satellites, from 500 kg to 1,000 kg, is shown 

in Figure 6 and Figure 7. In the latter case, the cross-

sectional area is doubled accordingly to maintain the 

same area-to-mass ratio. It is important to note that the 

two analysed cases are closely related. Doubling the 

number of satellites results in the same increase in 

collision rate as doubling the satellite cross-sectional 

area, as the cumulative constellation cross-sectional area 

coincides. However, the increase in size also leads to a 

higher number of released fragments in the event of a 

collision. Nevertheless, similar trends are observed, and 

the same considerations can be drawn for both analyses.  

The considered changes have a slightly greater effect on 

the HACD in terms of the number of both LT and LNT 

debris. Interestingly, an opposite effect is observed for 

catastrophic and non-catastrophic collisions: the number 

of catastrophic collisions increases more for the HACD 

case, while the number of non-catastrophic collisions 

increase more for the LACD case. Considerations 

analogous to those highlighted for the PMD rate analysis 

can be made for the metrics, with the increase in self-
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effect driving the notable shift to the right (i.e., penalizing 

HACD) in the THEMIS estimates over the long term. 

However, within the first 25 years, the trend is reversed, 

demonstrating how the increase in constellation and 

satellite sizes takes time to negatively impact on the 

accumulation of failed satellites and debris at higher 

altitudes. 

 
Figure 6. Effect of increased constellation size on the 

differential risk between HACD and LACD scenarios. 

 
Figure 7. Effect of increased satellite size on the 

differential risk between HACD and LACD scenarios. 

Sensitivity to constellation proximity 

Lastly, the effect of deploying two constellations in close 

proximity (i.e., in adjacent shells) is investigated. The 

analysis explores how the balance between HACD and 

LACD may vary due to the two systems potentially 

influencing negatively each other (e.g., the failure of one 

system possibly impacting the other), which could 

ultimately lead to a higher threat for neighbouring 

operators. The two additional constellations, with the 

same characteristics as those considered in the nominal 

case and listed in Table 3, are deployed in the two nearest 

adjacent shells at lower altitude, at 625 km and 1,275 km, 

respectively. The resulting dot chart is represented in 

Figure 8. Operating the two constellations in close 

proximity at low altitude hugely impact the neighbouring 

active satellites, as measured by the THEMIS 

formulation without self-effect. As for the other metrics, 

UMPY and CSI estimates are consistently in the positive 

side of the chart, while for IDX-STR and THEMIS with 

self-effect the already commented rightward trend as 

time passes is observed. 

 
Figure 8. Effect of the deployment of constellations in 

adjacent shells on the differential risk between HACD 

and LACD scenarios. 

It is worth noting that the FRY metric exhibits the least 

variation in the balance between HACD and LACD 

scenarios, regardless of the applied modification 

compared to the nominal case. This further demonstrates 

its intermediary role, with results positioned between 

formulations focused on the persistence of derelict 

objects in orbit and those focused on secondary effects 

like caused collisions. 

To interpret graphically the sensitivity of the analysed 

risk metrics to variations in constellation characteristics, 

depending on the constellation altitude, spider charts are 

generated following these steps: 

1. The maximum risk increment over the 

simulation time (i.e., 100 years) resulting from 

variations in constellation characteristics is 

computed for both the LACD, 𝛿𝑅LACD, and 

HACD, 𝛿𝑅HACD, cases for each metric. 

2. For each studied constellation’s change in 

characteristics, the maximum risk increment, 

𝛿𝑅max,  measured by the considered metrics, is 

identified. 

3. The sensitivity of each metric is then computed 

as: 

            𝑠 = log10 (
𝛿𝑅LACD/HACD

𝛿𝑅max

) (19)  

Note that 𝛿𝑅max is the overall maximum risk 

increment among all metrics, for both the 

LACD and HACD scenarios, associated with a 

change in one of the constellation 

characteristics.  



Leave footer empty – The Conference footer will be added to the first page of each paper. 

 

The resulting spider charts related to the LACD and 

HACD scenarios are shown in Figure 9. Note that each 

level change in the graph (i.e., moving outward by one 

circle) corresponds to an order of magnitude change in 

risk, due to the logarithmic scale.

  
Figure 9. Metrics sensitivity to variations in constellation characteristics for LACD (left) and HACD (right) scenarios. 

Although no new content is added compared to the 

previous analyses in this section, the two spider charts 

provide direct insights into how the metrics differently 

perceive the risk associated with the deployment of the 

two constellations. Specifically, the perceived risk, as 

measured by the UMPY and CSI metrics, is more 

influenced by changes in constellation characteristics in 

the HACD case than in the LACD case. Although in 

different magnitude, these two metrics are highly 

sensitive to variations in PMD rate, constellation and 

satellite sizes in both deployment scenarios, as such 

changes have direct impact on the number of derelict 

objects in orbit. In contrast, the IDX-STR and THEMIS 

metrics show an opposite trend when excluding self-

effect, as they attribute a greater impact to the LACD 

case. Moreover, they are very sensitive to CA rate and 

constellation proximity, as these changes affect the 

physical interference of the deployed systems with 

neighbouring satellites. When self-effect is accounted 

for, THEMIS demonstrates the highest sensitivity to 

changes in characteristics in both scenarios, though the 

underlying causes differ: at low altitude, sensitivity is 

strongly linked to the incremental threat to neighbouring 

satellites, whereas at high altitude, the threat is mainly 

perceived by the constellation itself. As noted earlier, the 

FRY metric exhibits the most similar behaviour in both 

scenarios.  

4.3 Object-based vs Risk-based approach 

To compare the object-based and risk-based approaches, 

the satellite-altitude curve from Section 4.1 is used as an 

input to the risk analysis, following the methodology 

outlined in Section 4.2. Specifically, for each altitude 

shell, the maximum number of satellites that can be 

placed sustainably in orbit according to the object-based 

approach is treated as a constellation deployment 

scenario. For each scenario, the associated risk 

increments, as determined by the risk formulations, are 

calculated. Note that each constellation deployment is 

treated as a separate simulation, with its own long-term 

environmental propagation and risk increase evaluation 

relative to the BAU scenario. The outcome of this 

analysis is a series of risk-altitude curves, one for each 

metric. These curves illustrate the estimated risk 

increment by each metric as a function of altitude, 

resulting from the deployment of constellations with 

sizes shown in Figure 10. If a metric predicts a flat risk-

altitude profile, with exception of the altitude range [680, 

950) km where no satellites are deployed, it indicates that 

the same risk increment is associated with the 

deployment of the constellations of varying sizes, 

suggesting that the metric perceives risk in the same way 

as the object-based approach. In contrast, significant 

differences in risk increment must be interpreted as a 

strong disagreement between the metric and the object-

based approach. The resulting charts are presented in 

Figure 10 for various simulation times, consistently with 

previous analyses. 
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Figure 10. Risk increment due to constellations deployment relative to BAU, with constellation size varying based on 

altitude and according to the satellite-altitude curve from the object-based approach. 

As already mentioned in Section 4.2, the risk increment 

remains approximately constant over time at low 

altitudes, whereas at higher altitudes, a non-linear 

dependency of risk on time is observed. Interestingly, 

some metrics clearly detect the presence of already 

deployed constellations, a feature that was not fully 

captured in the satellite-altitude curve. Specifically, 

THEMIS, IDX-STR, and FRY exhibit a significant peak 

just below 550 km (the altitude of the Starlink 

constellation), while IDX-STR and THEMIS, excluding 

self-effects, show sharp spikes around 1200 km (the 

altitude of the OneWeb constellation). UMPY is the only 

metric that estimates a higher threat at high altitudes, 

regardless of simulation time. Among the formulations 

studied, CSI shows the highest agreement with the 

object-based solution, displaying the most similar risk 

increment values below 680 km and above 950 km, 

excluding very low altitudes. This suggests that the 

object-based model primarily captures the risk associated 

with the permanence of derelict objects in orbit and their 

collision probability. The remaining metrics estimate a 

significantly higher threat at low altitudes, which slightly 

diminishes over time. Therefore, it is reasonable to 

conclude that the object-based approach tends to 

underestimate the risk posed by constellation deployment 

at low altitudes, at least when compared to the risk-based 

formulations analysed in this paper. 

5 CONCLUSIONS 

This paper presented the software architecture developed 

by Telesat to compare existing Orbital Carrying Capacity 

(OCC) models. Specifically, it examined the two primary 

OCC approaches identified by the authors, analysing 

them both theoretically and through practical test cases. 

The first approach proposes a methodology to determine 

the maximum number of satellites that could be 

sustainably placed within defined altitude shells, based 

on an accepted risk threshold that limits the fraction of 

satellites lost to collisions over a sufficiently long-time 

horizon. The second correlates the residual availability of 

orbital resources with the cumulative risk posed by the 

current and projected spacecraft populations under an 

acceptable evolution of the orbital environment. This 

second approach ramifies into multiple formulations that 

consider a different definition of risk associated with a 

space mission. This study focused on evaluating how the 

deployment of constellations at varying altitudes expends 

such orbital resources, as predicted by different OCC 

models. 
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A substantial part of the analysis was dedicated to 

comparing various risk metrics that have been proposed 

over the years, some of which remain under 

development. The findings demonstrated that the same 

satellite launch traffic scenario can be evaluated in 

markedly different ways depending on the selected 

metric. This underscores the fact that an arbitrary choice 

of methodology may yield only a partial assessment of 

the actual risks associated with a studied future launch 

activity. From Telesat’s perspective, no current single 

metric can be considered universally applicable, as every 

metric highlights different key aspects of risk. For 

instance, the deployment of a constellation at high 

altitude presents a greater risk in terms of the prolonged 

persistence of failed satellites in orbit compared to the 

same deployment at low altitude. However, this risk does 

not directly translate into an immediate hazard for other 

operators, but it rather results in the gradual accumulation 

of debris, which could ultimately impact the constellation 

itself, in the absence of remediation measures. 

Conversely, the unsuccessful de-orbiting of constellation 

satellites or the imperfect execution of collision 

avoidance manoeuvres at lower altitudes leads to an 

immediate increase in risk for neighbouring satellites or 

other large systems in adjacent orbital shells. 

Nevertheless, given the current standard practices 

employed by large operators, it is unlikely that this 

induced risk causes a significant long-term escalation in 

orbital debris within lower altitude shells, given the 

efficient sink mechanism provided by atmospheric drag. 

Every space system entails potential risks, but accurately 

characterizing them may require distinct considerations 

and methodologies. This flexible approach ensures that 

any resulting Orbital Carrying Capacity framework 

effectively protects the long-term sustainability of the 

orbital environment, while adequately considering the 

diverse nature of space systems. 
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