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ABSTRACT 

The growing number of space objects demands improved 

identification and characterization for effective space 

traffic management. Accurately characterizing their 

features is essential for detecting anomalies and 

understanding behaviour. 

Deimos owns and operates a network of ground-based 

optical sensors that track objects at all altitudes. These 

high-frequency photometric telescopes provide a cost-

effective way to study RSOs by analysing brightness 

variations from sunlight reflection. The collected data 

enables the characterization of shape, size, and rotation 

state under different visibility conditions, crucial for 

assessing object stability and potential risks. 

Machine learning techniques, particularly neural 

networks, have proven to be a powerful tool to analyse 

non-linear relationships in data. This study combines 

classification and regression algorithms to extract 

patterns and predict RSO characteristics.  

To improve training efficiency, both simulated and real 

data are used. Simulated data forms the algorithm’s 

backbone, while real observations ensure the models 

generalize effectively to real-world cases, improving 

prediction reliability. 

1 BACKGROUND AND RELATED WORK 

Classifying and characterizing the properties of space 

objects is a key objective in Space Situational Awareness 

(SSA) to enhance knowledge about their state. 

To do so, light curve data serves as a powerful tool for 

uncovering key insights on object behaviour making it an 

invaluable added resource for real-time monitoring of the 

space environment. In the frame of photometric data 

analysis, light curve inversion has been a primarily 

technique widely used for studying shapes and rotational 

characteristics of asteroids, which is dating back to the 

second half of the 20th century [1, 2]. However, when it 

comes to apply these techniques to artificial satellites, the 

problem becomes significantly more challenging. RSOs 

have various shapes, complex attitude controls systems 

and the reflective properties of each part of the satellite 

(mainly body and solar panels) vary considerably. 

With the latest advancements in optical sensors, detectors 

and processing technologies, light curve analysis has 

become a powerful tool for predicting space object 

features. Many innovative methods have been 

implemented for extracting satellite features from light 

curves, but given the strong correlation between shape, 

size, attitude and materials, predictions are often treated 

separately by assuming that one (or more) characteristic 

is known [3,4,5]. 

In general terms, the brightness of a space object at a 

given moment depends on its shape, the reflective 

properties of the surface, its orientation, and how it is 

illuminated. This illumination is determined by the 

positions of the Sun, the observer, and the object itself. 

As a result, the functional relationship between 

luminosity and the problem's variables is complex and 

nonlinear. 

Moreover, due to the surjective nature of this function, a 

well-defined inverse function does not necessarily exist. 

This property is reflected in the fact that different 

combinations of input variables can result in the same 

observed brightness. However, the physical evolution of 

the satellite's state constrains the possible sequences of 

values that each variable can take. Therefore, a 

comprehensive analysis of all the measurements 

comprising the light curve could provide information that 

would not be obtainable by examining each parameter 

separately. For this reason, many innovative approaches 

have explored the possibility to use neural networks as an 

analysis method, given their ability to extract patterns 

from large datasets [6, 7, 8]. 
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2 FAST PHOTOMETRY OBSERVATIONS 

Fast photometry technique allows measuring the flux or 

intensity of light from space objects at a high frame ratio 

(several images per second). Usually, the flux of the 

radiated light is measured by a photodiode or lately 

through a CCD or CMOS camera attached to a telescope. 

The incoming light (flux) needs to be calibrated, so 

converted to instrumental magnitudes. Once the system 

is calibrated with a known standard object, the further 

measurements are corrected by atmospheric extinction 

and extinction coefficients according to the passband of 

the instrument. 

The most important requirements for fast photometric 

optical cameras are: 

• High frame rate 

• High sensitivity 

• No mechanical shutters 

• Fast read-out 

• Low noise 

The very short exposure times required for detection of 

very fast LEO objects motion, and the relatively small 

aperture of the sensors impose some restrictions on the 

faintest object that can be accurately detected. Moreover, 

when tracking LEO satellites, in the FoV (Field of View) 

reference stars background changes very quickly and it is 

critical to track the object with high accuracy and 

sensitivity. 

Fast photometry final product is the so-called light-curve, 

that can be interpreted as the fingerprint that the space 

object leaves at each pass on the detector. When 

consecutive measurements are taken at frequencies 

below 1 second (ideally several hertz), they not only 

enhance light curves through finer sampling but also 

make it easier to detect rapid, occasional bright variations 

(glints) and high-speed rotational periods, such as 

tumbling or high-frequency spinning, as in Figure 2-1. 

 

Figure 2-1: Normalized time vs magnitude of a fast 

rotator object 

However, sometimes fast photometry is not enough to 

extract rotational information due to the under-sampling 

of the rapid brightness variations, as in Figure 2-2. In this 

case the dispersion of the samples makes the features 

almost invisible to any approach if seen in time domain. 

When this happens, it is recommended to switch to the 

frequency domain (i.e. Fourier analysis or Lomb-Scargle 

periodograms) or applying epoch folding techniques, 

which may recover high-frequency details [8]. 

 

Figure 2-2: Normalized time vs magnitude of a spinner 

object (object that rotates faster than the sampling 

frequency of the sensor) 

Generally, fast photometry is characterized by the 

following performances: 

• > 1Hz – 10Hz (high sampling data rate) 

• Accurate pointing / autoguiding 

• Applicable to LEO 

The geometry of the observation in LEO (as in Figure 

2-3) is mainly affected by a fast phase angle variation and 

large changes in magnitude due to range variations across 

the track. Indeed, light curves in LEO typically exhibit a 

parabolic shape, with the brightest point occurring at the 

satellite's closest approach to the observer, which 

generally corresponds to the lowest magnitude due to the 

inverse logarithmic scale. 

Given that LEO satellites pass over the telescope site 

many times at different elevations, azimuth, and 

illumination conditions, a large variety of light curves can 

be collected, helping to extract multiple features, 

especially when applied to constellations. These have 

indeed the advantage of being made of multiple identical 

satellites (same shape and surface scattering properties), 

giving key insights on how the same object behaves 

under different orientations and illumination conditions. 

 

Figure 2-3: Geometry of LEO satellite observations 

As opposed to LEO, GEO satellites experience slower 

phase angle variations and maintain a nearly constant 

observation angle. This means that if a GEO satellite is 

stabilized, the sensor can only capture a limited area of 



 

 

the object with an angle that is mainly depending on the 

season. (as in Figure 2-4). 

 

Figure 2-4: Geometry of GEO satellite observations 

varying throughout the year 

3 DATA COLLECTION AND PROCESSING 

This study is intended to exploit the ability of ML 

algorithms to extract hidden patterns in light curves and 

provide satellite features. To do so, a large amount of data 

is required for training given the common rule of “the 

more data available, the better the predictions the models 

can make”. Due to this strict requirement, the training of 

ML models has been conducted using two sources: real 

photometric data collected by the Deimos telescopes and 

simulated data. 

3.1 Simulated light curves 

Synthetic light curves have been generated using a 

simulator developed by Deimos.  The simulator models 

satellite orbits using the Simplified General Perturbations 

4 (SGP4) method, propagating Two-Line Element (TLE) 

data to determine the satellite's trajectory. The simulation 

accounts for visibility constraints, ensuring that the 

satellite is illuminated by the Sun, is not in Earth's 

shadow, and the Moon is not in the surroundings of the 

line-of-sight. 

To generate light curves, the simulator employs a tool 

called POV-Ray, a rendering software that uses the ray 

tracing technique. It simulates the path of light by tracing 

rays backward from the observer to the light source, 

optimizing computational efficiency by only considering 

rays that reach the observer.  

Typically, when a surface is illuminated by the Sun, it 

reflects the sunlight in both specular and diffuse way. 

While for specular reflection the incident angle is equal 

to the reflected angle, for diffuse reflection a Lambert 

model is used. The most generic way to describe the 

overall light intensity reflected from surface i and 

perceived by an observer is: 

𝜌𝑡𝑜𝑡𝑎𝑙(𝑖) =  𝜌𝑠𝑝𝑒𝑐(𝑖) + 𝜌𝑑𝑖𝑓𝑓(𝑖) (1) 

The simulator takes in input the satellite’s geometry, its 

material properties and attitude, allowing realistic 

rendering of how light interacts with the satellite's surface 

under different illumination conditions. The satellite's 

body is typically modelled with a balanced mix of diffuse 

and specular reflection, whereas solar panels are 

generally treated as entirely specular. 

The apparent magnitude of the satellite is extracted from 

the rendered images by summing pixel intensities, 

converting them into photon counts, and applying a 

calibration process to align the results with real 

observational conditions. The light curve is then obtained 

by finally determining the magnitude at each time step. 

 

Figure 3-1: Flowchart of the light curve generation 

algorithm implemented by the simulator (from [8]) 

Due to the large distances between the simulated objects 

in the scenario, numerical stability issues can arise when 

generating images with POV-Ray. To address this 

limitation, a scaling factor is applied to proportionally 

reducing all distances. Once images are generated, the 

scaling factor is reversed and the luminosity of the RSO 

is computed, expressed in terms of apparent magnitude, 

defined by the following equation: 

𝑚𝑣 = 𝑚𝑟 − 2.5 𝑙𝑜𝑔10 (
𝐵

𝐵𝑟

) (2) 

Where 𝑚𝑟 is a pre-defined magnitude of the reference 

brightness (in this case 21.92), which represents the 

average sky brightness, B the brightness of the object, 

that is the total number of photons emitted, and 𝐵𝑟  the 

reference brightness. However, since POV-Ray does not 

use physical magnitudes, such as the irradiance or the 

radiant flux, to compute the brightness of the simulated 

object, a reference calibration object whose actual 

brightness can be obtained analytically has been used.  

Since material prediction is beyond the scope of this 

activity, each characteristic is simulated based on a fixed 

material configuration: Multi-layer Insulator, MLI, 

(which provides satellites with an insulation system that 

offers high thermal resistance in a vacuum environment) 

for the satellite body, and GaAs-type reflection (highly 

polished and predominantly specular) for the solar 

panels. 

 

Figure 3-2: Example of a simulated light curve for a 

Box-shaped LEO satellite 



 

 

3.2 Real light curves 

Real light curve data has been obtained using Deimos 

sensors in a fast-photometry mode. These sensors are 

installed in a remote location with minimal light pollution 

to ensure high-quality observations. A connected control 

facility is responsible for monitoring and managing the 

sensors, ensuring continuous data collection and system 

functionality.  

 

Figure 3-3: Deimos Sky Survey sensors 

The sensors collect data each night and multiple objects 

with different features have been selected which span 

various characteristics: 

• Orbital regime (LEO to GEO) 

• Size (extra-small to extra-large) 

• Shapes (simple ones like sphere, box, cylinder 

and box with panels) 

• Status (active/inactive if known) 

3.3 Calibration 

Real raw photometric light curves contain valuable 

information about satellite’s brightness variations over 

time, but they also include systematic errors, 

observational biases, and noise that can affect the 

observed satellite magnitude.  

To account for variations in exposure time, observed 

photon counts are calibrated consistently with the real 

value of exposure time of the sensor. 

To account for variations in range, the observed counts 

are calibrated considering standard values of range 

(1000km).  

In addition, due to the presence of outliers in light-curve 

data that can sensibly affect subsequent data processing, 

it is of paramount importance to remove them just after 

the calibration. Given that magnitudes vs time values 

may present abrupt changes, peaks and sharp features, the 

identification of outliers is not straightforward. 

The overall calibration process can be summarised with 

the following steps: 

• Calibration by exposure time (sensor-

dependent) 

• Subtraction of calibrated background counts 

• Calibration by range (standard 1000km) 

• Calibration by atmospheric extinction 

• Outlier’s removal 

 

 

Figure 3-4: Light curve calibration (top: raw data, 

bottom: calibrated data) 

The complexity of this task lies in the fact that the 

brightness variation of a real object can exhibit spikes and 

abrupt changes. For example, reflections from the solar 

panels of some satellites can cause flares, resulting in 

sudden variations in brightness. This makes it difficult to 

distinguish between true anomalies and behaviours that 

may occur in a real object. In the current implementation, 

the removal of anomalous values is carried out in four 

steps: 

1. Values that deviate more than 3 standard 

deviations from the mean of the values recorded 

during the satellite's entire observation window 

are removed 

2. The Butterworth filter is applied to eliminate the 

noise 

3. Values that deviate more than 3 standard 

deviations from the mean of the smoothed data 

are removed again 

4. The Butterworth filter is applied once more to 

suppress the noise, and the remaining 

anomalous values are removed. 

The Butterworth filter [9] is a mathematical technique 

that allows low-frequency components of a signal to pass 

through, while reducing the amplitude of components 

whose frequency is greater than a specified cutoff value. 

When applied to the light curve, it produces a smoothing 

effect that removes random variations caused by 

measurement errors or noise, thereby facilitating the 

detection of anomalous values. Figure 3-4 shows an 

example of the calibration process, displaying the 

removed anomalous values and the result. It also includes 

a comparison with an uncalibrated light curve. 

 

 

 



 

 

4 MACHINE LEARNING APPROACH 

ML tools extend the capability of exploiting light curve 

analysis for precious information regarding space object's 

characteristics. Deep learning techniques have 

demonstrated to be reliable in many space practices when 

the models are correctly and logically implemented with 

the proper data set and configuration parameters.  

Recurrent Neural Networks (RNNs), particularly Long 

Short-Term Memory (LSTM) architectures, have proven 

to be highly effective in handling time-sequenced data, 

such as light curves, as they enable the retention of 

important information over time. These networks use 

memory cells to maintain important information from 

earlier sequences, while using gates to control the flow of 

information, deciding what enters or leaves the memory 

cells giving a better understanding of long-term 

dependencies. The network used can be summarised into 

three main layers: 

• Input data: the original data the network will 

extract the information from (i.e. light curves) 

• Hidden layers: the layers that extract the 

characteristics of the data to learn patterns and 

make predictions (LSTM model) 

• Output data: the prediction made by the 

network based on the learned characteristics of 

the input data (i.e. Shape, Size, and Status) 

For each characteristic analysed, the Machine Learning 

framework is built using Keras, which is a model-level 

library built up on TensorFlow providing high-level 

building blocks for developing deep learning models.  

In ML activities it is common to use a batch of training 

samples composed by inputs x and targets y, where the 

network is run on x to obtain a prediction of y. After that, 

the model computes the loss on the batch, calculates the 

gradient of the loss and updates the parameters (weights 

and biases) in the opposite direction of the gradient to 

minimize the loss. 

In the context of this research, two main types of 

networks have been considered: 

• Binary classification: The output layer uses a 

sigmoid activation function to produce a 

probability between 0 and 1 representing the 

likelihood of the input belonging to the positive 

class. Then a threshold is used to make the final 

classification decision. 

• Multiple class classification: Sorts the input data 

into several categories and trains the network. 

When an input is processed, the network uses a 

SoftMax activation function to predict the 

probability distribution of the data through all 

the categories and the category with the highest 

probability will be the result of the prediction 

• Regression: predicts a continuous numerical 

value that represents a real-world value 

dependent on the input data given 

The high-level scheme of the process providing the 

prediction of the three satellite characteristics analysed is 

shown in Figure 4-1. The calibrated light curve is 

represented as a time series of four variables: epoch, 

magnitude, range, and phase angle.  

 

Figure 4-1: Prediction flow of the three characteristics: 

size, shape, and status 

Shape and Status feature estimations are based on a 

classification network which classifies both into multiple 

categories: 

• Shape: four common and simple shapes are 

studied, such as sphere, cylinder, box, and box 

with panels. These configurations have been 

chosen as they are commonly used geometries 

in satellite design. 

• Status: two simple cases are considered, stable 

and unstable satellite 

On the other hand, size is predicted through a regression 

approach that depends on the average cross-section, from 

which four different classes are evaluated (XS, S, M, L, 

XL) 

Finally, the computation of the average cross-section has 

been performed using the ESA CROC tool, which is part 

of the DRAMA software. [10] 

4.1 Shape  

The classification of satellite geometries in this study is 

approached as a categorization problem, where each 

object is assigned to one of the predefined shape 

categories. To generate the preliminary dataset using the 

light curve simulator, four fundamental satellite 

geometries have been selected: sphere, box, box with 

solar panels, and cylinder. These configurations were 

chosen due to their widespread use in satellite design.  



 

 

Figure 4-2 and Figure 4-3 illustrate these geometries and 

provide examples of the corresponding light curve 

patterns. The curves shown in these figures correspond to 

a specific observation period, and their shape and 

magnitude may vary under different viewing conditions. 

 

Figure 4-2 - Satellite Geometries 

   

 

Figure 4-3: Simulated light curves of the different 

geometries (a magnification factor has been applied to 

the objects in the image for illustrative purposes to get 

larger and slower variations of magnitude). 

The expected magnitude variations are observed in the 

light curves for each geometry. For spherical objects, the 

magnitude remains nearly constant throughout the 

observation window, as their symmetrical shape ensures 

that their reflective properties do not change with 

viewing angle.   

For both the box and the cylinder, a decrease in 

magnitude is observed around the midpoint of the 

observation period. This is due to an increase in the 

amount of direct sunlight reflected during that phase, as 

illustrated in Figure 4-4. The figure presents three scaled 

images for each geometry, corresponding to different 

moments of the observation period.   

 

Figure 4-4: Illumination of the four geometries for one 

night (19:30, 23:30 and 5:00). From top to bottom: 

sphere, box, cylinder and box with wings. 

The box with wings exhibits a more pronounced drop in 

magnitude, which is attributed to the direct reflection of 

sunlight on the solar panels. This effect significantly 

increases the illuminated surface area, leading to a 

noticeable reduction in the measured magnitude. It must 

be noticed that for representative purposes scenarios have 

been magnified and for this reason the glint in Figure 4-3 

generated by the box with wings lasts two hours, which 

does not reflect a real behaviour.  

To develop this multiple-class classification model, a 

categorical cross-entropy loss function has been used.  

𝐿 =  − ∑𝑦𝑖𝑙𝑜𝑔𝑦�̂�

𝐶

𝑖=1

(3) 

In this function C is the number of classes, 𝑦𝑖  is the true 

probability for class i (typically 0 or 1) and 𝑦�̂� is the 

predicted probability. It measures the dissimilarity 

between both values and penalizes the model heavily 

when it gives a low probability to the correct class. This 

helps the model to output high confidence in the true 

class. 

4.2 Size  

An object composed of the same materials but with a 

larger size will reflect more light, and as expected, its 

brightness will be higher. As shown in Eq. 2, the greater 

the object’s magnitude, the lower its brightness, meaning 

that larger objects will have lower magnitude values. 

The size of each object in this work is determined based 

on its average cross-section, which is used as input for a 



 

 

regression model. To facilitate interpretation, the 

predicted values are mapped into five discrete size 

categories: XS, S, M, L, and XL. These thresholds vary 

depending on the object’s geometry, as shown in the 

following table:  

Table 1:  Size category thresholds (in m2) based on 

average cross-section for different object geometries. 

 XS S M L XL 

Sphere < 0.1 [0.1 - 

0.5] 

(0.5 - 

1] 

(1- 2] > 2 

Box < 0.1 [0.1 - 

0.5] 

(0.5 - 

1] 

(1- 2] > 2 

Box 

WW 

< 0.1 [0.1 - 

1] 

(1 - 3] (3 – 

5] 

> 5 

Cylinder < 0.1 [0.1 - 

1] 

(1 - 3] (3 – 

5] 

> 5 

 

For this regression model, the mean squared error has 

been used as loss function. 

𝑀𝑆𝐸 =   
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2 

𝑛

𝑖=1

(4) 

In this function, n is the number of observations, Y is the 

model's prediction, and �̂� is the true value. It squares the 

difference between both values, which gives more weight 

to outliers. This is very useful for gradient-based 

optimization because it gives more weight to substantial 

prediction deviations. 

4.3 Rotation State  

In general, inactive satellites rotate uncontrollably due to 

a failure in their control system, a faulty design, or 

environmental factors. Accurately predicting the rigid 

body dynamics is a complex task given that it can be 

perturbed by both internal and external torques. External 

torques come from the interaction of the satellite with the 

space environment (gravity gradient, magnetic, solar 

radiation…) and their combined effects can be difficult 

to be modelled and strongly affect the prediction. 

Moreover, as discussed in section 2, telescopes have a 

limited capacity to obtain high-cadence images of 

satellites to detect very fast rotators. Objects that rotate 

very quickly (as in Figure 2-2) present indeed two main 

challenges:  

• generating a data set dense enough in time  

• detecting the rotation pattern within it  

The first one is related to both computational limits of the 

simulator supporting the ML models, and the physical 

limits of the real sensor. The second depends on the 

reflections of the light on the object, which could appear 

blurry and be confused with background noise if ML 

algorithms are not properly trained and images calibrated 

against noise. 

The simulated data generated use a simpler body 

dynamics approach, assuming an initial stabilized 

satellite in Local Vertical-Local Horizontal reference 

frame and propagate its rotation in time by applying an 

angular velocity vector �⃗⃗� , without considering any 

external torque and with a rate within the detectable 

limits of Deimos’ sensors. 

This model focuses then on identifying satellite stability 

based on the angular velocity rate predicted through a 

binary classification (stable/unstable). If the calculated 

angular rate results to be lower than 1deg/s, then the 

satellite is considered stable. This margin has been 

accounted for due to the inherent bias and uncertainty in 

the statistical predictions generated by the ML models.  

To help the model obtain the best predictions possible, 

Bidirectional LSTM layers have been used. These layers 

process the sequence in a forward and backward manner. 

Using this technique can help identify the patterns in 

brightness fluctuation better because sometimes, rotation 

characteristics might become more apparent after 

viewing the light curve holistically rather than 

sequentially.  

In a binary classification model where the data has 

characteristics like the ones presented here, the threshold 

used for the predictions holds a very important role in 

obtaining good results. To optimize its value, it has been 

obtained by maximizing the F-1 score metric, meaning 

that the threshold corresponding to the highest F-1 score 

values is the one selected. This ensures that the model 

considers any possible class imbalance. 

For this binary classification model, a binary cross-

entropy loss function has been used. 

𝐵𝐶𝐸 = − 
1

𝑁
∑𝑦𝑖 log(𝑝(𝑦𝑖)) +

𝑁

𝑖=1

+ (1 − 𝑦𝑖) log(1 − 𝑝(𝑦𝑖)) (5)

 

In this function, 𝑦𝑖  is the true binary label (either 0 or 1), 

and p is the predicted probability of the positive class. 

This formula measures the dissimilarity between the true 

labels and the predicted probabilities, so it heavily 

penalizes confident and wrong predictions. This makes it 

very effective for binary classification tasks, creating a 

continuous error surface for model training. 

5 RESULTS AND DISCUSSION 

The following section presents the performance 

evaluation of the proposed machine learning models for 

shape classification, size estimation, and stability 

prediction of RSOs. 

All the networks have been trained using a total amount 

of light curves that vary between 1000 and 2000 mostly 

composed of simulated ones, with a small number of real 

ones. Then, from all the data gathered, 10% was used as 



 

 

the test dataset, and from the remaining 90%, another 

25% was used for validation. 

To assess the capability of the models, the results are 

analysed in terms of: 

• Accuracy: represents the correct values out of 

all the predictions made. It is used to analyse 

classification models, as it provides a general 

measure of overall performance. A value closer 

to 1 indicates a higher number of correct 

predictions. However, in cases where the 

dataset is imbalanced, accuracy may not 

properly reflect the true performance of the 

model, as it can be biased toward the majority 

class. For this reason, accuracy is not used as 

the sole evaluation metric in our classification 

models. 

• Area Under the Curve (AUC): used in 

classification models, it represents the area 

under the Receiver Operating Characteristic 

curve (ROC) which shows how the model 

balances correctly identifying positive cases 

(true positives) while avoiding false alarms 

(false positives) at different probability 

thresholds. This allows the AUC value to be 

indifferent to class imbalance regardless of the 

chosen threshold. If its value is close to 1, the 

model would have near-perfect classification 

but if its value is below 0.5 it would indicate 

that the model is making random guesses.  

• Mean absolute error (MAE): commonly used 

to evaluate regression models by measuring the 

average absolute difference between the 

predicted and the real values. It indicates how 

far the predictions are from the true values, 

without considering if the errors are positive or 

negative. A lower MAE indicates more 

accurate predictions, while a higher MAE 

suggests bigger deviations from the actual 

values. This metric is not sensitive to outliers; 

therefore, it is best to be complemented with 

other metrics.  

• Mean squared error (MSE):  commonly used in 

regression models, it measures the average of 

square differences between the predicted and 

the real values. Due to the squaring operation, 

MSE is more sensitive to outliers and large 

deviations compared to MAE. Its value is 

always positive, with lower values indicating a 

better model performance.  Although MSE 

cannot be directly interpreted in the units of the 

output data, it serves as an effective loss 

function due to its desirable mathematical 

properties, such as differentiability, which 

facilitates optimization in machine learning 

models [11]. 

Differences between training and validation performance 

are discussed, highlighting limitations and potential areas 

of improvement. Additionally, the impact of orbital 

regime and object stability on model performance is 

examined, addressing the challenges associated with 

characterization of space objects.  

5.1 Shape 

Table 2 presents the classification performance of the 

model in determining the shape of RSOs under different 

orbital regimens and stability conditions. The high 

accuracy in training shows effective learning, while the 

drop in validation accuracy, particularly in stable LEO 

cases, may indicate a lower generalization in shape 

differentiation when rotational variability is lower. 

Indeed, when the object is stable may happen that not all 

shape features are visible during a few passes. Let’s take 

as an example the box with panels: if no glint from solar 

panels is appearing in the light curve, the ML model can 

easily misclassify it as a simple box-shaped object. 

Table 2: Shape characterization 

Regime Status 
Training 

Stage 
Accuracy AUC 

LEO 

Stable 
Training 0.983 0.999 

Validation 0.696 0.838 

Unstable 
Training 0.979 0.997 

Validation 0.865 0.937 

GEO 

Stable 
Training 0.864 0.981 

Validation 0.828 0.975 

Unstable 
Training 0.965 0.997 

Validation 0.940 0.971 

5.2 Size 

The model, whose results are shown in Table 3, 

demonstrates low MAE and MSE values for size 

predictions of spherical objects, suggesting robust 

generalization across different orbital regimes. The 

consistently low validation errors indicate that the model 

effectively captures the relationship between observed 

brightness variations and object cross-sectional area for 

this geometry. 

In GEO, the results appear to be of lower quality due to 

the scarcity of real spherical examples in orbit, making it 

difficult to generalize predictions. Furthermore, for 

smaller objects, slight size differences are hard to 

distinguish, as the satellite occupies only a few pixels in 

the image, limiting detectable variations in brightness. 



 

 

Table 3: Size predictions of Sphere 

Regime Status 
Training 

Stage 
MAE MSE 

LEO Stable 
Training 0.0148 0.002 

Validation 0.0127 0.002 

GEO Stable 
Training 0.979 1.317 

Validation 0.997 1.368 

 

Box-shaped satellites size prediction in LEO gets 

accurate results both in stable and unstable configuration, 

as shown in Table 4. The slight difference between the 

training and validation indicates that the model fits both 

training and validation dataset.  

On the other side, it exhibits significantly higher errors in 

GEO scenarios compared to LEO, particularly in the 

stable case. This discrepancy suggests that the model may 

struggle with variations in phase angle and illumination 

conditions in GEO, where geometry remains nearly 

constant with respect to the observer. 

Additionally, unstable cases in both LEO and GEO show 

lower values in both metrics. This may be because 

unstable objects, as they rotate, expose different faces of 

the satellite over time. This change in the observed 

surface provides more diverse information about its 

structure, making it easier for the model to identify key 

features. On the other hand, stable objects maintain a 

fixed orientation, limiting the amount of visible 

information and potentially making any estimation about 

the satellite’s characteristics more challenging. 

This demonstrates that stability or low variability is not 

always beneficial. In many cases, either due to the orbital 

regime in which the satellites are located or the instability 

they exhibit, they provide more information to the 

observer, allowing the models to learn more effectively. 

Conversely, highly repetitive data without distinctive 

features contributes less to the model’s training and 

learning process. 

Table 4: Size predictions of Box 

Regime Status 
Training 

Stage 
MAE MSE 

LEO 

Stable 
Training 0.0003 1.708 

Validation 0.0005 2.745 

Unstable 
Training 0.0006 7.65·10-7 

Validation 0.002 4.42·10-6 

GEO 

Stable 
Training 0.402 0.229 

Validation 0.406 0.239 

Unstable 
Training 0.221 0.0903 

Validation 0.162 0.052 

 

The results for box-wing objects (in Table 5) show 

increased prediction errors in stable GEO cases, which 

may be attributed to their high dependency on phase 

angle variations. The lower error values in unstable 

conditions suggest that rotational motion introduces more 

distinguishable light curve patterns, in particular when 

the shape is more complex. Indeed, the same insights can 

be extracted both for box and box with panels case.  

Table 5: Size predictions of Box with Wings 

Regime Status 
Training 

Stage 
MAE MSE 

LEO 

Stable 
Training 0.095 0.101 

Validation 0.133 0.211 

Unstable 
Training 0.0134 0.0013 

Validation 0.008 0.0001 

GEO 

Stable 
Training 0.571 0.701 

Validation 0.579 0.699 

Unstable 
Training 0.197 0.066 

Validation 0.163 0.035 

 

For cylindrical objects the model exhibits high accuracy 

in size estimation in LEO regime, with low prediction 

errors in the stable case, as in Table 6. However, the 

increased errors in unstable and GEO cases suggest that 

cylindrical geometries introduce complex reflection 

dynamics that are not fully captured by the current model. 

Additionally, not so many cylindrical objects are 

currently deployed in the GEO region (mostly are GTOs, 

like rocket bodies), which limits the collection of real 

data cases.  



 

 

Table 6: Size prediction of cylinder 

Regime Status 
Training 

Stage 
MAE MSE 

LEO 

Stable 
Training 0.0002 8.783·10-8 

Validation 0.0004 1.961·10-7 

Unstable 
Training 0.124 0.104 

Validation 0.141 0.107 

GEO 

Stable 
Training 0.5955 0.7454 

Validation 0.708 1.814 

Unstable 
Training 0.168 0.055 

Validation 0.0679 0.008 

5.3 Stability 

The stability classification model demonstrates higher 

accuracy in the GEO regime compared to LEO. The 

reduced validation accuracy in LEO suggests that rapid 

changes in illumination and viewing geometry introduce 

ambiguities in the light curve patterns, potentially 

complicating stability assessment. Incorporating 

additional temporal features or higher-frequency 

photometric sampling could mitigate these limitations in 

LEO. 

Table 7: Stability Predictions 

Regime 
Training 

Stage 
Accuracy AUC 

LEO 
Training 0.704 0.695 

Validation 0.673 0.574 

GEO 
Training 0.816 0.833 

Validation 0.838 0.845 

 

It is important to note that a satellite's state cannot be fully 

assessed based on a single-track prediction. Instead, the 

characterization process takes a more comprehensive 

approach, considering the satellite's past, present, and 

future evolution. Multiple consecutive predictions can 

either increase confidence in the estimation or prompt a 

reassessment if the state changes.  

5.4 Test cases 

To assess the performance of the trained neural networks, 

real light curves were used as a test cases, and the 

resulting predictions were analysed.  

The first object to be analysed is a LEO satellite, whose 

track is shown in Figure 5-1. It has been identified as a 

Box with Wings with an extra-large (XL) size and 

classified as stable. This classification aligns with the 

object's known properties, as it is indeed a Box with 

Wings and confirmed to be stable. Moreover, its actual 

average cross-section is 10.3 m², which, according to the 

size categories defined in Table 1, falls within the XL 

range, further validating the accuracy of the model’s 

prediction.  

 

Figure 5-1: Example of a LEO Real Light Curve for 

Model Evaluation (top: raw data; bottom: calibrated 

data) 

The second object, shown in Figure 5-2, is a GEO 

satellite observed at different intervals throughout the 

night. It has been classified by the models as a Box with 

Wings of extra-large size and stable. This classification 

is consistent with the satellite’s known characteristics. Its 

actual average cross-section, estimated at 28.6 m², also 

falls within the XL size category, confirming that the 

model successfully characterizes this satellite as well. 

 

Figure 5-2: Example of a GEO Real Light Curve for 

Model Evaluation (top: raw data; bottom: calibrated 

data) 

Beyond individual classification cases, it is also crucial 

that satellites are consistently characterized correctly 

across different observations, rather than just in a single 

instance. To assess this, the same object was analysed on 

multiple nights: 20th of February, 4th of May, and again 

on the 14th of May. The model consistently classified it 

as a Box with Wings, extra-large in size, and stable across 

all nights. This consistency over multiple observations 

reinforces the reliability of the classification and 

highlights the importance of maintaining accurate 



 

 

characterizations under varying observation conditions, 

visibility scenarios, and different times of the year. 

Ensuring stability in predictions is key for long-term 

satellite monitoring, and achieving this robustness 

requires a dataset that covers as many real-world cases as 

possible.  

 

Figure 5-3: Light curve of a GEO object, analysed 

across different nights 

Finally, a fourth object was tested where the model’s 

classification appears to be less accurate. The object is 

part of the cylindrical Meteosat family and in Figure 5-4 

a complex light curve has been observed throughout an 

entire night, with inconsistent and sparse data.  This GEO 

satellite was correctly identified as a stable cylinder in 

previous observations, but in this case was misclassified 

as an unstable Box with Wings. This demonstrates that 

the model can make accurate predictions but, in some 

cases, lacks full consistency.  

To enhance accuracy, the model needs: 

• additional real data 

• more accurate synthetic satellite model 

simulation (which sometimes has appendices or 

complex reflective parts playing an important 

role on the total brightness) 

 

 

Figure 5-4: Stable cylindrical GEO satellite incorrectly 

identified as an unstable Box with Wings. 

6 CONCLUSIONS 

This work reinforces the effectiveness of AI in enhancing 

the characterization of Earth-orbiting objects through 

photometric data analysis. The results highlight AI ability 

to uncover previously unrecognized patterns with 

remarkable accuracy, confirming its role as a powerful 

tool in space situational awareness. This work helps and 

contribute to a more efficient monitoring and 

management of the space domain, ensuring the safety of 

orbital operations. 

As a proposal for future enhancements of this analysis, 

refining ML models with more data, investigate new 

approaches, and simulate more accurately satellite 

characteristics can make predictions more consistent. To 

give a more comprehensive analysis of the satellite status, 

together with the mentioned characteristics, also attitude 

estimation models can be implemented, building the 

backbone for a complete database of satellite status that 

can be constantly monitored over time. The complexity 

in attitude information collection is that for RSOs this is 

usually not disclosed. For active satellites, owners rarely 

publish it, while for most defunct spacecraft and debris, 

it remains entirely unknown. Exploring the possibility of 

AI to understand attitude status from light curve patterns 

is one of the biggest challenges in characterization.  

Finally, integrating even more AI in photometric data 

analyses and operations could enable the early detection 

of anomalies or unusual trends in collected data. 

Automating this monitoring process would in future 

allow for timely intervention (automatic warning 

messages can be generated) and reduced manual 

workload for operators.  
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