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ABSTRACT

Accurate satellite orbit prediction is becoming increas-
ingly critical due to the growing density of objects in low-
Earth orbit (LEO) and the unpredictable effects of space
weather. Traditional physics-based models often struggle
under extreme solar conditions, largely because they lack
mechanisms to quantify predictive uncertainty. In this
work, we propose an uncertainty-aware framework for
predicting orbital perturbations using Graph Neural Net-
works (GNNs) enriched with space weather indicators
and satellite-specific data. Our architecture incorporates a
Bayesian multi-relational Graph Convolutional Network
(GCN) that captures dynamic inter-satellite relationships
through multiple graph views, based on proximity, or-
bital similarity, and operator classification. Combined
with a temporal forecasting module, this framework en-
ables accurate orbit predictions and real-time uncertainty
estimation via Monte Carlo sampling. We also explore
a complementary uncertainty estimation approach using
time series classification, which leverages probabilistic
outputs to infer model confidence. Preliminary experi-
ments with SWARM and GRACE-FO datasets show that
our model performs on par with traditional propagators
while offering robust confidence intervals, particularly
during geomagnetic storms. These findings demonstrate
the promise of GNN-based methods for reliable orbit
forecasting, anomaly detection, and large-scale satellite
catalog maintenance in complex, data-rich environments.
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Every decade, the activity of our Sun attracts significant
attention, especially when extreme events occur and their
impacts are felt on Earth. During these events, even gen-
eral and popular press outlets begin publishing articles
explaining the effects of Solar Storms. In some cases,
they analyze how solar storms are addressed and their po-
tential impacts on our way of life [1, 2]. However, that is
often the extent of public awareness.

For the average person, these phenomena may seem to
cause only minor technological inconveniences, such as
brief electrical blackouts, mobile phones failing to track

locations accurately, or the familiar static noise on the
radio when no signal can be received. Some people
might also be aware that during these storms, auroras can
be seen in locations far from the usual regions near the
North and South Poles. However, solar storms are far
from trivial. They can lead to severe problems, such as
satellite malfunctions or unexpected orbital decay. In ex-
treme cases, this may result in satellites crashing back
to Earth in an uncontrolled manner, which is not only
costly but also highly dangerous [3, 4]. Furthermore, so-
lar storms can cause significant damage to power grids,
potentially leading to permanent infrastructure failures.
Such failures can have long-term economic and safety
consequences [5].

During 2024, solar storms once again captured the scien-
tific community’s attention, thanks to unusually extreme
events occurring in May, August, and October. These
episodes not only challenged our understanding of space
weather but also underscored the tangible impacts on
satellite operations. Intense solar activity during these pe-
riods led to significant geomagnetic disturbances, which
in turn contributed to enhanced atmospheric density vari-
ations and increased satellite drag. According to Parker
and Linares [6], who analyze the impact of the last May
solar storm, the Ganon Solar was triggered by several
X-Class solar flares and coronal mass ejections (CMEs)
from some solar active regions that severely impacted
Earth’s magnetosphere and upper atmosphere. This event
poses a serious risk, as such extreme and sudden occur-
rences can disrupt both ground and space operations by
producing high voltage inductions, sudden electronic fail-
ures, and unexpectedly extreme drag on satellites travers-
ing Earth’s atmosphere.

With this project, we aim to focus on the challenge of pre-
dicting when satellites are likely to experience an unex-
pected decay, enabling us to better prepare for their con-
sequences. As highlighted by the scientific community
and even by media outlets [7], our current models are not
sufficiently equipped to predict these events with the nec-
essary lead time.

Moreover, these reports emphasize the urgency of tack-
ling this issue as soon as possible. The paradigm in the
field of space operations is shifting, with an increasing

Proc. 9th European Conference on Space Debris, Bonn, Germany, 1–4 April 2025, published by the ESA Space Debris Office

Editors: S. Lemmens, T. Flohrer  & F. Schmitz, (http://conference.sdo.esoc.esa.int, April 2025)



number of satellites populating Low Earth Orbit (LEO)
[3, 6]. This growing congestion significantly raises the
risk of catastrophic impacts if such events remain unpre-
dictable, in terms that we are not able to be aware when
satellites can suffer from major drag effects, not even in a
probabilistic way, as there is an important lack of reliable
uncertainty aware methods with real-world implications
already being observed [8].

In response to these challenges, our project leverages
Graph Neural Networks (GNNs) alongside advanced
time series methodologies to predict satellite drag with an
uncertainty-aware approach. By integrating these tech-
niques, we aim to deliver more reliable forecasts that ac-
count for the inherent variability of solar-driven phenom-
ena, ultimately supporting improved decision-making in
satellite mission planning and operations.

1. CURRENT LITERATURE COMPARISON

Traditionally, a wide set of approaches have been em-
ployed to predict and prepare for such solar events, but
the main ones can be described as a mixture of an empir-
ical atmospheric model embedded within a propagator or
a hybrid method that combines physics-based simulations
with data-driven corrections. Following the research
trend we can find mainly three primary methodologies
for predicting satellite drag or altitude loss that neces-
sitate maneuvers: numerical integration, semi-analytical
methods, and machine learning models.

1.1. Numerical Integration Methods

Numerical integration methods involve solving the satel-
lite’s equations of motion through detailed, step-by-step
calculations that account for atmospheric drag and other
perturbative forces [9]. However, these approaches strug-
gle during periods of high variance in solar activity with
sudden peaks, as they are primarily effective for short-
term predictions under stable solar conditions. Although
these methods offer high accuracy, which is essential for
precise orbit predictions, their computational cost can be-
come significant, particularly for long-term forecasts or
when managing large satellite constellations [10]. This
common approximation relies on atmospheric models to
perform numerical orbit propagation, a process that de-
pends on multiple factors: accurate solar activity predic-
tions, reliable models for retrieving atmospheric densi-
ties, and high-fidelity propagators. At each stage, the lim-
ited accuracy of the available methods results in accumu-
lated errors across the different tools, ultimately leading
to a higher overall error during challenging periods.

However, Flores et al. [9] point out something crucial
for maneuver planning: the development of uncertainty-
aware methods that can guide satellite operators in choos-
ing the optimal time to maneuver, thereby adding confi-
dence to the decision-making process.

1.2. Semi-Analytical Methods

Another tendency in orbit prediction involves semi-
analytical methods, which blend analytical formulations
with numerical corrections to balance accuracy and com-
putational efficiency. They average perturbations over or-
bital periods, making them particularly useful for long-
term predictions and for maintaining space object cata-
logs [11]. These authors especially recognize the perfor-
mance of their model for debris orbit prediction, which
is coherent with expectations since debris, lacking ma-
neuver capabilities, exhibits more predictable behavior.
This predictability is further enhanced by the separation
of short-term and long-term error components, allowing
the model to effectively integrate historical events into
current data for accurate orbit propagation.

Despite their advantages, these methods may encounter
challenges when dealing with highly perturbed orbits,
where the underlying simplifications can reduce predic-
tion accuracy [12]. Furthermore, they are less suited for
preventing the events mentioned at the start of this pa-
per, as their focus on long-term dependencies and pat-
terns limits their ability to provide real-time predictions
of imminent orbital decay.

1.3. Machine Learning/Data-Driven Models

Lastly, numerous machine learning approaches leverage
historical satellite data to predict orbital decay and drag-
induced maneuvers. By using techniques such as Sup-
port Vector Machines, Artificial Neural Networks, and
Gaussian Processes, these models are capable of learn-
ing complex patterns and correcting errors in traditional
physics-based models [13]. Their adaptability is par-
ticularly promising for handling uncertainties introduced
by solar events, although their performance critically de-
pends on the quality and volume of available data [14].
While the large number of satellites orbiting Earth pro-
vides a wealth of data, the lack of synchronization in the
reporting process poses a challenge, necessitating signif-
icant efforts in data preprocessing and preparation before
the data can be fed into the model.

As we have seen, there are numerous ways to approach
orbital prediction, or at least to reduce uncertainty and
help operators make safer decisions. In low Earth orbit
(LEO), quantifying uncertainty is crucial due to the inher-
ently variable nature of space weather and its impact on
orbital trajectories. Understanding how reliable a model
is in its predictions allows for a more complete assess-
ment of whether rapid maneuvers are necessary to avoid
potential issues.

Supporting this, as noted by Parker et al. [15], poor pre-
dictions of geomagnetic conditions can hinder reliable



conjunction assessments, delaying timely collision avoid-
ance maneuvers. Accurate estimation of atmospheric
drag in the thermosphere is especially vital in a con-
gested LEO environment, where sudden density changes
caused by solar activity significantly raise collision risks,
as highlighted by Matsuo et al. [16] and Hypolite et al.
[17]. The growing number of satellites and space debris
calls for robust probabilistic models to guide operational
decisions under uncertainty, a need stressed by Smith and
Doe [18] and Space.com [19].

Recent advances in deep evidential frameworks (Li et
al. [20]) offer promising solutions, providing both pre-
dictive accuracy and explicit uncertainty estimates for
thermospheric density during geomagnetic storms. More
broadly, as emphasized by several authors [21, 22, 23,
24], integrating uncertainty-aware techniques into space
weather forecasting is essential for maintaining safe and
efficient satellite operations in the increasingly crowded
LEO environment.

That’s why we are starting to develop a framework that
incorporates what we believe are good practices, or at
least key points, for this task: having uncertainty deter-
mination estimates, integrating all data within the same
framework to avoid the prediction pipeline relying on too
many steps (with their associated errors), and being able
to update a large portion of the satellite catalogue in a
short period of time. This is why we suggest the use of
GNNs to address the problem, as they can profit from
all the information present in the network of satellites
and are capable of making accurate predictions. More-
over, they are well-suited to exploit all possible inputs
that can affect satellite drag, such as space weather data
and the states of neighboring satellites, and they are able
to capture the spatio-temporal relationships among satel-
lites that are critical for predicting their future states.

2. OUR APPROACH

From our perspective, the traditional pipeline for satellite
orbit and drag prediction, beginning with space weather
indices to construct an atmospheric model, which is
then fed into an orbit propagator, introduces significant
sources of error and often fails to deliver satisfactory per-
formance. This approach is commonly used by satellite
operators for orbit prediction. However, as highlighted
by Parker & Linares [6], a clear example of its limita-
tions was observed during the Ganon Storm in May 2024,
when most LEO satellites had to perform corrective ma-
neuvers within just one day to recover their nominal or-
bits. This response effort poses a major operational chal-
lenge, as a large number of satellites require timely ma-
neuvering over a short time window due to severe altitude
loss induced by increased atmospheric drag.

As shown in the previous section, one of the key chal-
lenges to address is the lack of uncertainty quantifica-
tion in this type of prediction. That is why we priori-
tized this problem from the beginning, aiming to incor-

Figure 1. Uncertainty estimates for t+ 1 altitude predic-
tions, concatenated over 80 steps of 10-minute intervals.

porate uncertainty-aware solutions early in the model de-
sign process.

To this end, we propose an end-to-end architecture based
on Graph Neural Networks (GNNs), capable of process-
ing standard inputs and learning how to effectively ap-
ply them to orbit prediction tasks. In this simplified case
study, the goal is to predict variations in satellite altitude
using multiple temporal snapshots of a graph. The nodes
represent satellites and remain constant, while the model
updates their altitude state by learning from evolving re-
lationships and features over time.

In parallel, we explored a complementary approach to un-
certainty estimation, based on the idea of decoupling it
from the main model. This allows for more flexible ex-
perimentation with techniques better suited for represent-
ing predictive uncertainty, especially in scenarios where
end-to-end uncertainty propagation may be difficult to
achieve or interpret.

2.1. Uncertainty Estimation

From the early stages of model development, we focused
on enabling reliable uncertainty predictions. This de-
cision was also motivated by our intent to separate the
uncertainty estimation process from the core predictive
model, allowing us to experiment with alternative uncer-
tainty modeling strategies.

2.1.1. Uncertainty Estimation Using a Time Series
Classifier

To estimate uncertainty, we explored training a separate
model dedicated to this task. Specifically, we used a time



series classifier, leveraging its inherent probabilistic out-
puts to derive uncertainty metrics. This type of model
provides a distribution over possible class labels, which
can be analyzed statistically to estimate confidence in the
predictions.

This idea was inspired by a participant in a machine
learning competition who used a similar approach
to predict pressure values [25]. The method is also
supported by Hacibeyoglu et al. [26], who proposed
using classifiers for continuous variable prediction by
discretizing the target and interpreting the resulting
probability distribution as an uncertainty estimate.

What we did was discretized the target variable,
altitude, into several bins. After testing different con-
figurations, we found that using 200 bins for a 300
km range (yielding a bin size of approximately 660
meters) provided a good balance between resolution and
performance. Our goal was to predict only the next time
step (t + 1) with an associated uncertainty estimate. To
do so we used ResNetPlus architecture extrated from
the tsai python library [27], which we configure with its

presets without further arch configuration. To this model,
we fed sliding windows of 64 steps in the past of Ap and
altitude values.

While this approach performed well over various time pe-
riods, we eventually decided to temporarily set it aside.
The main limitations were its poor scalability when in-
creasing resolution (as more bins were required) and
its limited suitability for multivariate extensions. Addi-
tionally, the method occasionally produced unexpected
spikes in uncertainty at random intervals, as shown in
Figure 1. Although we do not rule out revisiting this ap-
proach in the future, it is not incorporated into the final
model presented here.

2.1.2. Graph Bayesian Aggregation

Following the classification approach, we explored a
Graph Bayesian Aggregation (GBA) framework, inspired
by the work of Hu et al. [28], who successfully applied
it to a spatio-temporal extrapolation problem. Given the
similarities in structure and requirements, we adapted the
method to our context.

Figure 2. Graph Bayesian Aggregation example applied to our use case. Here we represent how this process works using
Similarity, Proximity and Operator views.



In our case, we model multiple types of relationships be-
tween satellites, such as spatial proximity, similarity in
orbital parameters, or current dynamical states. These re-
lationships define distinct views or adjacency representa-
tions of the satellite graph. The GBA model processes
each view independently, allowing it to assign different
levels of relevance to each representation based on its
contribution to prediction performance. These multiple
views are then aggregated in a Bayesian fashion, intro-
ducing stochasticity into the output.

This probabilistic approach allows us to obtain differ-
ent predictions across multiple runs, with the variance
between predictions reflecting the model’s confidence,
more compressed distributions indicating higher cer-
tainty. A visual summary of this mechanism is provided
in Figure 2, which illustrates the GBA process. Impor-
tantly, this method addresses the scalability limitations of
our previous model while seamlessly integrating uncer-
tainty estimation into the prediction process. As a result,
there is no need for a separate module to assess prediction
confidence, everything is handled within a single, unified
model. A more detailed discussion of this approach fol-
lows in the next section.

2.2. Final model

Our model is designed to integrate satellite relational dy-
namics with temporal forecasting over graph-structured
data. Each node in the graph represents a satellite, char-
acterized by a set of evolving features derived from TLE
parameters, physical constants, and space weather in-
dices. Instead of explicitly encoding spatial coordinates,
the model emphasizes learning the interactions and de-
pendencies between satellites.

The architecture comprises two main components: a re-
lational module based on a Bayesian Multi-Relational
Graph Convolutional Network (GCN), which processes
multiple graph views capturing different types of satel-
lite relationships, and a temporal module that employs an
LSTM with multi-head self-attention to model the tem-
poral evolution of node features. A high-level schematic
of the architecture is presented in Figure 3.

2.2.1. Relational Module – Bayesian Multi-Relational
GCN

At each time step t, we have a graph snapshot with:

X(t) ∈ RN×F ,

where N is the number of satellites and each row x
(t)
i

represents the feature vector of satellite i.

For each relation r (e.g., proximity, TLE similarity), we
compute a dynamic adjacency matrix:

A(r)(t) ∈ RN×N ,

and include static relationships (e.g., common operator)
as precomputed matrices A(r)

static.

Each relation has a learnable weight matrix:

W (r) ∈ RF×H ,

where H is the embedding dimension. In addition, we
model a per-relation scalar α(r) as a random variable:

α(r) ∼ N
(
µ(r), (σ(r))2

)
, with σ(r) = exp

(
agg logstd(r)

)
,

and sample a scaling factor during propagation:

α̃(r) = softplus
(
µ(r) + ϵ(r) σ(r)

)
, ϵ(r) ∼ N (0, 1).

The message from neighbors for node i at time t is com-
puted as:

m
(r)
i (t) =

∑
j∈N (r)(i,t)

A
(r)
ij (t)W (r)x

(t)
j ,

and the aggregated representation is:

hi(t) = ReLU

(
R∑

r=1

α̃(r) m
(r)
i (t) + b

)
,

where b ∈ RH is a bias term. This results in a new em-
bedding matrix for each time step:

H(t) ∈ RN×H .

2.2.2. Temporal Module – LSTM with Multi-Head
Self-Attention

For each satellite i, we now have a sequence of embed-
dings over a sliding window of W time steps:

{hi(1), hi(2), . . . , hi(W )}, hi(t) ∈ RH .

This sequence is processed by an LSTM, which produces
a series of hidden states:

si(1), si(2), . . . , si(W ) ∈ RD,

where D is the LSTM’s hidden dimension.

On top of the LSTM outputs, we apply a multi-head self-
attention mechanism to enable the model to focus on the
most relevant regions of the embedding space. This de-
sign is motivated by our objective to input a large num-
ber of variables, allowing the model to learn to selec-
tively attend to the most informative features for predic-
tion. The outputs from all attention heads are concate-
nated and passed through a final linear projection layer.
Subsequently, temporal aggregation (e.g., via mean pool-
ing) is applied to derive a fixed-size context vector for
each satellite.

ci =
1

W

W∑
t=1

s̃i(t),



where s̃i(t) is the output from the attention layer.

The final forecast is produced by a fully connected layer:

ŷi = f(ci) ∈ RL,

with L being the forecast horizon.

2.2.3. Uncertainty Estimation and Overall Data Flow

Because the Bayesian GCN samples scaling factors
α̃(r) during each forward pass, the output is inher-
ently stochastic. By performing multiple forward passes
(Monte Carlo sampling), we obtain a distribution of out-
puts from which we can compute both the mean forecast
and its standard deviation as an uncertainty estimate. Do-
ing this way, the model learns how to weight the differ-
ent view representations of each node’s edges, and it cap-
tures uncertainty by detecting deviations from the typical
weighting.

This combined approach adapts the ideas used in Spatio-
Temporal Convolution Recurrent Neural Networks [30]
and applies them to leverage contextual data from other
satellites instead of traditional spatial information. This
allows our model to capture the complex inter-satellite
relationships and their time-evolving behavior, while also
quantifying uncertainty, a powerful tool for reliable orbit
prediction in noisy and dynamic environments.

2.3. Data preparation

For our initial approximation, we used data from
the SWARM and GRACE-FO missions, as they pro-
vide some of the most accessible and well-documented
datasets. These datasets offer satellite position and veloc-
ity vectors at a 10-minute resolution over extended time
periods, which were extracted using the HAPI interface
provided by the VirES for SWARM service [29]. This
resolution aligns well with our target forecasting interval.
In our dataset, each row represents a satellite’s state at a
given epoch. The primary objective in this initial stage
is to predict altitude variations with high precision and
performance.

Each satellite is represented as a node with a feature vec-
tor that includes:

• Orbital and TLE-derived Parameters: Parame-
ters such as mean motion, eccentricity, inclination,
right ascension of the ascending node (RAAN), ar-
gument of pericenter, and mean anomaly capture the
orbit’s geometry and behavior.

• Physical and Operational Characteristics: We
compute the approximate ballistic coefficient for
each satellite, which is critical for understanding
its interaction with atmospheric drag. Additionally,

categorical information such as operator/mission
(e.g., Communication, Navigation, Military) is in-
corporated through one-hot encoding or embedding.

• Positional Data: Each node contains latitude, lon-
gitude, and altitude (in km), with optional inclusion
of velocity components to capture dynamic behav-
ior.

• Space Weather Indices (Global Context): These
indices are modeled as separate global nodes con-
nected to every satellite node.

We also create multiple “views” of the graph by con-
structing different adjacency matrices that reflect various
relationships between satellites:

1. Proximity View: For each epoch, we extract a satel-
lite’s position vector

pi = [latitude, longitude, altitude km],

compute the Euclidean distance between satellites:

dij = ∥pi − pj∥,

and convert it into a similarity measure using a Gaussian
(RBF) kernel:

Aprox
ij = exp

(
−

d2ij
2σ2

)
,

with σ as a scale parameter.

2. TLE Similarity View: For each satellite, we construct
a vector of TLE parameters:

vi =



mean motion

eccentricity

inclination

RAAN

argument of pericenter

mean anomaly

and compute cosine similarity:

Atle
ij =

vi · vj
∥vi∥ ∥vj∥

.

3. Categorical Views: For instance, the operator view
connects satellites managed by the same organization:

Aop
ij =

{
1 if operatori = operatorj ,

0 otherwise,

In our current design, we include:



Figure 3. Bayesian Recursive Graph Convolutional Network Model (B-RGCN) architecture general description

• Dynamic Data: Satellite position and velocity vec-
tors sampled every 10 minutes.

• Orbital Data: Daily downsampled TLE informa-
tion (given that public updates are roughly three
times per day, but not synchronized), from which we
also compute the approximate ballistic coefficient.

• Global Context: Space weather information (Ap,
Dst, and F10.7) is added at its native resolution.

• Static and Categorical Data: Such as weight or
other similar fixed values.

This dataset, where each satellite is represented as a node
enriched with both dynamic and static features, allows
our model to integrate multiple data sources and build
robust representations of inter-satellite relationships for
forecasting. To prepare the data for training, we pre-
computed graph sequences using a sliding window of
36 time steps, capturing all three graph views (proxim-
ity, similarity, and operator) over that period. The model
is trained to predict a future horizon of 18 steps, with a
batch size of 64. The analysis covers the period from
early 2021 to early 2025, with a chronological train-test
split of 80%/20% to preserve temporal consistency.

RESULTS AND DISCUSSION

Our initial experiments, conducted on a limited dataset
using only the SWARM and GRACE-FO2 satellites,
show that our model achieves a validation root mean
squared error (RMSE) of 37.84 when forecasting the next
18 time steps. This result is comparable to the RMSE of
36.5 obtained using the SGP4 propagator. All these re-
sults are presented in Figure 4. While this level of error
is not yet competitive, it is important to emphasize that
our model relies solely on a data-centric approach. No
additional domain-specific filtering or handcrafted fea-
tures were introduced. This performance emerges from
a small fraction of the full satellite catalogue and demon-
strates the potential of our architecture even when operat-
ing under sparse and partially incomplete data conditions.
The model learns physical behavior implicitly, rather than
depending on externally derived physics-informed con-
straints.

Another key strength of our model lies in its capacity
to provide meaningful uncertainty estimations. As il-
lustrated in Figure 4, the predicted uncertainty intervals
cover the true values in over 85% of cases, with an av-
erage coverage of 83.2%. Notably, the model exhibits
heightened uncertainty with increased geomagnetic ac-
tivity. A comparison between predictions during quiet
conditions and those during a G5 solar storm reveals a
significant expansion of the confidence interval, from ap-



Figure 4. Altitude (km) comparison between model predictions and SGP4 propagation performance. The plots illustrate
the performance during the Ganon Solar Storm (May 11–13) and a period of low geomagnetic activity. Note that the
evaluation metrics are annotated at the bottom of each plot.

This suggests that the model is capable of detecting early
signs of space weather disturbances and responding with
increased caution in its predictions.

It is worth noting that we have not yet explored the ef-
fect of different input configurations, nor have we ap-
plied optimization strategies or data augmentation tech-
niques. These directions are expected to significantly im-
pact model performance and are planned for future exper-
imentation. Another current limitation of the model is its

relatively slow training performance, due to the sequen-
tial nature of temporal processing, which prevents par-
allelization beyond the embedding stage. However, this
does not hinder inference performance: the model is ca-
pable of generating 3-hour forecasts for the entire graph
in approximately 0.5 ms.

Given these preliminary results, we anticipate that scal-
ing up the dataset to include a broader set of satellites,
incorporating longer training sequences, optimizing hy-



perparameters, and testing alternative architectures will
substantially improve performance. These enhancements
could reduce prediction errors and potentially surpass the
accuracy of traditional methods such as SGP4.

3. CONCLUSION

In conclusion, while this study presents a promising ap-
proach to the orbit determination problem, it remains in
a preliminary stage and must address several challenges
before becoming a robust solution for operational satel-
lite orbit prediction. The current model demonstrates en-
couraging results, particularly in its ability to provide un-
certainty estimates alongside predictions. However, fur-
ther refinement is necessary, especially when scaling to
larger satellite datasets and handling longer temporal se-
quences.

Graph Neural Networks offer advantages that extend be-
yond forecasting. They have demonstrated strong po-
tential in anomaly detection tasks, which is particularly
valuable for updating uncertain or missing states across
multiple satellites, a challenge highlighted by Caldas and
Soares [14]. Their capacity to model complex interde-
pendencies and identify outliers or irregular behaviors
within graph-structured data is a key strength, as noted
by Wu et al. [30]. Additionally, GNNs can infer the
state of nodes with missing data by leveraging infor-
mation from neighboring nodes, an especially powerful
feature given the common occurrence of temporal gaps
in satellite telemetry due to data acquisition limitations.
This dual capability for both forecasting and anomaly de-
tection positions our framework as a versatile and scal-
able solution, supporting not only routine orbit prediction
but also real-time satellite catalogue maintenance and up-
dates.
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