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ABSTRACT

The determination of the state (e.g., position and veloc-
ity) of an orbiting object using limited data (e.g., line-
of-sight measurements from a ground-based sensor) is a
challenging problem in light of the, in general, nonlinear
dynamics and measurements models. This can be over-
come by taking more data, or by developing and applying
more sophisticated tracking algorithms. This work pur-
sues the latter and develops an adaptive, approximately
Bayesian, recursive filter for space object tracking. The
method is demonstrated for a near-Earth angles-only orbit
determination problem and is shown to produce improve-
ments to the accuracy and precision of the orbit estimates
as well as the statistical consistency of the solution.

Keywords: Bayesian estimation; nonlinear filtering;
space domain awareness; short-arc tracking.

1. INTRODUCTION

Tracking algorithms provide a fundamental element of
space domain awareness by producing up-to-date infor-
mation on the state (e.g., position and velocity) of objects
of interest, including operational satellites and trackable
fragments of space debris. The information desired is
typically an estimate of the state and an understanding
of the uncertainty in this estimate. One way to obvi-
ate the need for advanced tracking algorithms is to at-
tempt to overcome any lack of knowledge through the
deployment and acquisition of an ever-increasing num-
ber of sensors to collect more data to process. Space do-
main awareness is–almost by definition–a realm in which
it is impossible to dominate the problem through more
information; instead, it becomes necessary to embrace
uncertainty and advance the state of the art in an alter-
native manner. The need for advancements in tracking
algorithms for functional, decommissioned, and defunct
space objects is greatly exacerbated by the growing pres-
sure being placed on the space domain by the presence of
large satellite constellations and the growing interest in
the cislunar orbital regime.

Approaches for tracking space objects are typically com-
prised of two phases: prediction and inference. The pre-
diction phase leverages dynamics modeling to provide

an estimated state and uncertainty prior to the incorpo-
ration of new measurement information acquired from
ground-based or space-based sensors. The current state
of the art focuses on prediction in the presence of nonlin-
ear dynamics, and it has been shown that Gaussian mix-
ture representations are better able to approximate the un-
derlying probability distribution for space object tracking
[6, 10, 23]. The inference phase ingests the prediction
and new measurement observations to produce an im-
proved estimate and uncertainty of the state of the ob-
ject. The focus of the current work is to develop and ana-
lyze a new approach for approximate Bayesian inference
for space object tracking that leverages Gaussian mixture
representations of the uncertainty.

In this work, the Bayesian update is transformed from
a single-point solution to multi-point and continuous so-
lutions through a homotopic continuation of Bayes’ rule
via manipulation of the measurement likelihood function
[4]. Ideas along these lines have been explored previ-
ously, including the progressive Bayes framework of [8].
In [5, 25], the Bayesian update is transformed via a linear-
log homotopy and used to formulate alternatives to the
particle filter that are known as particle flow filters. Re-
cently, [17, 18] have introduced partitioning of the mea-
surement likelihood to achieve multi-step and continuous
solutions to approximate Bayesian inference. This work
develops an adaptive approach to approximate Bayesian
inference that is first formulated by partitioning the mea-
surement likelihood via a generalization of the method
presented in [17] and then extended to a continuous solu-
tion in a manner similar to that pursued in [18] and [4].

The resulting filtering approach is shown to be imple-
mentable as a recursion of partial updates that better ap-
proximates the true Bayesian posterior in the presence of
nonlinear measurements. The developed approach is ap-
plied to a short-arc space object tracking problem in the
near-Earth domain and analyzed through simulation stud-
ies. Results are presented that highlight the power of the
method, especially the ability to obtain accurate, precise,
and statistically consistent estimates after long periods of
uncertainty propagation.
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2. BAYESIAN INFERENCE

Consider the scenario in which newly acquired measure-
ment data (e.g., line-of-sight measurements), represented
by z, are to be used to estimate the state of a system (e.g.,
the position and velocity of a space object), represented
by x. There exist a variety of ways in which this can
be accomplished, such as batch (least-squares) estima-
tors, Kalman filters, and Bayesian filters. In this work,
Bayesian approaches are leveraged for performing statis-
tical inference, which rely on Bayes’ rule, i.e.,

p(x|z) ∝ p(z|x)p(x) , (1)

where p(x) represents the prior probability density func-
tion (pdf), p(z|x) represents the conditional likelihood,
and the posterior pdf is given by p(x|z). Proportionality
in Bayes’ rule is resolved by requiring that the posterior
pdf is a valid pdf in x, i.e. that

∫
p(x|z)dx = 1. The nor-

malization process can be performed by computing the
evidence, p(z) =

∫
p(z|x)p(x)dx, which allows Bayes’

rule to also be expressed as

p(x|z) = p(z|x)p(x)/p(z) . (2)

Alternatively, Bayes’ rule can be rearranged as

p(x|z)p(z) = p(z|x)p(x) , (3)

which is the equivalence of two versions of the joint prob-
ability of the measurement and the state.

As noted by Jaynes, “[a]n acceptable inference procedure
should have the property that it neither ignores any of the
input information nor injects any false information” [12].
To wit, there should be an underlying conservation of in-
formation that is exhibited by a proper inference proce-
dure. Equation (3) is useful for establishing an equiva-
lence of information that forms the basis of the principle
of information conservation that lies at the heart of this
work. The right-hand side of Eq. (3) is the information
that is input into Bayes’ rule, and the left-hand side of
Eq. (3) is the output information of Bayes’ rule. As is
evident from Eq. (3), these two sources of information
should be equivalent.

To establish an information conservation principle, it is
necessary to to quantify the amount of information in a
variety of ways. In this work, the information-theoretic
principles pioneered by Shannon are leveraged [21]. The
Shannon entropy, given by [3]

HS [q] = −
∫

q(y) log q(y)dy ,

provides a quantifiable measure of the amount of in-
formation contained in the arbitrary pdf q(y), provided
the integral exists. The Shannon entropy (also called
the differential Shannon entropy) measures the expected
amount of surprisal or disorder of a random variable.
Random variables that are more certain have lower Shan-
non entropy than those that are less certain. To exemplify

the Shannon entropy, let y be Gaussian-distributed with
mean my and covariance Pyy , such that the pdf of y is
given by q(y) = pg(y;my,Pyy). The Shannon entropy
for the Gaussian is given by HS [q] = 1

2 log |2πePyy|,
from which it follows that HS [q] → −∞ as |Pyy| → 0
and HS [q] → ∞ as |Pyy| → ∞. As the volume of the
Gaussian, which is measured by the determinant of the
covariance matrix, decreases (increases), the Shannon en-
tropy decreases (increases).

The Kullback-Leibler (KL) divergence (also called the
relative differential Shannon entropy), which is defined
as [15, 3]

DKL[q1||q2] =
∫

q1(y) log(q1(y)/q2(y))dy ,

quantifies the information lost in representing one pdf,
q1(y), by another pdf, q2(y). The KL divergence satisfies
two key properties: 1) it is self-identifying (DKL[q||q] =
0), and 2) it is non-negative (DKL[q1||q2] ≥ 0). Unfor-
tunately, the KL divergence is not symmetric (in general,
DKL[q1||q2] ̸= DKL[q2||q1]), and it does not satisfy the
triangle inequality. As such, the KL divergence does not
satisfy the properties to be a metric; nevertheless, self-
identification and non-negativity are powerful properties
of the KL divergence. The KL divergence can also be
expressed in terms of the Shannon entropy as

DKL[q1||q2] = HC [q1||q2]−HS [q1] , (4)

where HC [q1||q2] is the Shannon cross-entropy that is
given by

HC [q1||q2] = −
∫

q1(y) log q2(y)dy .

Comparing the forms of the cross-entropy and entropy, it
is clear that HC [q||q] = HS [q].

Consider an inference procedure that ingests input infor-
mation from p(x) and p(z|x) and outputs information
into p(z) and p̃(x|z), where p̃(x|z) is not necessarily
the result of Bayes’ rule. Let the information contained
in each of these sources be measured in the sense of Shan-
non with respect to some arbitrary pdf, q(x), such that the
input information is represented using cross-entropy as1.

I0 = HC [q(x)||p(x)] +HC [q(x)||p(z|x)] ;

similarly, the output information is represented using
cross-entropy as

If = HC [q(x)||p(z)] +HC [q(x)||p̃(x|z)] .

It is worth noting that the lack of dependence of p(z) on
x means that HC [q(x)||p(z)] ≡ − log p(z), which is the
negative log-evidence. Let the difference in information
between the input and output be defined as ∆I ≜ If−I0;
then, by the properties of logarithms,

∆I = HC

[
q(x)

∣∣∣∣∣∣∣∣ p̃(x|z)
p(z|x)p(x)/p(z)

]
,

1Note that this is the opposite sign convention as the one used in
[26].



which, from the definition of Bayes’ rule in Eq. (2), is
equivalent to

∆I = HC [q(x)||p̃(x|z)]−HC [q(x)||p(x|z)] .

At this point, it is instructive to choose a particular pdf
against which the Shannon information is measured; to
that end, let q(x) = p(x|z), such that

∆I = HC [p(x|z)||p̃(x|z)]−HS [p(x|z)] ,

or, from Eq. (4),

∆I = DKL[p(x|z)||p̃(x|z)] , (5)

where it is helpful to recall that p(x|z) represents the (ex-
act) Bayesian posterior and p̃(x|z) represents an arbitrary
posterior that may or may not be the result of an approx-
imate solution to Bayes’ rule.

Equation (5) states that the change in information from
the inference procedure can be expressed as the KL di-
vergence between the true Bayesian posterior and the
(potentially) arbitrary posterior. By the non-negativity
and self-identification properties of the KL divergence,
the minimum value attainable for the change of informa-
tion is zero, which is achieved if and only if p̃(x|z) =
p(x|z). Put simply, if it is possible to exactly produce
the Bayesian posterior, then there is no loss of informa-
tion. That is, Bayes’ rule does not ignore any of the input
information or inject any extraneous information into the
posterior pdf.

3. DISCRETE PARAMETER FLOW

Except in special cases, such as linear measurements and
Gaussian distributions, implementations of Bayes’ rule
require approximations to facilitate solutions. For in-
stance, when presented with nonlinear measurements of
the form

z = h(x) + v , (6)

approximations have to be made to arrive at a tractable
posterior. In this model, x is the state, which is dis-
tributed according to p(x), v is additive measurement
noise that is uncorrelated with x and distributed accord-
ing to p(v). One common approach is to linearize (in
some manner) the measurement and produce an approxi-
mation to the true Bayesian posterior. If the prior uncer-
tainty, represented by p(x), is “small enough,” reason-
able results can be obtained via variations on the Kalman
filter [14] and the Gaussian mixture filter [22]. This is,
however, not always the case. As such, it is conducive
to partition the update and perform a sequence of updates
that progressively incorporate the measurement informa-
tion into distribution of the state.

Let a sequence of points through “pseudotime” be given
by sk ∈ [0, 1], such that 0 = s1 < s2 < · · · < sM+1 =
1. Let the widths of the intervals of pseudotime be de-
noted by ∆sk = sk+1 − sk, such that

∑
∆sk = 1. Note

that, by the strict monotonicity of sk, ∆sk > 0. Since the
sum of the interval widths is equal to one, the conditional
likelihood is equivalently expressed as

p(z|x) =
M∏
k=1

p∆sk(z|x) .

This partitioning process effectively subdivides the mea-
surement into M pieces that can be folded into the pos-
terior one by one. In doing so, the effects of nonlinearity
can be reduced.

In this work, Gaussian mixture (GM) models are lever-
aged as representations of the state pdf; as such, the prior
pdf is given by an Lx-component mixture of the form

p(x) =

Lx∑
ℓ=1

w(ℓ)−
x pg(x;m

(ℓ)−
x ,P (ℓ)−

xx ) , (7)

where w
(ℓ)−
x , m

(ℓ)−
x , and P

(ℓ)−
xx represent the prior

weights, means, and covariances of each component
within the mixture. The weights are constrained to be
non-negative, and the covariance matrices are required to
be symmetric and positive definite. Similarly, let the like-
lihood be given by the Gaussian pdf

p(z|x) = pg(z;h(x),Pvv) , (8)

which is the probabilistic state space model representa-
tion of the nonlinear measurement model of Eq. (6), in
which the measurement noise is taken to be zero-mean,
white, and Gaussian with covariance Pvv . Substituting
the Gaussian likelihood into the partitioning equation and
simplifying, it follows that

p(z|x) =
∣∣2πPvv

∣∣− 1
2

M∏
k=1

∣∣2πPvv/∆sk
∣∣ 1
2 (9)

× pg(z;h(x),Pvv/∆sk) .

It is worth noting that, since ∆sk ≤ 1, (Pvv/∆sk) ≥
Pvv; furthermore, since ∆sk > 0, there are no issues
with singularity of (Pvv/∆sk) so long as Pvv is nonsin-
uglar.

The partitioned Gaussian likelihood of Eq. (9) and GM
prior of Eq. (7) can now be substituted into Bayes’ rule
(Eq. (1)) to give

p(x|z) ∝
Lx∑
ℓ=1

w(ℓ)−
x

∣∣2πPvv

∣∣− 1
2

[ M∏
k=1

∣∣2πPvv/∆sk
∣∣ 1
2

]

×
[ M∏
k=1

pg(z;h(x),Pvv/∆sk)

]
pg(x;m

(ℓ)−
x ,P (ℓ)−

xx ) ,

which is a weighted sum, where each element in the sum
is formulated as a series of products of two Gaussian pdfs.
The product of the prior and the modified likelihood for
k = 1 produces a pseudoposterior that then becomes the
prior for the k = 2 elements of the modified likelihood,



and so on. This process is repeated until all M terms
of the likelihood are applied to produce the approximate
Bayesian posterior. Once the process of folding in each
partition of the likelihood is completed, the scaling terms
that arise from the process are used to define posterior
weights. The result is that the posterior is a GM of the
form

p(x|z) =
Lx∑
ℓ=1

w(ℓ)+
x pg(x;m

(ℓ)+
x ,P (ℓ)+

xx ) ,

where the weights, means, and covariances are deter-
mined by the iterative relationships

w(ℓ,i)
x = k(ℓ,i)w(ℓ,i−1)

x /
∑Lx

ℓ′=1k
(ℓ′,i)w

(ℓ′,i−1)
x (10a)

m(ℓ,i)
x = m(ℓ,i−1)

x +K(ℓ,i)(z −m
(ℓ,i−1)
h ) (10b)

P (ℓ,i)
xx = P (ℓ,i−1)

xx −K(ℓ,i)P
(ℓ,i−1)
hh (K(ℓ,i))T (10c)

−K(ℓ,i)(Pvv/∆si)(K
(ℓ,i))T ,

which are applied for 1 ≤ i ≤ M . This iterative proce-
dure is initialized with w

(ℓ,0)
x = w

(ℓ)−
x , m(ℓ,0)

x = m
(ℓ)−
x

and P
(ℓ,0)
xx = P

(ℓ)−
xx . When the last iteration is com-

pleted, the output is w(ℓ)+
x = w

(ℓ,M)
x , m(ℓ)+

x = m
(ℓ,M)
x

and P
(ℓ)+
xx = P

(ℓ,M)
xx . The weight and state gains that

appear in Eqs. (10) are given by

k(ℓ,i) = pg(z;m
(ℓ,i−1)
h ,P

(ℓ,i−1)
hh + Pvv/∆si) (11a)

K(ℓ,i) = P
(ℓ,i−1)
xh (P

(ℓ,i−1)
hh + Pvv/∆si)

−1 , (11b)

and the mean, cross-covariance (with the state) and co-
variance of the nonlinear function h(x) that are required
to complete each iteration are defined in terms of ex-
pected values as

m
(ℓ,·)
h = E

{
h(x)

}
(12a)

P
(ℓ,·)
xh = E

{
(x−m(ℓ,·)

x )(h(x)−m
(ℓ,·)
h )T

}
(12b)

P
(ℓ,·)
hh = E

{
(h(x)−m

(ℓ,·)
h )(h(x)−m

(ℓ,·)
h )T

}
,

(12c)

where the expectations are taken with respect to
pg(x;m

(ℓ,·)
x ,P

(ℓ,·)
xx ). The method defined by the general

application of Eqs. (10)–(12) is referred to as discrete pa-
rameter flow (DPF). It is termed “parameter flow” due
to the governing equations that dictate the motion of the
parameters that define the underlying pdf through pseu-
dotime. This motion is similar to the motion of particles
in the particle flow approach [5].

The results of Eqs. (10)–(12) are obtained by substitut-
ing Eqs. (7) and (9) into Eq. (1), and then applying a
generalized form of the Ho-Lee equation [9] for prod-
ucts of Gaussians in conjunction with statistical lineariza-
tion [7, 16] to handle the nonlinearity of the measurement
model. A proof of Eqs. (10) is provided in Appendix A.

3.1. Linearized Formulation

The expected values of Eqs. (12) that are required for the
discrete parameter flow approach can be approximated
via analytical linearization (i.e., first-order Taylor series
linearization), such that

m
(ℓ,i−1)
h ≈ h(m(ℓ,i−1)

x )

P
(ℓ,i−1)
xh ≈ P (ℓ,i−1)

xx (H(ℓ,i−1)
x )T

P
(ℓ,i−1)
hh ≈ H(ℓ,i−1)

x P (ℓ,i−1)
xx (H(ℓ,i−1)

x )T

where H
(ℓ,i−1)
x is the Jacobian of h(x) with respect to

x, evaluated at m(ℓ,i−1)
x . Using these approximations in

conjunction with the discrete parameter flow approach for
GM densities gives rise to the discrete parameter flow ex-
tended Gaussian mixture filter (DPF-EGMF).

3.2. Quadrature Formulation

Consider a set of Nq weights and points that com-
prise a quadrature rule for expectations with re-
spect to pg(x;m

(ℓ,i−1)
x ,P

(ℓ,i−1)
xx ) of the form

{w(ℓ,j)
m , w

(ℓ,j)
c ,X (ℓ,i−1,j)}Nq−1

j=0 that are constructed
so that

m(ℓ,i−1)
x =

Nq−1∑
j=0

w(ℓ,j)
m X (ℓ,i−1,j)

P (ℓ,i−1)
xx =

Nq−1∑
j=0

w(ℓ,j)
c (X (ℓ,i−1,j) −m(ℓ,i−1)

x )

× (X (ℓ,i−1,j) −m(ℓ,i−1)
x )T .

Note that the quadrature weights carry no dependence on
i; that is, the quadrature scheme is taken to have con-
stant weights through the update, which is common. The
quadrature-based approximation of the expected values
of Eqs. (12) that are required for the discrete parameter
flow approach are then given by

m
(ℓ,i−1)
h ≈

Nq−1∑
j=0

w(ℓ,j)
m h(X (ℓ,i−1,j))

P
(ℓ,i−1)
xh ≈

Nq−1∑
j=0

w(ℓ,j)
c (X (ℓ,i−1,j) −m(ℓ,i−1)

x )

× (h(X (ℓ,i−1,j))−m
(ℓ,i−1)
h )T

P
(ℓ,i−1)
hh ≈

Nq−1∑
j=0

w(ℓ,j)
c (h(X (ℓ,i−1,j))−m

(ℓ,i−1)
h )

× (h(X (ℓ,i−1,j))−m
(ℓ,i−1)
h )T .

Using these approximations in conjunction with the dis-
crete parameter flow approach for GM densities gives rise



to the discrete parameter flow quadrature Gaussian mix-
ture filter (DPF-QGMF).

If a certain quadrature rule is employed, such as Gauss-
Hermite quadrature [2, 11] or the unscented transform
[13, 20, 24], then specific construction rules for the
weights and points can be given. Using the unscented
transform (in any of its variants) for the quadrature rule
is referred to as the discrete parameter flow unscented
Gaussian mixture filter (DPF-UGMF).

3.3. Numerical Consideration

The iterative update procedure indicated by Eqs. (10) and
supported by Eqs. (11) and Eqs. (12) can be interpreted
as M applications of a form of the Gaussian mixture filter
(GMF), such as the extended GMF (EGMF) or unscented
GMF (UGMF), with the substitution of (Pvv/∆si) in
place of Pvv . This property is highly attractive, as it al-
lows existing implementations of the EGMF, UGMF, or
other versions of the GMF to be used with minimal mod-
ification. It is, however, imperative to note that the use
of (Pvv/∆si) has some limitations. Notably, since 0 <
si ≤ 1, it has previously been noted that (Pvv/∆si) >
Pvv , which indicates that singularity is not impacted by
∆si. That being said, lim∆si→0 |Pvv/∆si| → ∞. Thus,
too small of a step through pseudotime can lead to numer-
ical issues in the modified measurement noise covariance
matrix that is used. As this happens, the resulting itera-
tive update procedure of Eqs. (10)–(12) begins to break
down.

4. CONTINUOUS PARAMETER FLOW

The iterative procedure can be applied for any number
of intervals, M , that define the partitioning of the likeli-
hood function. These intervals, which are characterized
by their widths, ∆si, may be uniformly or non-uniformly
spaced, as long as ∆si > 0 ∀ i and

∑M
i=1 ∆si = 1.

An alternative approach is to seek governing differential
equations for the means, covariances, and weights. This
can be done for the weights, means, and covariances by
taking the limit of ratio of the change in each parameter
to the interval width as the interval width goes to zero,
i.e.,

d(⋆)

ds
= lim

∆si→0

(⋆)(ℓ,i) − (⋆)(ℓ,i−1)

∆si
. (13)

Carrying out this procedure, it can be shown that the
weights, means, and covariances obey the ordinary dif-
ferential equations

dw
(ℓ)
x (s)

ds
= −1

2
w(ℓ)

x (s)

[
tr
{
P−1

vv P
(ℓ)
hh (s)

}
(14a)

+ (z −m
(ℓ)
h (s))TP−1

vv (z −m
(ℓ)
h (s))

−
Lx∑
ℓ′=1

w(ℓ′)
x (s)

{
tr
{
P−1

vv P
(ℓ′)
hh (s)

}
+ (z −m

(ℓ′)
h (s))TP−1

vv (z −m
(ℓ′)
h (s))

}]
dm

(ℓ)
x (s)

ds
= P

(ℓ)
xh (s)P−1

vv (z −m
(ℓ)
h (s)) (14b)

dP
(ℓ)
xx (s)

ds
= −P

(ℓ)
xh (s)P−1

vv (P
(ℓ)
xh (s))T . (14c)

The results of Eqs. (14b) and (14c) are relatively straight-
forward. Obtaining the result of Eq. (14a) requires more
care and application of de l’Hôpital’s rule. A proof of
Eqs. (14) is provided in Appendix B.

The mean, cross-covariance (with the state) and covari-
ance of the nonlinear function h(x) that are required by
Eqs. (14) are the continuous-time versions of Eqs. (12),
i.e.,

m
(ℓ)
h (s) = E

{
h(x)

}
(15a)

P
(ℓ)
xh (s) = E

{
(x−m(ℓ)

x (s))(h(x)−m
(ℓ)
h (s))T

}
(15b)

P
(ℓ)
hh (s) = E

{
(h(x)−m

(ℓ)
h (s))(h(x)−m

(ℓ)
h (s))T

}
,

(15c)

where the expectations are taken with respect to
pg(x;m

(ℓ)
x (s),P

(ℓ)
xx (s)). The method defined by the gen-

eral application of Eqs. (14) and (15) is referred to as con-
tinuous parameter flow (CPF).

4.1. Linearized Implementation

The expected values required for the continuous parame-
ter flow approach can be approximated via analytical lin-
earization, such that

m
(ℓ)
h (s) ≈ h(m(ℓ)

x (s))

P
(ℓ)
xh (s) ≈ P (ℓ)

xx (s)(H(ℓ)
x (s))T

P
(ℓ)
hh (s) ≈ H(ℓ)

x (s)P (ℓ)
xx (s)(H(ℓ)

x (s))T ,

where H
(ℓ)
x (s) is the Jacobian of h(x) with respect to

x, evaluated at m(ℓ)
x (s). Using these approximations in

conjunction with the discrete parameter flow approach for
GM densities gives rise to the continuous parameter flow
extended Gaussian mixture filter (CPF-EGMF).

4.2. Quadrature Implementation

The expected values can also be approximated by a
quadrature rule, such as

m
(ℓ)
h (s) ≈

Nq−1∑
j=0

w(ℓ,j)
m h(X (ℓ,j)(s))



P
(ℓ)
xh (s) ≈

Nq−1∑
j=0

w(ℓ,j)
c (X (ℓ,j)(s)−m(ℓ)

x (s))

× (h(X (ℓ,j)(s))−m
(ℓ)
h (s))T

P
(ℓ)
hh (s) ≈

Nq−1∑
j=0

w(ℓ,j)
c (h(X (ℓ,j)(s))−m

(ℓ)
h (s))

× (h(X (ℓ,j)(s))−m
(ℓ)
h (s))T ,

where {w(ℓ,j)
m , w

(ℓ,j)
c ,X (ℓ,j)(s)}Nq−1

j=0 defines the
quadrature rule in terms of mean weights, covariance
weights, and quadrature points for a given set of Nq

points. For general quadrature rules, this leads to the
continuous parameter flow quadrature Gaussian mixture
filter (CPF-QGMF); for the specific case of using the un-
scented transform, the result is the continuous parameter
flow unscented Gaussian mixture filter (CPF-UGMF).

4.3. Weight Normalization

In both the discrete and continuous forms of the GM pa-
rameter flow, the normalized weights, w(ℓ,i)

x or w(ℓ)
x (s),

are used. This means that at any point in pseudotime, the
resulting GM representation of the pdf is a proper pdf; the
weights sum to one, so the pdf integrates to one. The ad-
vantage of not normalizing the weights until it is required
is that the computational burden is greatly lessened.

It is possible to also work with non-normalized weights,
w̃

(ℓ,i)
x for discrete parameter flow and w̃

(ℓ)
x (s) for contin-

uous parameter flow. These weights do not necessarily
sum to one, but brute-force normalization can be used on
non-normalized weights to ensure a valid pdf.

For discrete parameter flow, the unnormalized weights
are found via

w̃(ℓ,i)
x = k(ℓ,i)w̃(ℓ,i−1)

x ,

which is applied for 1 ≤ i ≤ M starting from w̃
(ℓ,0)
x =

w
(ℓ)−
x and ending with w̃

(ℓ)+
x = w̃

(ℓ,M)
x . After the last it-

eration is complete, the weights are normalized such that
w

(ℓ)+
x = w̃

(ℓ)+
x /

∑Lx

ℓ′=1 w̃
(ℓ′)+
x .

The equivalent implementation for continuous parameter
flow is

dw̃
(ℓ)
x (s)

ds
= −1

2
w̃(ℓ)

x (s)

[
tr
{
P−1

vv P
(ℓ)
hh (s)

}
+ (z −m

(ℓ)
h (s))TP−1

vv (z −m
(ℓ)
h (s))

]
,

which is initialized with w̃
(ℓ)
x (s = 0) = w

(ℓ)−
x . Af-

ter integrating from s = 0 to s = 1, the result is
w̃

(ℓ)+
x = w̃

(ℓ)
x (s = 1). These unnormalized weights are

then normalized as w(ℓ)+
x = w̃

(ℓ)+
x /

∑Lx

ℓ′=1 w̃
(ℓ′)+
x .

For either the discrete or continuous versions of parame-
ter flow, various approximations of the expected values,
such as analytical linearization or quadrature approxima-
tion can be used.

5. DEMONSTRATION

As a demonstration of the capabilities of the discrete pa-
rameter flow (DPF) and continuous parameter flow (CPF)
methods, a low-dimensional test case is considered in
which a range measurement is used to estimate the pla-
nar position of an uncertain object. The prior knowl-
edge, represented by p(x), is defined by the Gaussian pdf,
p(x) = pg(x;mx,Pxx), where the state is x = [x y]T ,
and the mean and covariance of the prior pdf are, respec-
tively,

mx =

[
15
15

]
and Pxx =

[
102 0
0 152

]
.

No units are given, but all units in the problem may be
considered to be consistent distance units.

A range measurement is taken to be modeled as

z = ∥x∥+ v ,

such that the range is taken from the origin, where v
represents measurement noise that is modeled according
to p(v) = pg(z; 0, Pvv), where Pvv = 1 is the mea-
surement noise covariance. Equivalently, the measure-
ment model may be represented as the conditional likeli-
hood p(z|x) = pg(z; ∥x∥, Pvv). For this demonstration
the measurement used is sampled from the measurement
likelihood to be z = 46.2891. The same measurement is
used in all of the following results.

The prior pdf, p(x), and the measurement likelihood,
p(z|x), are depicted in Fig. 1a, where the dark gray lines
are isoprobability contours of p(x) (i.e., the 1, 2, and 3σ
contours of p(x)) and the light gray lines are isoproba-
bility contours of p(z|x) (also 1, 2, and 3σ contours of
p(z|x)).
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Figure 1: Uncertainty contours for the prior, measure-
ment likelihood, and the result of Bayes’ rule



Figure 1b depicts the result of a grid-based implemen-
tation of Bayes’ rule. At each point in the state space,
Eq. (2) is applied to determine the value of the posterior
pdf at each point. This result is then normalized so that
the grid-based implementation of Bayes’ rule produces a
valid pdf. The result of Fig. 1b highlights the “and” prop-
erty of Bayesian inference; to wit, posterior density is
non-zero at locations in the state space where there is both
prior probability and evidence supported by the new mea-
surement. The result is a distinctly non-Gaussian shape,
and it is this result that is desired to be approximated by
other methods. It is also important to note that this result
is not parameterized; all other methods examined in this
work are, i.e., their posterior pdfs are represented using
weights, means, and/or covariances, rather than relying
on grid-based computations.

The first two methods implemented for comparison are
the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF), under the Bayesian interpretation
of Gaussianity. The EKF uses a first-order Taylor series
approach, whereas the UKF uses the unscented transform
with α = 0.1, β = 2, and κ = 1. The posterior pdf for
the EKF is depicted in Fig. 2a, and the poster pdf for the
UKF is depicted in Fig. 2b. Neither result is able to re-
produce the curved nature of the Bayesian solution, but
the UKF clearly captures more of the region of poste-
rior probability that is indicated by the Bayesian result of
Fig. 1b.
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Figure 2: Posterior uncertainty contours for Kalman filter
based approaches

The Gaussian posterior densities of the EKF and UKF op-
erating within the Bayesian paradigm do not permit any
flexibility in the shape of the posterior pdf. To combat
this, the EGMF and UGMF (with the same parameters
as the UKF) are applied to the same problem. The re-
sults are depicted in Figs. 3a and 3b. Unlike the EKF and
UKF, the EGMF and UGMF can produce curved pdfs. A
visual comparison of each one to the Bayesian pdf from
Fig. 1b shows that there is some similarity, but that there
are also some undesirable artifacts in the posterior pdfs
of the EGMF and UGMF.

The next level of sophistication is to use the DPF ap-
proach with both the EGMF and UGMF. In this case, a
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Figure 3: Posterior uncertainty contours for Gaussian
mixture filter based approaches

set of M = 10 steps is applied via a cubic rule; that
is, M = 10 steps spaced according to a cubic progres-
sion through pseudotime. The DPF-UGMF uses the same
parameters as those used in the UKF. The results of the
DPF-EGMF are shown in Fig. 4a, and the results of the
DPF-UGMF are shown in Fig. 4b. Compared to the re-
sults of Figs. 3a and 3b, the posterior pdfs obtained by
the DPF approach are much smoother and remove many
of the artifacts observed in the results of the GMF ap-
proach. Careful inspection of Fig. 4b also shows that the
tails of the unscented version more closely mirror the de-
sired Bayesian tails, as compared to the tails of the ex-
tended version of Fig. 4a.
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Figure 4: Posterior uncertainty contours for discrete pa-
rameter flow Gaussian mixture filter based approaches

The final methods considered implement the CPF ap-
proach. The results of the CPF-EGMF and the CPF-
UGMF are illustrated in Figs. 5a and 5b, respectively.
Unlike the DPF methods, no step size is dictated; instead
a 4th-order Runge-Kutta method with 5th-order step size
control is used to numerical integrate Eqs. (14). The same
parameters as used for the other unscented implementa-
tions are used for the CPF-UGMF. Of all the methods
considered, the results of Figs. 5a and 5b most closely
mirror the Bayesian posterior of Fig. 1b. Additionally,
of all the extended/unscented implementations, the CPF-
based ones also exhibit the most visual similarity.
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Figure 5: Posterior uncertainty contours for continuous
parameter flow Gaussian mixture filter based approaches

To provide a quantitative measure of performance for the
eight different approximate Bayesian posteriors applied
in this demonstration, the information degradation de-
fined in Eq. (5) is computed via Monte Carlo sampling
with 1 × 108 samples. The tabulated results are shown
in Table 1. As expected from the illustrated results, the
EKF and UKF perform the worst, with the UKF signifi-
cantly outperforming the EKF. The GM-based techniques
are all much better, with the parameter flow approaches
obtaining the best performance overall. In every case,
the unscented implementation outperforms its extended
counterpart. The CPF-UGMF is the overall best per-
former, with about a 15% improvement over the DPF-
UGMF, which is the second-best performer (tied with the
UGMF).

Table 1: Information degradation relative to Bayesian
posterior for the applied approaches

Method ∆I [nats] Method ∆I [nats]
EKF 22.2289 UKF 2.0846
EGMF 0.1434 UGMF 0.1133
DPF-EGMF 0.1316 DPF-UGMF 0.1133
CPF-EGMF 0.1320 CPF-UGMF 0.0966

6. RESULTS AND DISCUSSION

The proposed parameter flow approach is applied to a
space object tracking problem by considering the simu-
lated processing of a single line-of-sight measurement.
The simulated object considered is a GPS satellite with
a semimajor axis of a = 26560.185 km, an eccentric-
ity of e = 0.008, and an inclination of i = 55.674◦.
The orbital state of the object is represented using alter-
nate equinoctial orbital elements (AEOEs), which are de-
fined in terms of the standard Keplerian orbital elements,

{a, e, i,Ω, ω,M}, as [10, 19]

n =
√

µ/a3

h = e sin(Ω + ω)

k = e cos(Ω + ω)

p = tan(i/2) sinΩ

q = tan(i/2) cosΩ

ℓ = Ω+ ω +M .

To determine the initial state uncertainty of the object,
the Cartesian coordinates (inertial position and veloc-
ity) representation of the object is used. Uncorrelated,
zero-mean, Gaussian errors of 1 km (1σ) in position and
1 m/s (1σ) in velocity are added to the Cartesian coor-
dinates for a set of 1 × 105 samples. Each sample is
converted to AEOE coordinates, and the sample mean,
mx,0, and covariance, Pxx,0, are determined. This pro-
vides the initial Gaussian distribution in AEOE coordi-
nates, p(x0) = pg(x0;mx,0,Pxx,0).

To simulate the measurement of right-ascension and dec-
lination, a random sample of the state is drawn from
p(x0). This sample is propagated according to Keple-
rian motion represented in AEOE coordinates, which is
governed by the linear dynamical system

ṅ = 0

ḣ = 0

k̇ = 0

ṗ = 0

q̇ = 0

ℓ̇ = n ,

to a time tk. At time tk, it is assumed that a ground-
based sensor located on the surface of a spherical Earth
is directly beneath the object and can take a line-of-sight
measurement. The subsequent right-ascension and decli-
nation measurements are subjected to uncorrelated, zero-
mean, Gaussian measurement noise with standard devia-
tions of 3′′, each. The time at which the simulated mea-
surement is processed, tk, is varied from one to fourteen
days after t0.

The inference methods employed in this study are the
standard EKF and UKF updates, as well as the CPF-
EGMF and CPF-UGMF updates. The unscented im-
plementations all use the same parameters of α = 0.1,
β = 2.0, and κ = −3.0. The GM-based implementations
all use a single Gaussian, as do the EKF and UKF im-
plementations. The input into each update scheme is the
same propagated Gaussian, which is obtained by propa-
gating mx,0 and Pxx,0 from t0 to tk. Since the dynamics
of the AEOEs are linear, the input properly describes the
distribution of the prior. The only difference is the way
in which the nonlinear measurement is processed.

Performance of the methods is analyzed by computing
the posterior estimation error,

e+x,k = xk −m+
x,k ,



and the normalized estimation error squared (NEES),

d2x,k =
1

nx
(xk −m+

x,k)
TP+

xx,k(xk −m+
x,k) ,

where nx = 6 is the state dimension, m+
x,k is posterior

mean (taken to be the estimate), and P+
xx,k is the poste-

rior covariance. Each of the four inference procedures
produces, in general, a different posterior mean and co-
variance. A well-behaved inference procedure will have
the characteristics that the posterior estimation error is
unbiased (i.e., has a mean of zero) and that the posterior
covariance provides a proper statistical quantification of
the posterior estimation err (i.e., that the mean NEES is
one).

The estimation errors obtained for each of the imple-
mented methods (the EKF, the UKF, the CPF-EGMF, and
the CPF-UGMF) for the mean motion state are illustrated
in Fig. 6. This state is selected for analysis due to its rel-
evance in the dynamics of the AEOEs. The results for
each approach are illustrated via box plots. The box plot
includes the median of the data as the central mark within
the box. The box itself represents the data residing within
the 25th and 75th percentiles. The dashed lines extended
away from the box indicate the extent of the most ex-
treme data points still considered inliers, and the individ-
ual marks indicate data classified as outliers. Figure 6a
indicates that the EKF cannot achieve median estimation
errors near zero beyond more than a few days of propaga-
tion time. Even then, the influence of outliers is signifi-
cant, indicating non-robust performance of the EKF. Fig-
ure 6b shows improved median estimation error perfor-
mance, with the median remaining near zero for the en-
tire time period considered. The outliers, however, indi-
cate that the UKF also performs with a lack of robustness.
Figures 6c and 6d, on the other hand, indicate extremely
robust performance for all propagation times considered
when processing a single line-of-sight measurement. It is
also worth noting that the spread of the posterior estima-
tion errors (as indicated by the box) shrinks as the propa-
gation time before the measurement processing increases.
The increased propagation time leads to more direct cor-
relation between the mean motion and the line-of-sight
measurement, which makes the processed measurement
more informative in estimating the mean motion.

The NEES for each of the four implemented methods are
illustrated as box plots in Fig. 7. Figure 7a indicates that
the EKF is incapable of producing statistically consistent
results at even one day of propagation time. As the prop-
agation time increases, the consistency of the filter con-
tinues to degrade. Figure 7b shows that the UKF can pro-
duce statistically consistent results up to about three days
of propagation time. After that, the consistency of the
UKF consistently degrades. Figures 7c and 7d, however,
show that the CPF-based approaches are successful in
producing statistically consistent results, even when the
measurement is fourteen days past the initial estimate of
the state of the object. Comparing Figs. 7c and 7d, it is
seen that there is very little difference between the CPF-
EGMF and CPF-UGMF performance.
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Figure 6: Estimation error in the mean motion for each of
the implemented filters
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Figure 7: Statistical consistency via the NEES for each
of the implemented filters
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A. PROOF OF EQS. (10)

It is known that the partitioned Gaussian likelihood of
Eq. (9) and the GM prior of Eq. (7) can substituted into
Bayes’ rule to give

p(x|z) ∝
Lx∑
ℓ=1

w(ℓ)−
x

∣∣2πPvv

∣∣− 1
2

[ M∏
k=1

∣∣2πPvv/∆sk
∣∣ 1
2

]

×
[ M∏
k=1

pg(z;h(x),Pvv/∆sk)

]
pg(x;m

(ℓ)−
x ,P (ℓ)−

xx ) .

If the first term of the product of partial likelihoods is
separated out from the others, it follows that

p(x|z) ∝
Lx∑
ℓ=1

w(ℓ)−
x

∣∣2πPvv

∣∣− 1
2

[ M∏
k=1

∣∣2πPvv/∆sk
∣∣ 1
2

]

×
[ M∏
k=2

pg(z;h(x),Pvv/∆sk)

]
× pg(z;h(x),Pvv/∆s1)pg(x;m

(ℓ)−
x ,P (ℓ)−

xx ) ,

where the last two terms represent a product of Gaussians
in which the first term is a nonlinear function of the state.
Following along the lines of [1], this product is approxi-
mated by another product of Gaussians in which the con-
ditional dependence is reversed.

To facilitate such an approximation, let m(ℓ)−
x → m

(ℓ,0)
x

and P
(ℓ)−
xx → P

(ℓ,0)
xx . Applying statistical linearization

[7, 16] with respect to pg(x;m
(ℓ,0)
x ,P

(ℓ,0)
xx ),

pg(z;h(x),Pvv/∆sk)

≈ pg(z;A
(ℓ,0)x+ b(ℓ,0), (Pvv/∆s1) + P (ℓ,0)

ee ) ,

where

A(ℓ,i) = (P
(ℓ,i)
xh )T (P (ℓ,i)

xx )−1 (16a)

b(ℓ,i) = m
(ℓ,i)
h −A(ℓ,i)m(ℓ,i)

x (16b)

P (ℓ,i)
ee = P

(ℓ,i)
hh −A(ℓ,i)P (ℓ,i)

xx (A(ℓ,i))T , (16c)

and m
(ℓ,i)
h , P (ℓ,i)

xh , and P
(ℓ,i)
hh are given by Eqs. (12).

It is useful to note that Eqs. (16) can be rearranged to
produce

A(ℓ,i)m(ℓ,i)
x + b(ℓ,i) = m

(ℓ,i)
h

A(ℓ,i)P (ℓ,i)
xx (A(ℓ,i))T + P (ℓ,i)

ee = P
(ℓ,i)
hh .

The Gaussian product,

pg(z;h(x),Pvv/∆s1)pg(x;m
(ℓ,0)
x ,P (ℓ,0)

xx ) ,

can now be addressed using the approximation provided
by statistical linearization and the approach of [1], which
yields

pg(z;h(x),Pvv/∆s1)pg(x;m
(ℓ,0)
x ,P (ℓ,0)

xx ) (17)

= pg(z;m
(ℓ,0)
h ,P

(ℓ,0)
hh + (Pvv/∆s1))

× pg(x;m
(ℓ,1)
x ,P (ℓ,1)

xx ) ,

where

m(ℓ,1)
x = m(ℓ,0)

x +K(ℓ,1)(z −m
(ℓ,0)
h )

P (ℓ,1)
xx = P (ℓ,0)

xx −K(ℓ,1)P
(ℓ,0)
hh (K(ℓ,1))T

−K(ℓ,1)(Pvv/∆s1)(K
(ℓ,1))T ,

and K(ℓ,i) is given by Eq. (11b).

Returning to the posterior with the result of Eq. (17), it
follows that

p(x|z) ∝
Lx∑
ℓ=1

w(ℓ)−
x

∣∣2πPvv

∣∣− 1
2

[ M∏
k=1

∣∣2πPvv/∆sk
∣∣ 1
2

]
× pg(z;m

(ℓ,0)
h ,P

(ℓ,0)
hh + (Pvv/∆s1))

×
[ M∏
k=2

pg(z;h(x),Pvv/∆sk)

]
× pg(x;m

(ℓ,1)
x ,P (ℓ,1)

xx ) .



The next element of the partitioned likelihood can be re-
moved from the product of remaining partial likelihoods,
and the previous process of approximating the Gaussian
product by another Gaussian product can be repeated.
Carrying out this process for all of the partitions of the
likelihood produces

p(x|z) ∝
Lx∑
ℓ=1

w(ℓ)−
x

∣∣2πPvv

∣∣− 1
2

[ M∏
k=1

∣∣2π(Pvv/∆sk)
∣∣ 1
2

× k(ℓ,k)
]
pg(x;m

(ℓ)+
x ,P (ℓ)+

xx ) ,

where k(ℓ,k) is given by Eq. (11a) and the mean and co-
variance are determined by the complete application of
the iterative relationships given in Eqs. (10b) and (10c).
Note that this result is a non-normalized Gaussian mix-
ture. Alternatively, the factors of

∣∣2πPvv

∣∣−1/2
and∏M

k=1

∣∣2π(Pvv/sk)
∣∣1/2 can be removed, as they have no

dependence on the component index of the mixture, lead-
ing to

p(x|z) ∝
Lx∑
ℓ=1

w(ℓ)−
x

[ M∏
k=1

k(ℓ,k)
]
pg(x;m

(ℓ)+
x ,P (ℓ)+

xx ) .

To resolve the proportionality in Bayes’ rule and formu-
late a proper posterior pdf, the evidence is computed as∫

p(z|x)p(x)dx =

Lx∑
ℓ=1

w(ℓ)−
x

M∏
k=1

k(ℓ,k) .

The fully normalized Bayesian posterior pdf can be ex-
pressed as

p(x|z) =
Lx∑
ℓ=1

w(ℓ)+
x pg(x;m

(ℓ)+
x ,P (ℓ)+

xx ) ,

where the posterior weights are such that

w(ℓ)+
x ∝ w(ℓ)−

x

M∏
k=1

k(ℓ,k) .

Ensuring that
∑Lx

ℓ=1 w
(ℓ)+
x = 1, or, equivalently, that

p(x|z) is a valid pdf, is accomplished by normalizing the
weights as

w(ℓ)+
x =

w
(ℓ)−
x

∏M
k=1 k

(ℓ,k)∑Lx

ℓ′=1 w
(ℓ′)−
x

∏M
k′=1 k

(ℓ′,k′)
.

To define a recursion for the weights through the parti-
tioned likelihood, each of the terms in the numerator and
denominator products can be applied one by one to pro-
duce

w(ℓ,i)
x =

k(ℓ,i)w
(ℓ,i−1)
x∑L−

x

ℓ′=1 k
(ℓ′,i)w

(ℓ′,i−1)
x

,

which is initialized with w
(ℓ,0)
x = w

(ℓ)−
x ; after the last

iteration (i = M ) is completed, w(ℓ)+
x = w

(ℓ,M)
x . This is

the result of Eq. (10a), and ensures that
∑Lx

ℓ=1 w
(ℓ,i)
x = 1

at each iteration. As discussed elsewhere, normalization
at every iteration is not required.

B. PROOF OF EQS. (14)

The governing ordinary differential equations for CPF
come from taking the limit of the iterative relationships
for DPF, as in Eq. (13).

First, consider the mean of the ℓth component. The dis-
crete iteration is given by Eq. (10b), such that

dm
(ℓ)
x (s)

ds
= lim

∆si→0

K(ℓ,i)(z −m
(ℓ,i−1)
h )

∆si
.

Substituting for K(ℓ,i) from Eq. (11b) and simplifying, it
follows that

dm
(ℓ)
x (s)

ds
= lim

∆si→0
P

(ℓ,i−1)
xh

(
∆siP

(ℓ,i−1)
hh

+ Pvv

)−1
(z −m

(ℓ,i−1)
h ) .

Evaluating the limit, noting that the the expected val-
ues go to continuous versions of their respective equa-
tions, the differential equation for each mean is given by
Eq. (14b).

Next, consider the covariance of the ℓth component. Ap-
plying the discrete iteration of Eq. (10c) to the limit of
Eq. (13) leads to

dP
(ℓ)
xx (s)

ds

= − lim
∆si→0

K(ℓ,i)(P
(ℓ,i−1)
hh + (Pvv/∆si))(K

(ℓ,i))T

∆si
.

Substituting for K(ℓ,i) from Eq. (11b) and simplifying, it
follows that

dP
(ℓ)
xx (s)

ds
= − lim

∆si→0
P

(ℓ,i−1)
xh

(
∆siP

(ℓ,i−1)
hh

+ Pvv

)−1
(P

(ℓ,i−1)
xh )T .

In a similar manner to the mean, evaluating the limit
yields Eq. (14c).

Finally, consider the weights and the discrete iteration for
the ℓth component given by Eq. (10a). Before attempting
to find a governing differential equation, a few new terms
and variations on expressions are introduced to simplify
further developments. Let (d(ℓ,i−1)

z )2 be the squared Ma-
halanobis distance of the measurement for the ℓth compo-
nent at the (i− 1)th iteration; by definition,

(d(ℓ,i−1)
z )2 = (e(ℓ,i−1)

z )T (P
(ℓ,i−1)
hh

+ (Pvv/∆si))
−1e(ℓ,i−1)

z ,



where e
(ℓ,i−1)
z = z − m

(ℓ,i−1)
h is the innovation for the

ℓth component at the (i− 1)th iteration. Equivalently, the
squared Mahalanobis distance may be written as

(d(ℓ,i−1)
z )2 = ∆si(e

(ℓ,i−1)
z )T (∆siP

(ℓ,i−1)
hh

+ Pvv)
−1e(ℓ,i−1)

z ,

which makes it clear to see that

lim
∆si→0

(d(ℓ,i−1)
z )2 = 0 . (18)

From the definition of k(ℓ,i) in Eq. (11a) and the form of
the Gaussian pdf, it follows that

k̄(ℓ,i) =
k(ℓ,i)

∆s
nz/2
i

=
∣∣2π(∆siP

(ℓ,i−1)
hh + Pvv)

∣∣− 1
2

× exp
{
− (d(ℓ,i−1)

z )2/2
}
, (19)

where nz is the dimension of z; furthermore,

lim
∆si→0

k̄(ℓ,i) =
∣∣2πPvv

∣∣− 1
2 , (20)

which relies on Eq. (18).

The difference of the weights between two successive
steps, ∆w

(ℓ,i)
x = w

(ℓ,i)
x − w

(ℓ,i−1)
x , is given by

∆w(ℓ,i)
x =

[
k(ℓ,i) −

∑Lx

ℓ′=1 k
(ℓ′,i)w

(ℓ′,i−1)
x∑Lx

ℓ′=1 k
(ℓ′,i)w

(ℓ′,i−1)
x

]
w(ℓ,i−1)

x ,

or, equivalently,

∆w(ℓ,i)
x =

[
k̄(ℓ,i) −

∑Lx

ℓ′=1 k̄
(ℓ′,i)w

(ℓ′,i−1)
x∑Lx

ℓ′=1 k̄
(ℓ′,i)w

(ℓ′,i−1)
x

]
w(ℓ,i−1)

x .

To find the time rate of change of the weights, the limit
of the ratio of the change in weights to the interval width
is taken as the interval width goes to zero, i.e.,

dw
(ℓ)
x (s)

ds
= lim

∆si→0

∆w
(ℓ,i)
x

∆si
. (21)

Leveraging Eq. (20) and
∑Lx

ℓ=1 w
(ℓ,i−1)
x = 1, it can be

shown that

lim
∆si→0

∆w
(ℓ,i)
x

∆si
=

∣∣2πPvv

∣∣− 1
2 −

∣∣2πPvv

∣∣− 1
2

0 ·
∣∣2πPvv

∣∣− 1
2

w(i,ℓ−1)
x ,

which is clearly indeterminate and necessitates the appli-
cation of de l’Hôpital’s rule.

To apply de l’Hôpital’s rule, a few limits of derivatives
are required. The key element that appears in the change
in the weights are the k̄(ℓ,i) terms. As such, starting from

Eq. (19), it can be shown that

dk̄(ℓ,i)

d∆si
=

− 1

2
k̄(ℓ,i−1)

[
tr
{(

∆siP
(ℓ,i−1)
hh + Pvv

)−1
P

(ℓ,i−1)
hh

}
+ (e(ℓ,i−1)

z )T (∆siP
(ℓ,i−1)
hh + Pvv)

−1e(ℓ,i−1)
z

−
(
∆si(e

(ℓ,i−1)
z )T (∆siP

(ℓ,i−1)
hh + Pvv)

−1

× P
(ℓ,i−1)
hh (∆siP

(ℓ,i−1)
hh + Pvv)

−1e(ℓ,i−1)
z

)]
,

which leads to the limit

lim
∆si→0

dk̄(ℓ,i)

d∆si
= −1

2

∣∣2πPvv

∣∣− 1
2 (22)

×
[
tr
{
P−1

vv P
(ℓ)
hh (s)

}
+ (e(ℓ)z (s))TP−1

vv (e(ℓ)z (s))

]
.

From the result of Eq. (22), it directly follows that

lim
∆si→0

d

d∆si

{ Lx∑
ℓ′=1

k̄(ℓ
′,i)w(ℓ′,i−1)

x

}
(23)

= −1

2

∣∣2πPvv

∣∣− 1
2

{ Lx∑
ℓ′=1

[
tr
{
P−1

vv P
(ℓ′)
hh (s)

}
+ (e(ℓ

′)
z (s))TP−1

vv (e(ℓ
′)

z (s))

]
w(ℓ′)

x (s)

}
,

and that

lim
∆si→0

d

d∆si

{
∆si

Lx∑
ℓ′=1

k̄(ℓ
′,i)w(ℓ′,i−1)

x

}
=

∣∣2πPvv

∣∣− 1
2 .

(24)

Applying de l’Hôpital’s rule to Eq. (21) and leveraging
the results of Eqs. (22)–(24) leads to the differential equa-
tion given in Eq. (14a).


