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ABSTRACT

For a number of reasons, quality covariance information
is often unavailable to space operators when assessing
collision probabilities. A proposed method to address
these issues is the concept of synthetic covariances. This
involves computing a covariance from an existing set of
position and velocity data. As an alternative to traditional
approaches, the method treats the state vector in an anal-
ogous manner to an observation. The key to the approach
is the filtering of ephemeris with a priori noise informa-
tion and the adjustment of the residuals for consistency.
This work reviews some of the possible approximations
to this problem to enable the generation of a state esti-
mate. The state estimate and its covariance are derived
solely from the time series state vector source, in this case
Two Line Element sets. The performance of the algo-
rithms will be evaluated in terms of covariance contain-
ment for state prediction, mimicking conjunction analysis
scenarios in routine space operations.

1. INTRODUCTION

Position and velocity covariances are critical for assess-
ing collision probabilities in space operations; however,
they are often unavailable or questionably estimated by
flight dynamics systems. Spacecraft operators frequently
encounter “black box” systems that do not readily output
covariance matrices, or they may receive covariances tied
to the Orbit Determination (OD) epoch lacking time his-
tory or customization options regarding reference frames
and parameters. In addition, organizations providing
Space Situational Awareness (SSA) information are hes-
itant to disclose positional accuracy metrics. As a result,
reliable covariance information is scarce.

To address these limitations, we embrace the concept of
synthetic covariances, computed directly from a given
time series of position and velocity estimates. Tradi-
tional approaches for constructing synthetic covariances
are mainly based on standard overlap comparisons. In
this regard, there are methods based on predefined er-
ror functions and covariance matrix eigenvector reference

frames. Recently, a novel digital statistics method for 6x6
covariance uncertainty modeling was presented drawing
on statistics from time and argument-of-latitude bins on
an object-by-object basis [1].

Alternatively, we propose to pose an estimation problem
where the state vector is used in a way analogous to an
observation. The solution approach consists of an initial
filtering of the available ephemeris with or without a pri-
ori noise information, that is adaptively adjusted for the
residuals to be statistically consistent. The estimation of
noise covariance matrices in the optimal filtering problem
has been the subject of research in the last 50 years [2],
mainly in the context of KF and linear invariant systems.
However, some of them have been extended to nonlin-
ear problems. In general, the methods can be classified
into different groups according to the approach [3] In this
work, we will review some of the possible approxima-
tions [4, 5] applied to this specific problem. In this way,
it is possible to generate a state estimate, consisting of the
expected state and its uncertainty represented by the co-
variance, compatible with the dynamical model and the
filtering method used, solely from the time series of state
vectors.

We will evaluate the performance of this new technique in
a similar way to previous work [1]. Two-Line Elements
(TLEs) will be used both for estimation and uncertainty
quantification analysis, as we will emphasize on the pre-
diction capabilities of the proposed noise estimation ap-
proaches.

2. LITERATURE REVIEW

Covariance realism is a topic that has been a subject of
research in the last years. In the white paper published
in 2016, Poore et al. [6] established the boundaries and
challenges of improving uncertainty knowledge in the or-
bit determination process.

From a comprehensive perspective, the subject can be
framed in the domain of Uncertainty Quantification
(UQ). The field is growing with application in many sci-
entific and engineering problems [7]. The definition pro-
posed by the National Research Council is the follow-
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ing: “The process of quantifying uncertainties associ-
ated with model calculations of true, physical quantities
of interest, with the goals of accounting for all sources
of uncertainty and quantifying the contributions of spe-
cific sources to the overall uncertainty” [8]. As such, it
is a broad field transversal to all engineering subjects.
However, UQ methods are highly dependent on the ap-
plication domain, given that they are usually related to
the physical processes involved. In orbital propagation,
a fairly deterministic field, on the other hand, UQ is a
novel topic. A seminal work is the PhD thesis of Lam-
berto Dell’Elce. In 2019, there was already a (consoli-
dated) framework to address UQ in orbital mechanics [9].
Throughout the last years, there has been an increased
interest in the topic, due to the impact of uncertainty in
the provision of SST services from cataloging to con-
junction assessment. Within space engineering, UQ is
often referred to as Uncertainty Realism. Provided the
state uncertainty is generally assumed Gaussian in opera-
tional contexts, UQ translates to Covariance Realism for
practical applications. The majority of covariance real-
ism methods rely on the fitting of some parameters that
characterize the process noise [10]. However, process
noise is not accounted for in the most commonly used
method for orbit determination: batch least squares. Sev-
eral workarounds to this particular problem have been
proposed, such as extending the formulation to explicitly
account for the process noise [11], or using the noise of
the so-called consider parameters as a proxy [12, 13].

In discrete-time sequential filters, such as the Kalman Fil-
ter, process noise accounts for the unmodeled dynamics,
i.e., the difference between the acceleration model used
for estimation and the actual acceleration experienced by
the spacecraft. Note it is relevant to properly estimate
the process noise, as it is a diffusive term that inflates the
propagated uncertainty, thereby affecting how measure-
ments and dynamics are combined to update the knowl-
edge on the state of an object. Therefore, covariance re-
alism can be regarded as the result of a proper estimation
of the process noise. In sequential filters, process noise is
usually modeled as an additive Gaussian noise with zero
mean and covariance Q. The tuning of this matrix has
been a subject of research from the early times of the
Kalman Filter [14]. Adaptive filtering techniques allow
us to estimate the process noise covariance. There are
multiple approaches that can be used for process noise
estimation, and they can be divided into four categories
[3]: Bayesian [15, 16], maximum likelihood [17], cor-
relation or autocovariance [18] and covariance matching
[19, 20]. Nevertheless, not all the methods proposed in
the literature are of applicability in the orbit determina-
tion problem. Some of the assumptions made on these
approaches do not hold (in general) for SST, as is the case
for linear time-invariant dynamics, feedback-free meth-
ods that do not update the process noise covariance or
non-correlated dynamical noise. In response to the spe-
cific needs of SST, Stacey et al. [4] devised methods that
meet the operational requirements of orbit determination.

Moreover, there could be applications where the obser-
vation of measurement noise is not well characterized a

priori, either due to the sensor characteristics or the data
source. The latter is in fact the case for the most thor-
ough publicly available data source for SSA: Two Line
Element sets (TLEs). A single TLE contains the expected
state and (up to certain point) short term dynamical char-
acteristics of a given space object, as estimated by the
US 18th Space Defense Squadron (SDS). Methods ca-
pable of jointly estimating the process and measurement
noise are thus deemed necessary for a fully autonomous
processing. Among the different proposals in the track-
ing literature, the one by Dunik et al. [5] appears to be
consistent and operationally viable. Therein, the authors
propose to derive the process and measurement noise lev-
els based on the statistics of the observation residuals, i.e.
the Measurement Prediction Error (MPE). The algorithm,
dubbed Noise covariance matrices Estimation with Gaus-
sianity Assessment (NEGA) is expected to perform well
in nearly linear environments where the process and mea-
surement noise statistics remain approximately constant.

According to the above discussion, two methods have
been selected for implementation: one suitable for se-
quential filters [4] and one developed for time-variant lin-
ear systems [3]. Their description can be found in the
following sections.

3. NOISE ESTIMATION

3.1. Problem Statement

The evolution of the satellite state can be modeled as a
stochastic dynamical system with an additive Wiener pro-
cess. In Itô calculus,

dx = f(x, t)dt+ σw(x)dW . (1)

The value of σw provides the size of the Wiener process
and, it is related to the process noise and, in this work, it
is a priori unknown.

A reference trajectory is selected, xref , such that

dxref = f(xref , t)dt . (2)

The reference trajectory can be the output of a filter, i.e.
the expected state at a certain time, or given a priori. The
relative state is defined as: δx = x− xref . Assuming

f(xref + δx, t) ≈ f(xref , t) +
∂f

∂x

∣∣∣∣
xref

δx , (3)

the relative dynamics equation can thus be expressed as

dδx =
∂f

∂x

∣∣∣∣
xref

δxdt+ σw(x)dW . (4)

The integral between two instants of time, tk and tk+1

reads

δx(tk+1) = Φ(tk+1, tk)δx(tk) +

∫ tk+1

tk

σw(x)dW ,

(5)



where Φ(tk+1, tk) =
∫ tk+1

tk
∂f
∂x

∣∣
xref

dt. Defining a Gaus-
sian noise wk ∼ N (0,Q) and a state noise shaping ma-
trix Gk as

Gkwk =

∫ tk+1

tk

σw(x)dW , (6)

the resulting discrete time dynamics model is

δx(tk+1) = Φk+1,kδx(tk) +Gkwk , (7)

with Φk+1,k = Φ(tk+1, tk). The continuous-time pro-
cess noise has been alternatively modeled in other works
[4] for the SNC approach as ε, a zero-mean white Gaus-
sian process, whose autocovariance is:

E
[
ϵ(t)ϵ(t)T

]
= Q̃(t)δ(t− τ) (8)

The corresponding process noise mapping matrix is Γ in
[4]. With this notation, both noise models are equivalent
with ϵ ∼ N (0, Q̃), and Gk =

∫ tk+1

tk
Φ(tk, τ)Γ(τ)dτ .

The description of the model is completed with the mea-
surement equation:

z = h(x, t) + ν . (9)

with ν ∼ N (0,R). Note R is assumed unknown for the
problem of interest. The reference trajectory generates,
through the measurement model without noise, a refer-
ence measurement

zref = h(xref , t) . (10)

Approximating

h(xref + δx, t) ≈ h(xref , t) +
∂h

∂x

∣∣∣∣
xref

δx , (11)

the resulting linear measurement model reads

δz(tk) = z(tk)− zref (tk) = Hδx(tk) + νk , (12)

where H = ∂h
∂x

∣∣
xref

.

3.2. Process Noise Estimation. ASNC.

The method included in this section corresponds to the
Adaptive State Noise Compensation (ASNC) described
in [4]. Therein, two new possible approaches are pro-
posed to tackle the problem of estimating the process
noise, overcoming the disadvantages detected in the state-
of-the-art in the field of orbit determination. The two
methods are based on State Noise Compensation (SNC)
and Dynamic Model Compensation (DMC), respectively.
They combine the fundamentals of these approaches
with a covariance matching method using a constrained
weighted least squares optimization. Both methods are

relatively similar in terms of applicability and perfor-
mance so we only included ASNC for the sake of com-
parison. Note it is also expected to be more robust since it
drops the estimation of a general (exponential) accelera-
tion that could potentially lead to filter instabilities under
certain circumstances. In what follows, a summary of
ASNC is included for completeness, although it is possi-
ble to find all the details in Stacey and D’Amico [4].

Although ASNC is derived for linear systems, it can be
applied to EKF or UKF, as these undergo a linearization
of the dynamical and measurement models around the a
priori estimate. The process noise covariance matrix

Qk =

∫ tk

tk−1

Φ(tk, τ)Γ(τ)Q̃(τ)Γ(τ)TΦ(tk, τ)
T dτ

(13)
enters into the time update step of the Kalman filter
through the predicted covariance

Pk|k−1 = ΦkPk−1|k−1Φ
T
k +Qk (14)

where Pk|k−1 is the predicted covariance matrix at the
current step conditioned on the measurement sequence
through time step k−1, and Φk = Φ(tk, tk−1) is the state
transition matrix from step k− 1 to step k. The problem,
thus, consists in estimating the process noise covariance
matrix consistently. One option, based on a covariance
matching approach, proposed by Myers and Tapley [19]
approximates the process noise covariance matrix as:

Q̂k =
1

N

k−1∑
p=k−N

(
Pp|p −ΦpPp−1|p−1Φ

T
p +∆x

p∆
xT

p

)
,

(15)
where

∆x
k = Kk∆

z
k, ∆

z
k = zk −Hkxk (16)

Therein,
Kk = Pk|k−1H

T
k S

−1
k (17)

is the so-called Kalman gain and

Sk = E[∆z
k∆

zT
k ] = HkPk|k−1H

T
k +Rk (18)

is the innovation covariance. However, covariance
matching presents several shortcomings, one of them is
the lack of guarantee of the semi-positive definiteness of
the process noise matrix. To overcome these drawbacks,
Stacey and D’Amico [4] proposed the ASNC and ADMC
methods, in which, at each time step, the methods find
“the positive semi-definite matrix (Q̃) that minimizes the
difference in a weighted least squares sense between the
elements of the spacecraft state process noise covariance”
and the corresponding estimate obtained from Eq. (10).
The optimization problem can be then solved using active
set or interior point methods (c.f. [4]). As an alternative,
and based on certain assumptions on the weighting ma-
trix, the authors derive an efficient method to compute the
update of the process noise covariance.

The ASNC algorithm can be summarized into the follow-
ing four steps as a function of the window length N used
to derive the statistics of the Kalman filter state update.



• Step 1 Solve for Q̂k, using

Q̂k =
1

N

k−1∑
p=k−N

(
∆x

p∆
xT

p

)
, (19)

where ∆x
p = Kp∆

z
p is the Kalman state update. If

the variables are not available from the EKF / UKF,

Pp|p−1 = ΦpPp−1|p−1Φ
T
p + Q̂k (20)

Sp = HpPp|p−1H
T
p +Rp (21)

Kp = Pp|p−1H
T
p S

−1
p (22)

• Step 2 Find the weighting matrix for each compo-
nent of the process noise matrix based on the con-
sidered measurement window

W =
1

N2

k∑
p=k−N+1

Wp (23)

Wp = diag
(
vech(Σ̄p)

)
(24)

Σp = KpSpK
T
p (25)

Σ̄p = Σo2
p +Σdiag

p ΣdiagT

p (26)

• Step 3 Solve the quadratic programming problem,
i.e. find the Q̃k from SNC that matches the Q given
by covariance matching assumptions

Q̃k : argmin
Q̃

(XQ̃− b)TW−1(XQ̃− b) (27)

X′
i,j,l =

∫ tk

tk−1

[Φ(tk, τ)Γ(τ)]i,l[Φ(tk, τ)Γ(τ)]j,ldτ

(28)

for i, j in 1, ..., nx and l in 1, ..., dim(Q̃)

X:,l = vech
(
X′

:,:,l

)
(29)

b = vech(Q̂k+1), (30)

• Step 4 Compute the process noise at the subsequent
step based on the expected PSD Q̃k

Qk+1 = vech−1(XQ̃k) (31)

Therefore, this filter can be run alongside an EKF or UKF
and will provide adaptive process noise estimates once
the filter has received enough observations, i.e for k >
N . As described, note it assumes the measurement noise
is known a priori so it would be left out to the user to
tune these values offline in order to yield consistent state
estimates.

3.3. Measurement and Process Noise Estimation.
NEGA

In this method, a moving window of analysis of a
fixed length (within a larger interval of analysis) is de-
fined to produce Augmented Measurement Prediction Er-
rors (AMPE). Then, from the statistical analysis of the
AMPE, one can relate the unknown components of mea-
surement and process noise and the covariance matrix of
the AMPE in a linear fashion. A sample-based estima-
tion of the AMPE covariance matrix allows us to estimate
measurement and process noise. In what follows, the
steps to relate the covariance matrix of the AMPE with
the unknown noise covariance matrices and the known
system elements are explained. Then, it is possible to
describe how to estimate the noise covariances from the
sample-based AMPE covariance. The summary included
here can be expanded in the original works [3, 5].

The interval of analysis is t ∈ [t0, τ ]. Each window
of analysis k is defined between time tk and tk+L−1.
The reference trajectory in the window of analysis, back-
propagated from xref (tk+L−1), is computed from the es-
timated state in window k − 1. That is,

xref (tk+L−1) =

xref (tk+L−2) + δx̂k+L−2 +

∫ tk+L−1

tk+L−2

f(x, t)dt.

(32)

The way in which the estimated state in window k − 1 is
computed is described below ( Eq. (47)).

The reference states in window k are obtained as

xref (tk+i) =

∫ tk+i

tk+L−1

f(x, t)dt+xref (tk+L−1) ,

∀i ∈ [0, ..., L− 2].
(33)

Therefore, given

XL
k,ref = [xT

ref (tk),x
T
ref (tk+1), ...,x

T
ref (tk+L−1)]

T ,
(34)

the linear state-space model reads as Eqs. (7) and (12),
with δXL

k = XL
k − XL

k,ref , and δZL
k = h(XL

k ) −
h(XL

k,ref ).

With this notation, the procedure described in [3] can be
followed with minor changes in the definition of the ma-
trices involved. The augmented measurement prediction
is written as

δẐL
k = OL

kΦk+L−1,k+L−2

(
OL

k−1

)†
δZL

k−1 . (35)

The observability matrix in the window of analysis k is
defined as

OL
k−1 =

[
(HkΦ(tk, tk+L−1))

T
,

(Hk+1Φ(tk+1, tk+L−1))
T
, ...,

(Hk+L−1)
T ]T

,

(36)



with OL
k−1 ∈ RLnz×nx . Then, the augmented measure-

ment prediction error (AMPE) in window k is defined as

δZ̃L
k = δZL

k − δẐL
k (37)

Using the state-space model and the expression for the
augmented measurement prediction, the AMPE can be
computed as

δZ̃L
k =ΓL

kW̃
L
k + ṼL

k +OL
k w̃k−1

−OL
kΦ(tk+L−1, tk+L−2)

(
OL

k−1

)†(
ΓL
k−1W̃

L
k−1 +VL

k−1

)
,

(38)

where the substitution w̃k = Gkwk ∈ Rnx was used
and the vectors and matrices are defined by Eqs. (51-53).

With these definitions, the AMPE can be written in a
compact form

δZ̃L
k = Akξ

L+
k , (39)

where L+ = L+ 1,

ξL+
k =

[(
WL+

k−1

)T
,
(
VL+

k−1

)T ]T
, (40)

and Ak is defined in [3] Eqs. (14), (15) and (18).

Let Ck ∈ RLnz×Lnz be the covariance matrix of the
AMPE Z̃L

k defined by

Ck = E[Z̃L
k (Z̃

L
k )

T ] = AkE[ξ
L+
k (ξL+

k )T ]AT
k = AkΞAT

k .
(41)

Following the algebraic manipulations described in [3],
in which the matrix identity ABC = (CT ⊗ A)BS (⊗
is the Kronecker product and the notation (A)S stands
for the columnwise stacking of a symmetric matrix A ∈
RnA×nA into a vector (A)S ∈ Rn2

A ), the matrix Ck can
be rewritten into

(Ck)S = (Ak ⊗Ak)ΞS = bk . (42)

Therefore, in a compact form, the CM (Ck)S is written
as a linear function of the unknown noise covariance ma-
trices Q,R as

Λkθ = bk , (43)

where Λk ∈ Rnb×nθ , with nb = (Lnz)
2, is the matrix

depending on the known model matrices defined as

Λk = (Ak ⊗Ak)Ψ . (44)

bk ∈ Rnb and θ ∈ Rnθ , with nθ = [nw(nw + 1) +
nz(nz + 1)]/2 is the vector of all unknown and unique
elements of the noise covariance matrices defined as

θ = [(QTS)
T , (RTS)

T ] . (45)

The notation ATS defined in [3] stands for the column-
wise stacking of the unique nA(nA + 1)/2 elements of
the symmetric matrix A ∈ RnA×nA by elimination of
the supradiagonal elements. The matrix Ψ is knwon as
the duplication or shape matrix, fulfilling the equation

ΞS = Ψθ . (46)

Finally, the estimated state in window k is computed from
the measurements in that window

δx̂k+L−1 =
(
OL

k

)†
δZL

k (47)

After building the matrices for a window of analysis, the
process is repeated for k = 1, ..., τ − L+ 1. The AMPE
covariance matrix can thus be summarized for all win-
dows of analysis as

Λθ = b (48)

with Λ = [ΛT
1 ,Λ

T
2 , , ...,Λ

T
τ−L+1],b =

[bT
1 ,b

T
2 , , ...,b

T
τ−L+1].

Now, Ck can be estimated from a sequence of the
measured and input data, and therefore the vector
b. Given a sequence of measurement predictor errors
[Z̃L

1 , Z̃
L
2 , ..., Z̃

L
τ−L+1], the sample-based estimate of the

vector b is given by

b̂k = Z̃L
k ⊗ Z̃L

k (49)

Assuming that Λ is of full rank, the least squares opti-
mum of the vector of the unknown elements of the noise
covariance matrices is given by

θ̂ = Λ†b̂ . (50)

W̃L
k =

[
w̃T

k , w̃
T
k+1, ..., w̃

T
k+L−1

]T
(51)

VL
k =

[
vT
k ,v

T
k+1, ...,v

T
k+L−1

]T
(52)

ΓL
k =



0nz×nx Hk ... HkΦ(tk+1, tk+L−2) HkΦ(tk+1, tk+L−1)
0nz×nx 0nz×nx ... Hk+1Φ(tk+2, tk+L−2) Hk+1Φ(tk+2, tk+L−1)

...
...

. . .
...

...
0nz×nx

0nz×nx
... Hk+L−3 Hk+L−3Φ(tk+L−2, tk+L−1)

0nz×nx
0nz×nx

... 0nz×nx
Hk+L−2

0nz×nx
0nz×nx

... 0nz×nx
0nz×nx

 (53)



NORAD-ID 55131 59773
Observation window 21 days 11 days
Number of observations 30 30
Prediction window 6 days 3.5 days
Number of states
for prediction 10 10

Observation noise
σr [m], σv [m/s] 300, 0.05 500, 0.1

ASNC window length 3 3

Table 1. Test case description. The observation noise
has been defined via a trial and error procedure, but in
general the problem is sensitive to within half an order of
magnitude. Also recall the NEGA method does not make
use of the above observation noise.

4. RESULTS

The approaches described in Sections 3.2 and 3.3 have
been evaluated for the test cases defined in Table 41.
TLEs were downloaded from space-track.org for both
the observation window and prediction window, obtain-
ing the number of observations and number of states for
prediction performance evaluation displayed in the table.
Note for implementation purposes, the TLEs are con-
verted to J2000 Cartesian coordinates, i.e. propagated
with a null time delta, in order to be processed. The
three selected objects are a US Wide Area Augmenta-
tion System (WAAS) satellite, (Galaxy 30 with NORAD-
ID 46114), a Chinese GEO telecommunications satel-
lite (SHIJIAN-23 with NORAD-ID 55131) and a Rus-
sian satellite in Sun Synchronous Orbit (SSO) (COSMOS
2576 with NORAD-ID 59773).

The methods are evaluated in terms of prediction er-
ror and covariance containment, this is, the accuracy of
state prediction compared to the reference and the Maha-
lanobis distance of the difference between the predicted
and observed states considering the estimated process
noise level.

Results for object 55131 using ASNC are summarized
in Figures 1 and 2, which include the position esti-
mation distance and standard deviation in the Radial-
Transversal-Normal (RTN) body-fixed reference frame,
and the Mahalanobis distance, respectively. Position pre-
diction error in the RTN frame shows a rather consistent
behavior, with the standard deviation of the predicted po-
sition covariance building over time in a similar fashion
to the position differences. The radial uncertainty grows
at a moderate rate, and the standard deviation in the nor-
mal direction builds up slowly over time. Uncertainty in
the transversal or in-track component grows significantly
faster, something to be expected as it relates to the ac-
tual location of the satellite within its (perturbed) ellipti-
cal motion around the Earth. While the number of sam-
ples may be deemed insufficient for a proper statistical
analysis, it can be seen that the Mahalanobis distance of

1Due to time constraints and perhaps the higher complexity of the
problem, results for the NEGA method are limited to the GEO test case.

Figure 1. Position difference of predicted versus observed
(TLE) values in the radial, tangential and normal direc-
tion for object 55131 using ASNC.

the reference states with respect to the predicted Gaussian
PDF is kept lower than 3, a value that is commonly used
for covariance containment analysis [13].

The results of the evaluation of the NEGA method us-
ing the TLE sequence for object 55131 can be consulted
in Figures 3 and 4. In this case, the filter was able to
jointly estimate the process noise and the measurement
noise, the latter corresponding to σr = 605.4 [m] and
σv = 0.605 [m/s]. These values are somewhat simi-
lar to the ones provided in Table 4 but there seems to
be a coupling between the position and velocity process
noise values. This coupling could arise from the approach
used to solve Equation (50): we pose it in the form of
a (weighted) constrained Quadratic Programming (QP)
problem for the diagonal entries of Q and R. There-
fore, there are three groups of quantities with very differ-
ent expected orders of magnitude since O(Q) ∼ 10−10,
which could possibly affect the solution returned by the
QP solver. In terms of absolute prediction error, the re-
sults are comparable to those of ASNC, although the con-
sistency exhibited by the predicted states is worse. This
is notably the case for the radial position component, for
which the estimated process noise level seems unable to



Figure 2. Histogram of the Mahalanobis distance within
the prediction window for object 55131 using ASNC.

properly contain the observed scatter. Further analysis re-
garding the QP solver used and the way the problem has
been scaled could shed more light for the applicability of
the NEGA method, which could in any case be used to
obtain educated guesses for the process and observation
noise levels.

The results for object 59773 using ASNC are summa-
rized in Figures 5-6. In this case, the estimated process
noise closely follows the state prediction error for the
time window of analysis. It is clear that the error com-
mitted while estimating the state is high but dynamics in
LEO are known to be less predictable due to the effect of
atmospheric drag.

5. CONCLUSIONS

The work conducted in this paper explores operationally
viable methods to perform uncertainty quantification for
orbital state prediction based on state vector time series
with unknown noise characteristics. The first method,
based on covariance matching and known observation
noise, has shown to be robust and consistent for the test
cases presented, yet it required offline tuning of the ex-
pected position and velocity uncertainties. The NEGA
estimator, on the other end, appears to be capable of
jointly estimating the process and measurement noise,
discerning the order of magnitude of the different un-
certainty sources. Nonetheless, it appears to be outper-
formed by a moderately tuned ASNC in terms of esti-
mation accuracy and covariance containment. It shall be
emphasized that the maturity of the NEGA implementa-
tion is relatively low so further research could improve
the observed results.
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