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ABSTRACT 

The Eugene Stansbery-Meter Class Autonomous 
Telescope (ES-MCAT) is NASA’s primary sensor for 
surveying small debris in geosynchronous earth 
orbit (GEO) and provides data for updating the NASA 
Orbital Debris Engineering Model (ORDEM). Data from 
2020 to 2023 have been analyzed for use in supporting 
ORDEM 4.0 development. This ES-MCAT data set was 
compared with previously collected GEO survey data that 
used the Michigan Orbital Debris Survey Telescope 
(MODEST) to assess the evolving orbital debris 
environment and new insights that could be gained with 
updated survey methods and analysis techniques. 

New methodologies in filtering detected objects for all 
GEO surveys and refinements of previous GEO breakup 
knowledge were investigated. The historical data are 
further compared to 2023 data analyzed using various 
detection techniques, including the introduction of 
machine learning (ML) to help detect orbital debris in 
optical images. The ML model uses the “You Only Look 
Once” version 9 (YOLO-v9) architecture and was trained 
on both simulated objects and objects detected during the 
2023 GEO survey. This model improves detection 
completeness for faint and trailed objects when compared 
to previous software models. Nevertheless, limitations 
exist when dealing with a larger variety of object 
morphologies in astronomical images. Combining the 
previous software’s detections with the new ML model 
increases the overall detection rate, including detecting 
objects too faint during manual review of data. 

This paper presents an overview of the ES-MCAT GEO 
survey strategies; a comparison of data collected with ES-
MCAT and MODEST; and the results of different detection 
methods, including manual review and ML. Applications to 
building and validating ORDEM are also discussed. 

INTRODUCTION 

The Eugene Stansbery-Meter Class Autonomous 
Telescope (ES-MCAT) is used by the NASA Orbital 

Debris Program Office (ODPO) to observe orbital debris 
in geosynchronous orbit (GEO), and these data are utilized 
to build and validate NASA’s Orbital Debris Engineering 
Model (ORDEM). ES-MCAT completed its first GEO 
survey during 2020-2022 and began its second GEO 
survey in 2023 [1]. The pointing strategy created for the 
first GEO survey conducted by ES-MCAT was updated 
for the second GEO survey based on weather trends, Moon 
position, and galactic plane position. Prior to ES-MCAT’s 
deployment, the ODPO also used the Michigan Orbital 
Debris Survey Telescope (MODEST) to collect GEO 
survey data during the years 2004-2006, 2007-2009, and 
2013-2014 [2, 3, 4]. The data from the surveys conducted 
by these two telescopes were analyzed and compared to 
understand how improved survey methods, updated 
processing techniques, and a new observatory would 
impact the GEO survey results. In the process of analyzing 
data from the two telescopes and integration of data into 
ORDEM, methods to filter detections were implemented 
based on more recent target detections to better ensure that 
data only involves GEO debris.  

To aid with future analyses of GEO survey data from 
ES-MCAT, the ODPO is also investigating the feasibility 
of machine learning (ML) to process large data sets for 
efficiency and minimize human-in-the-loop processes. 
ES-MCAT surveys involve large amounts of complex data 
and are prime candidates for ML applications. Machine 
learning is a type of artificial intelligence where a model 
learns from training data to identify patterns in new data. 
In the case of computer vision, ML is used to adjust the 
parameters of a convolutional neural network (CNN), 
which scans over an image so it can identify specific 
objects that are present in the training data. 

This paper provides an overview of ES-MCAT GEO 
survey strategies, including updates made from the first to 
the second GEO survey; a summary of data collected 
during the first and second ES-MCAT GEO surveys and 
comparisons to historical MODEST data; and a discussion 
of performance of ML models implemented with 
ES-MCAT data. 
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SURVEY STRATEGIES 

The goal of the ES-MCAT surveys were to optimize 
sampling of GEO objects within a region of interest (ROI), 
with an expected value (EVAL) of 0.3 or greater. The 
EVAL gives the probability of detecting an object in a 
specific orbit while at a given field of view and time. This 
ROI is defined with inclination (INC) and right ascension 
of the ascending node (RAAN) in INC∙cos(RAAN) and 
INC∙sin(RAAN) space, centered at 7.5°, 0°, with a radius 
of 15° [5]. ES-MCAT’s GEO survey built upon the 
surveys from MODEST where observations were 
conducted near new moon and coverage gaps were filled 
in with statistical sampling. The ROI is shown in Fig. 1 
along with the coverage of ES-MCAT’s first GEO survey, 
with EVALs shown greater than 0.3 and 0.2. 

A pointing strategy was developed for ES-MCAT’s first 
GEO survey to cover this ROI, as uniformly as possible, 
within the GEO debris belt over two years, while also 
allowing for certain lapses in coverage. Each night, a 

series of images were taken at two right ascensions (RA) 
and two declinations (Dec), with one of RA and Dec 
pointing during each half of an 8-hour observing period. 
This was repeated for 24 more nights with decreasing RAs 
and Decs that trailed and lead the approximate center of 
Earth’s shadow by 15 degrees, creating one cycle that 
spanned a portion of the GEO belt. These cycles repeated 
13 more times and encompassed 350 nights, 
approximately one year. These cycles could be repeated 
indefinitely, while ensuring the GEO belt bounds were 
updated to reflect the perturbation and corresponding 
evolution of GEO objects’ orbits. This pattern is similar to 
MODEST’s GEO survey approach where one cycle 
appears as two vertical lines in RA/Dec space, following 
Earth’s shadow [2, 3]. The resulting ES-MCAT planned 
pointings are shown in Fig. 2, descriptively named the 
“Candy-Cane Method,” along with the actual pointings 
from ES-MCAT’s first GEO survey. 

  

Figure 1. (left) ROI coverage plot taken from the first ES-MCAT GEO survey showing 
regions that exceeded an EVAL of 0.3. (right) ROI coverage plot taken from the first 

ES-MCAT GEO survey showing regions that exceeded an EVAL of 0.2. Both plot titles 
are in the format YYYYMMDD. 



Field center differences between the planned pointings 
and the actual pointings can be attributed to weather 
downtime, unplanned maintenance, and Moon brightness 
preventing useful observations. These effects also 
impacted the overall coverage and will be discussed 
below. The original survey method allowed for manual 
pointings, which enabled focused observations for 
reducing large coverage gaps in the ROI. The survey 
method for ES-MCAT’s second GEO survey was 
improved upon in several ways. First, to minimize 
overexposure from the moon, an area encompassing a 
radius of 20° around the Moon is implemented for 
avoidance, with pointing scheduled either higher or lower 
in Dec. Second, an approximation of the galactic plane’s 

position in RA/Dec space with an additional boundary of 
7.5° is implemented for an avoidance zone. The numerous 
star trails, which make it difficult to detect faint objects 
and ultimately increases processing time. Understanding 
the weather behavior for Ascension Island is critical for 
maximizing available observation days. For example, best 
photometric days occur in March with least 
photometric/bad weather days in September and 
October [6]. To address these gaps in coverage due to 
seasonal effects, a wider declination is used for poor 
conditions (10 days per cycle versus the nominal 25 days). 
The end result with all three of these optimized field 
pointings are shown in Fig 3.

 

Figure 3. Chart showing planned pointings/dance plot for the second GEO survey in RA/Dec 
space; blue squares represent the pointings for each night. Also plotted are the galactic 

plane thin disk bounds (green curves), cataloged GEO objects propagated to January 2023 
(red dots), upper and lower bounds of the GEO belt (red curves), and nightly availability by 

month (color bar at bottom). Earth’s shadow (±10°) and the Moon’s position (±10°) for 
21 February 2024 are also depicted by the black and yellow ellipses, respectively. 

Figure 2. (left) The pointing strategy implemented in ES-MCAT’s first GEO survey in RA/Dec space for 
14 cycles, or 350 observational nights. Green squares represent planned field centers for each night, red 

markers represent cataloged GEO objects from January 2021, and the blue and orange curve represent the 
approximate upper and lower bounds of the GEO belt. (right) Actual field center pointings from ES-MCAT’s 

first GEO survey, with an additional purple curve representing the path of Earth’s shadow. 



To understand how this updated pointing strategy affects 
coverage over the ROI, the planned field centers were 
processed through an in-house developed ODPO program 
known as Tie-Dye. This program simulates orbits with 
various INCs and RAANs based on the time of observation 
and produces predicted EVALs for the upcoming survey 
along with previous instances of this program being utilized 
for telescopic measurements with MODEST [7]. Tie-Dye 
was run for an ideal survey with no effects from weather 
along with an average survey with the nightly observation 
availability specified in Fig. 6. The effect is that certain 
regions of the Tie-Dye plot lose coverage, causing regions 
of the plot to show smaller total EVALs. These two 
scenarios are depicted in the ROIs in Fig. 4. 

Despite lower EVALs due to predicted weather events in 
the right-hand chart of Fig. 4, the minimum EVAL within 
the ROI is still at least 0.3, which meets the goal of the 
GEO survey. A Titan Transtage breakup that occurred in 
2019 (International Designator 1976-023F, U.S. Satellite 
Catalog Number 8751), modeled with the NASA Standard 
Satellite Breakup Model (SSBM) and propagated to 
December 2020, is depicted in the charts with black dots. 
Also plotted are the modeled GEO objects from 
ORDEM 3.1, which are propagated to the end of 2019, 
marked with gray dots. 

DATA PROCESSING 

Detection of orbital debris in optical images generally 
involves humans manually reviewing images, along with 
the use of software algorithms to analyze images and 
identify detections that correspond to Earth-orbiting 
objects. ES-MCAT data are processed with manual review 
of images to detect objects and use the Observatory 
Control System (OCS) software to photometrically and 
astrometrically calibrate detected objects in a series of 
images [8]. Detections with MODEST data utilized a 
processing software based on the Image Reduction and 
Analysis Facility (IRAF) code developed by the National 
Optical Astronomy Observatories (NOAO) for data 
reduction in addition to periodic manual review for 
comparison with the debris finder program [2]. For both 
MODEST and ES-MCAT surveys, after image reduction 
was completed and detected objects were identified, 
objects were correlated with the Space Surveillance 
Network (SSN) catalog available from SpaceTrack.org 
and assigned as a correlated target (CT), which includes 
both intact objects and large orbital debris, or an 
uncorrelated target (UCT).  

 

 

 

 

 

 

 

 

 

 

  

Figure 4. ROI plots of coverage resulting from the pointing strategy of the second GEO survey 
in INC*cos(RAAN), INC*sin(RAAN) space. The ROI are indicated by the dashed black lines, 

modeled GEO debris (propagated to late 2020) are shown with gray dots, and a modeled 2019 
Titan Transtage breakup (propagated to late 2020) is shown with black dots. The EVALs within 
the plots are shown by a range of colors, indicated on the color bar on the right-hand side of 

each plot. The plot on the left utilized an ideal survey with no weather events, while the plot on 
the right removed certain field centers based on monthly availability (see Figure 6). 



GEO SURVEY RESULTS 

The following will provide analyses conducted on the 
correlated data from the first and second ES-MCAT GEO 
surveys, consisting of 1,895 total objects.   

Of the total 1078 objects found by manual review during 
the first ES-MCAT GEO survey, 165 objects were 
categorized as UCTs, and 913 were categorized as CTs. 
During the first three months of the second GEO survey, 

817 objects were detected with 423 categorized as CTs 
and 394 as UCTs, surpassing those detected in the first 
GEO survey. The primary mirror was recoated between 
the first and second GEO surveys, so the greater number 
of UCTs detected during a shorter time span is likely owed 
to the newly recoated mirror and better detection 
capabilities of the system. The detections from the first 
and second surveys, along with the modeled GEO objects 
and Titan 2019 breakup (propagated to late 2020), are also 
presented in the ROI plots in Fig. 5. 
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Figure 5. ROI plots of CT and UCT detections from the first and second ES-MCAT GEO surveys in 

INC*cos(RAAN), INC*sin(RAAN) space, similar to those in Fig. 4. 



To further characterize the detected objects in the two 
surveys, the absolute magnitudes of each object were 
calculated from the measured apparent magnitudes and 
calibrated to GEO altitudes and plotted in histograms for 
ES-MCAT and MODEST surveys, shown in Fig. 6. 

 

 

 

 

 

 

The number of detections in the second ES-MCAT GEO 
survey (ES-MCAT 23 Manual) increases up to 
approximately 18th magnitude, as opposed to the drop-off 
after approximately 17th magnitude seen in the first GEO  

 

 

Figure 6. Histograms of detected objects (CTs and UCTs), binned by absolute magnitude. Separate plots show the 
different surveys conducted: the first two ES-MCAT GEO surveys, ES-MCAT 20 Manual and ES-MCAT 23 Manual, 

respectively, and the three MODEST GEO surveys. Note the different y-axis ranges between the plots. 



survey (ES-MCAT 20 Manual) and approximately 
16.5 magnitude seen in the MODEST datasets. This 
roll-off is due to the recoated primary mirror and more 
focused survey strategy discussed above. An increase of 
dimmer objects detected correlates to a higher probability 
of small debris (<30 cm) being found. 

Data on small orbital debris in GEO below the size 
threshold of the SSN catalog is of primary interest for the 
purposes of ORDEM. A data filter is applied to focus on 
GEO debris, thus removing larger objects not of interest 
or objects with rates outside of GEO that may appear as 
GEO debris during the short time arc. Before filtering, the 
detections from all surveys are propagated to a common 
epoch, chosen here to be December 2020. The first filter 
that is implemented on the telescopic measurement data is 
based on the type of observed objects. Cataloged breakup 
debris objects are identified in the CT object data set based 
on their International Designators and SSNs, and up to 
2023, these include 8 GEO breakups: Ekran 2 (1978); 

Ekran 4 (1981); Ekran 9 (1983); Titan 3C (1992, 2018, 
2019); Briz-M (2016); and Beidou (2016) [9]. At the end 
of the last MODEST survey in 2013-2014, only 4 known 
GEO breakups had occurred (Ekran 2 (1978), Ekran 4 
(1981), Ekran 9 (1983), and a Titan 3C rocket body 
(1992). Next, UCT objects are filtered by size, with the 
lower size limit being 25 cm and the upper size limit being 
1.25 m. While the detection capabilities and data 
completeness of MODEST was 30 cm, ES-MCAT’s 
capabilities allow for the lower size limit to be lowered to 
25 cm, and the lower size limit for all datasets were 
decreased for comparison. These sizes are calculated from 
the NASA Optical Size Estimation Model (OSEM). 
Finally, the UCTs are filtered based on the stable 
Laplacian plane for GEO objects to better ensure that 
UCTs are indeed GEO objects instead of GEO transfer 
(GTO) or MEO objects. The effects of these filters on the 
observed objects in the ROI plots (which approximate the 
stable Laplacian plane) are indicated in Fig. 7 for 
ES-MCAT and MODEST survey data.



  

Figure 7. ROI plots of filtered detections from the first and second GEO surveys in INC*cos(RAAN), 
INC*sin(RAAN) space, with the order of surveys identical to Fig. 6. The dashed and solid circles 

represent the ROI, which approximates the stable Laplacian plane region. Detections are represented 
by dots, and modeled parent bodies (propagated to late 2020) are represented by X’s. The dashed 

“pie wedges” represent the “clock angles” in the ROI from the left and moving clockwise. 



These polar plots indicate where objects exist in GEO with 
the additional comparison to breakup parent bodies. While 
there were a large number of detections during the 
surveys, the effect of the filters reduces these numbers, 
especially with the ES-MCAT data. Manual review with 
ES-MCAT allowed for the additional detections of GTO 
objects and MEO objects, which were not included in 
these plots. There were also a larger number of detections 
in the MODEST 04-06 and 07-09 GEO surveys when 
compared to ES-MCAT 20 due to the limited detection 
capabilities of the ES-MCAT observatory over the first 
GEO survey. The reason for this was because of the 
degraded mirror coating and the inability to travel to clean 

the mirror in addition to weather downtime and unplanned 
maintenance at the observatory. There were also fewer 
detections in the ES-MCAT 23 data set due to the fact that 
it only spans over 3 months of observational data. The pie 
wedges seen are “clock angles,” defined as an angle in the 
Cartesian coordinates of INC*cos(RAAN), 
INC*sin(RAAN) where 0° clock angle is defined by a 
vector originating at (7.5°,0°) and pointing in the (0°,0°) 
direction, and the angle increases moving clockwise. These 
allow for understanding completeness and number of 
detections within certain orbits. These are investigated 
further in the Fig. 8 with the uncertainties in detections 
included.  

 
 

 
Figure 8. Histograms of the sum of weights (WTs) of filtered detected objects in each clock angle bin, with 

the order of surveys identical to Figs. 6 and 7. The Poisson uncertainties of the filtered detections are 
shown. Note the different y-axis ranges between the plots. 



The detections in each clock angle bin are added based on 
their WT given to each detection. The WTs are the inverse 
of the EVALs discussed in the Survey Strategies section. 
The sum of detected object WTs in each clock angle bin 
are generally higher between 240-330 degrees while they 
are lower between 90-240 degrees. This is true for both 
ES-MCAT and MODEST surveys and mirrors the 
detections in Fig. 7. This could be attributed to the amount 
of time that a certain orbital regime was surveyed when 
compared to others, the telescope’s ability to detect dim 
objects that are likely small debris, or a relatively lower 
proportion of debris in those orbital regions. While the 
clock angle distribution plots are a good way to understand 
where orbital debris may lie in space, cumulative size plots 

aid in understanding the distribution of objects in terms of 
their estimated size, shown in Fig. 9. 

By including the 8 modeled GEO breakups, the 
measurement data for each survey can be compared to the 
models. In all cases, the cumulative size curves generally 
follow the curve for 8 modeled GEO breakups. Since only 
4 known GEO breakups occurred before the years covered 
by the MODEST surveys, the 8 modeled GEO breakups 
curve is higher than the MODEST 04-06 data curve below 
approximately 80 cm; however, it is comparable to the 
MODEST 07-09 and 13-14 data curves at these smaller 
sizes, which may indicate more GEO breakups occurred 
prior to these time frames than have been confirmed.  

 
Figure 9. Cumulative WTs curves of filtered detected objects with respect to the objects’ estimated sizes 
in log-log space, with the order of surveys identical to Figs. 6, 7, and 8. The filtered survey detections 
cumulative weights are represented by the blue line, the 8 modeled GEO breakups curve is represented 

by the black dashed line. 



While the ES-MCAT 2023 survey only included 3 months 
of data, its curve is higher than the modeled curve by 
approximately a factor of 1.5 up to approximately 80 cm. 
This could indicate additional, unknown GEO breakups that 
have occurred since the previous surveys or that occurred 
before the previous surveys but were not captured in the 
earlier data sets and is likely attributed to the new mirror 
coating and enhanced detection capabilities. 

MACHINE LEARNING METHODOLOGY 

Recently, ML models have been developed to assess 
performance for detecting debris with ES-MCAT as 
compared to manual review and previous software 
detection methods in an effort to expand the data sets 
available for analysis. A predictive ML model is trained 
on data representative of telescope detections. For 
ES-MCAT GEO survey observations, detected objects 
appear as point sources or short streaks and stars appear as 

long streaks (see Fig. 10). A limitation of using only real 
object detections is that the number of objects found with 
ES-MCAT over its survey durations is on the order of 
100 objects, while an ML model would benefit from 
thousands of objects to train a robust and accurate object 
detection model. To expand on the data set of real 
detections and provide a large set of training data, the 
simulation capabilities of OCS were used. These can 
randomly generate any number of objects onto an image 
with random assigned streak lengths and magnitudes [10]. 
OCS simulations were run to generate 10 objects with any 
streak length between 0 and 4 arcseconds, random 
orientation, and a magnitude between 8 and 21. In total, 
OCS generated 5530 simulated objects. To ensure the 
model was trained on visible/real objects, the simulated 
objects were reviewed by humans. Since some simulated 
objects were too faint to be detected by humans or below 
the noise floor, only 4231 were available for model 
training and validation. Fig. 10 shows a typical image with 
simulated objects.  

  

  
Figure 10. An example of a typical simulated object image used for the 
training model. The underlying image was taken using ES-MCAT on 

8 February 2023. The long, vertically streaked objects are star trails. Of 
the 10 simulated objects used in the image, 5 are visible and circled in 

red, while the remaining 5 were too faint for human detection. 
 



The “You Only Look Once” version 9 (YOLOv9) 
architecture was used to train the ML model with these 
simulated objects. YOLOv9 [11] is a convolutional neural 
network (CNN) architecture that has a near state-of-the-art 
accuracy while also remaining fast to run in both train and 
inference modes. The original 4096x4096 TIFF images 
from ES-MCAT are first tiled into 16 1024x1024 PNG 
tiles. This is necessary because the objects are small 
relative to the size of the image, so the images could not 
be significantly resized during training. This also enables 
tiles to be shuffled during training and allows the data set 
to fit in limited memory. The YOLOv9-C pretrained 
model was used for initialization. The model was trained 
with default hyperparameters with a batch size of 64 and 
image size of 1024. Once trained, the model can be run on 
new images for inference. With an RTX 5000 Ada laptop 
GPU, inference only takes 50 ms per tile, or 800 ms per 
full-size image. A typical detection of the ML model is given 
in Fig. 11.  

Two ML models were constructed. The first model 
(termed streak model) relied solely on the simulated 
objects discussed above. A limitation of using only 
simulated objects is that the objects could have motions of 
0-4”. The random number generator rarely hits 0” and so 

the model was not trained on point sources, which are 
typical in actual images of station-kept GEO spacecraft. 
For images of the GEO belt, the streak model would not 
detect any of the station kept objects. Thus, a second 
model was generated (termed streak+point model) with 
the addition of 42 station-kept objects from ES-MCAT 
observations taken on 16 January 2024. Rather than being 
a binary object detector like the previous model, the 
streak+point model was trained to detect two classes: 
streaked objects “streaks” and point sources “points.” 
These two classes were given different labels in training, 
which allowed the model to differentiate them and 
produce labeled outputs.  

Both models were trained with default hyperparameters 
with the following changes. Image size was set to 1024. 
Flip up-down and flip left-right probabilities were both set 
to 0.5. Image scale was reduced to 0.1 to only allow for 
small amounts of resizing at train time (images would be 
randomly rescaled between 0.9x and 1.1x each epoch). 
Mosaicking and copy-paste augmentations were turned 
off. Below, we detail the results that the two ML models 
produced in comparison to the human-derived and 
OCS-derived results. 

  

Figure 11. An example of a typical detection by the streak model. This object was detected in data obtained on 
7 March 2023. This object appears in only 2 images and the model finds the object each time. While the 
simulated data used to train the model does not have streaks with bright nodules throughout, as with this 

detection, the machine model can still accurately detect them. 
 

 



MACHINE LEARNING RESULTS 

A comparison of the results using manual review of 
images, the OCS detection algorithm, and the streak model 
on GEO survey data from 16 January 2023 through 
3 February 2023 is given in Tab. 1 below. With the streak 
model, 14 objects were discovered that were missed 
during manual review, a substantial improvement in 
identifying objects below the human detection threshold. 
Otherwise, the number of objects identified during manual 
review includes all objects detected by either the streak 
model or OCS, so that the total number of objects is the 
sum of the manual review number and the 14 faint objects. 
Even with these missed objects, manual review of the data 
still finds 96% of objects. The streak model finds 69% of 
the total objects in these data sets with the majority of 
missed objects being bright, overexposed point sources. 
Compared to OCS (45%), the streak model is a better 
detection method, but both computerized methods fall 
significantly below the manual review. If OCS and the 
streak model are combined (removing any overlap of 
detected objects to avoid double counting), the percentage 
of total objects detected rises to 86%, a significant 
improvement over using one method alone.  

Table 1. Results from manual review, the OCS algorithm, 
and the streak model for GEO survey data from 2023. 
Set Name  Number of Objects  Percent of Total  
Manual 
review  

301 / 315  96%   

OCS  143 / 315  45%  
ML streak 
model 

218 / 315  69%  

ML/OCS 
combined  

270 / 315  86%  

Total  315  --  
 

With the addition of the streak+point model, we can see if 
classes have significantly improved the results, shown in 
Tab. 2. The ES-MCAT data used in this analysis runs from 
17 January 2023 through 15 March 2023. Please note that 
16 January 2023 data were not used because these data 
were used to create the streak+point model, and it was 
desired that the data sets in these two analyses are 
independent of one another. With these data sets, the streak 
model only found 4 objects that the human review missed.  
 
 
 
 

Table 2. Results from manual review, the streak+point 
model, and the streak model for GEO survey data from 

2023. The 199 objects for streak model include 4 objects 
that were missed during manual review. 

Set Name  Number of Objects Percent of Total  
Manual review  296 / 300  95%   
ML streak+point 
model  

170 / 300  57%  

ML streak model 199 / 300  66%  
ML combined  232 / 300  77%  
Total  300  --  

 

For ES-MCAT data from 2 March 2024 to 15 March 2024, 
we ran both ML models, OCS, and manual review on this 
data set, with the results summarized in Tab. 3. The 
resulting percentages of manual review, the streak model, 
and OCS are similar at 100%, 69%, and 45% to the 
previous results.  

Table 3. Results from manual review, the ML 
streak+point model, and the streak model for GEO 

survey data from 2023. 
Set Name  Number of 

Objects  
Percent of Total  

Manual review  77 / 77  100%   
ML streak+point 
model  

50 / 77  65%  

ML streak model 53 / 77  69%  
OCS 35 / 77  45% 
ML combined  65 / 77  84%  
OCS+streak 
model 

65 / 77  84% 

All 3 software 
results 

67 / 77  87% 

Total  77  --  

SUMMARY 

With the completion of the first GEO survey with ES-
MCAT, updates to the survey strategy were identified to 
improve the photometric and astrometric processing of the 
collected images along with improving coverage of the 
ROI. Data from the second ES-MCAT GEO survey in 
combination with the first and data from the MODEST 
surveys, included here, allow for a general understanding 
of changes to the GEO debris environment and how the 
ORDEM GEO population is developed. The effects of 
filtering methods to better ensure that only small debris is 



counted in these populations were shown on the 
ROI/Laplacian Plane, clock angle bins, and cumulative 
size plots. Incoming data from the second ES-MCAT 
survey, although spanning only three months, adds new 
insights into the GEO debris population, especially with 
the addition of manual review and ML. 

The fundamental takeaway from the ML study is 
that manual review still provides the best performance for 
detecting debris in the optical images. Due to eye fatigue 
or human error, however, the streak model finds objects 
that humans can miss. Nonetheless, the streak model could 
be paired with various combinations of other ML models 
that focus on point sources exclusively or the OCS 
software results to improve the overall software result. 
Ultimately, no software can replace the manual review 
entirely, but this analysis has shown the potential for ML 
to enhance results obtained with manual review. 
Additional model improvements can be attained by 
expanding the data set with additional images to improve 
the detection rates for objects underrepresented in the 
current simulated training data, or by building an 
ensemble of models. Analysis of performance of the streak 
and streak+point models is underway to understand 
limitations and opportunities for an improved ensemble. 
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