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ABSTRACT

Maintaining awareness of an increasingly crowded space
environment poses the challenge of identifying differ-
ent resident space objects (RSOs) and preventing mix-
ups, in particular after a manoeuvre or period of non-
observation, or for objects in close proximity to each
other. This requires information about the objects in
question beyond their orbital state, such as their attitude
and rotation, shape and size, or surface reflective prop-
erties. While all of this information can in principle be
reconstructed from light curve measurements, in practice
this is often very challenging. On the other hand, simpler
light curve features or object characteristics such as ro-
tation period or colour index may not suffice to reliably
identify RSOs.

We therefore propose a composite fingerprint compris-
ing a combination of these less complex features, sim-
ilar to browser fingerprinting techniques used to track
non-cooperative internet users based on a combination of
properties like their screen size or installed fonts.

In this paper, we selected a number of features and con-
structed fingerprints of over two thousand light curves,
comprising roughly by equal parts simulated data and
real RSO light curves recorded by the Airbus Robotic
Telescope (ART). We then examined these fingerprints
and their components regarding their uniqueness, stabil-
ity and utility in RSO identification.

We find that even a simple fingerprint can support object
identification in our dataset, though the method struggles
with distinguishing very similar RSOs. We also find that
these fingerprints are relatively stable over a timespan of
weeks to months.
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1. INTRODUCTION

The space environment around the Earth is home to an
ever-growing number of artificial satellites, contributing
to scientific and economic advancements as well as mil-
itary and intelligence-related endeavours. At the same

time, the number of debris objects threatening the safe
and sustainable utilization of this environment is also in-
creasing. An observer or spacecraft operator wishing
to maintain awareness of this complex domain is faced
with the challenge of identifying different resident space
objects (RSOs) and preventing mix-ups, so-called cross-
tags and misidentifications. This is particularly relevant
for objects that are tightly clustered after launch or af-
ter a debris-generating event; for objects performing ren-
dezvous and proximity operations; or for objects recov-
ered observationally after a significant length of time or
after a manoeuvre.

Identification of these RSOs in similar orbits or after ma-
noeuvres requires information about the object in ques-
tion beyond its orbital state. While most RSOs are
too small and too distant to allow resolved imaging
by ground-based optical telescopes, these sensors can
nonetheless contribute to RSO characterization via pho-
tometric measurements. Photometry and light curves en-
code a wealth of information about a RSO, including its
attitude and rotation, shape and size, as well as surface re-
flective properties [1, 2, 3, 4]. However, while these prop-
erties could indeed facilitate identification, reconstructing
an RSO’s full attitude state or shape from light curve data
is challenging even in the most favourable of cases [5,
6]. On the other hand, more easily obtained object char-
acteristics such as rotation period, BVRI colour index or
simple morphological properties of the light curve may
not suffice to reliably identify RSOs.

To alleviate this issue, we propose a composite finger-
print comprised of a combination of these less complex
properties. Similar to the browser fingerprinting tech-
niques used by website operators and advertisers to track
non-cooperative users on the internet, such a space object
fingerprint aims to enable the identification of different
space objects based only on information that is readily
available.

There are several approaches to fingerprints for space ob-
jects besides the one described in this work: a method for
using photometric data to prevent mistagging of RSOs
has been presented in [7], using only the brightness data
itself. An RSO fingerprint of a different kind is proposed
in [8], an approach based on a single feature more similar
to human biometric fingerprinting. In [6], a photometric
fingerprint is constructed by multiple measurements of an
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Feature Definition

angular_velocity Mean angular velocity during the measurement [arcsec/s]

mean_mag Mean magnitude [mag]

diff_means Absolute difference of the mean of the first and second half of the curve [mag]

interpercentile_range Difference between the 95th and 5th magnitude percentile [mag]

autocorrelation
max_diff
frequency

1-shift autocorrelation of the light curve [-]
Maximum absolute difference of two neighbouring points [mag]
Strongest peak in Lomb-Scargle periodogram of the light curve [Hz]

Table 1: Features used to construct light curve fingerprints in this work.

object from different observation geometries, producing
a fingerprint that is closely related to a Bi-direction Re-
flectance Function (BDRF). Similar work to this one is
also done in [9].

The present paper is structured as follows: section 2 de-
scribes the concept of the RSO fingerprint and the finger-
print components selected for this work. Section 3 intro-
duces the two sets of light curves used, one simulated and
one real. Section 4 examines the performance of the fin-
gerprinting as applied to our data. Section 5 provides a
brief summary and outlines potential further steps.

2. SPACE OBJECT FINGERPRINTING

In theory, light curves of sufficient resolution in time and
magnitude carry considerable information about the ob-
served RSO, allowing recovery of its shape, surface re-
flective properties and full attitude state [10, 5, 1]. Ob-
taining these properties could also support an unambigu-
ous RSO identification to prevent mistagging and mix-
ups of RSOs, for tracklet-to-tracklet or catalogue corre-
lation or to recover objects after manoeuvres or long pe-
riods without observation. In practice, however, the re-
covery of characteristics like an object’s shape or full at-
titude state from photometric measurements is challeng-
ing at best, often requiring large amounts of observational
data or additional information about the RSO [1]. For this
reason, a more easily obtainable identification measure is
desirable.

A comparable problem of keeping track of uncooperative
individuals in a large population is encountered in web
analytics and advertising. A growing number of privacy-
conscious users disables or avoids cookies that would
otherwise be used to identify them. Without these highly-
identifiable properties, actors intending to track a browser
or device use an eclectic collection of data such as screen
resolutions, installed browser extensions or fonts to build
a fingerprint [11]. This allows them to track all but the
most privacy-minded users [12].

A similar approach seems to hold promise for RSO fin-
gerprinting. We propose a composite fingerprint com-
prising features extracted or derived from passive opti-
cal light curves, potentially augmented by the inclusion
of non-photometric data. While these features individu-
ally may be insufficient to distinguish between different

RSOs in a population, they may be able to do so when
taken together. Being derived from passive optical light
curves, these features should ideally be able to be ac-
quired with only a passive optical sensor, comprising a
telescope or lens, camera and photometric filters. Ad-
ditionally, they should also be intercomparable between
different sensors, as long as the sensors are properly cal-
ibrated.

2.1. Fingerprint Components

Potential features to serve as fingerprint components in-
clude nearly any conceivable property of the light curve,
such as its mean magnitude or any periodic variation that
may be present. Work identifying such features has been
done in the field of time-domain astronomy [13, 14].

The addition of non-photometric features, some of which
— like an object’s angular velocity on the sky — may be
easily obtained in the course of a light curve measure-
ment, may provide additional entropy. Other measure-
ments such as an object’s colour index, polarimetric or
spectrometric data or orbital parameters likewise seem
potentially useful, but require additional equipment or
processing beyond a simple passive-optical telescope and
camera. For that reason, these features are not considered
further here.

The features chosen for this work are summarized in Tab.
1. They were selected to be as few, simple and inter-
pretable as possible, drawing some inspiration from the
light curve features described in [13]. Notably, the aver-
age angular velocity of an object during the light curve
measurement was added as a non-photometric feature
that is easily obtained alongside light curve data. Two
features warrant additional brief discussion. The 1-shift
autocorrelation, i.e. the correlation of the light curve to a
copy of itself shifted by one measurement, acts as a mea-
sure of smoothness: it will be close to 1 for a smoothly
varying light curve, O for one without an overall linear
relation between each point and the one before and -1
for a curve in which high and low points tend to alter-
nate, such as an undersampled light curve of a rotating
object. The frequency feature in this work is defined
as the location of the strongest peak in a Lomb-Scargle
periodogram of the light curve [15]. However, we note
that using only the strongest peak potentially loses addi-
tional information contained in weaker peaks, especially
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Figure 1: Light curves captured by ART in September 2024.

since most light curves of rotating objects are not simply
sinusoids of a single frequency.

For ease of handling and based on the observations that
the values of these features tend to fall within relatively
few more or less distinct categories, we sort the feature
values into a small number of bins and record the bin
number. We set the bin boundaries based on domain
knowledge and the inspection of a different set of obser-
vations that was not otherwise used in this work. This
means that in the context of this work, a measurement’s
fingerprint is represented by a seven-element vector of
small integers.

Finally, it is worth noting that despite the stated goal
of intercomparability between measurements by different
sensors, several of the features used depend implicitly on
instrumental and environmental factors. For instance, the
frequency is hemmed in by the camera frame rate and the
light curve length, which may be limited by observation
conditions or operational priorities. Many of the other
features can be expected to depend on the sensitivity and
noise characteristics of the sensor used — for example,
very noisy data will exhibit a lower autocorrelation.

2.2. Uniqueness and Stability

A RSO fingerprint should ideally be both unique, with
no two distinct RSOs sharing a fingerprint, and stable,
meaning that fingerprints do not change with time — or
if they do, only in a predictable manner that still allows
an observation to be associated to an object based on its
fingerprint.

To quantify uniqueness, following the approach to
browser fingerprinting in [11], we consider the surprisal
or self-information Ix (x) of the event that the discrete
random variable X takes the value x — in our case, that
we find the value z for the feature (or the entire finger-
print) X in an observation:

10.50 H
0 50 100 150 200
Time [s]
Ix(z) = —log, (px(z)) (1)

Here, px (z) is the probability mass function of X. In-
tuitively, in order to uniquely identify an object x in
a population of size N = , this sets a target of
Ix(z) & logaN for the surprisal of the fingerprint de-
rived from a measurement of that object [11].

The entropy H (X ) of the distribution is then the expected
value of the surprisal:

pr

The entropy of the fingerprint as a whole is equal to the
sum of the component’s entropies only if the components
are statistically independent; otherwise, it is smaller [11].
A design goal for an RSO fingerprint must then be to
maximize the fingerprint’s entropy by selecting compo-
nents that are close to statistically independent and have
high entropy themselves, but are still feasible to obtain in
practice.

-log, (px(2)) 2

As for stability, this property can be assessed either di-
rectly, by monitoring the change of the fingerprints or
individual fingerprint components derived from measure-
ments of the same object at different times; or by exam-
ining the possibility of correctly identifying an RSO from
a measurement by associating that measurement’s finger-
print of to those of measurements of the same object at
different times. In the latter case, a linking mechanism
is required to associate fingerprints of measurements at
different times. This can be done by a rule-based frame-
work, as has been done for browser fingerprints [11, 12]
and as we will demonstrate in this paper by a simple ex-
ample. It is also a possible application for machine learn-
ing and artificial intelligence methods.

It is intuitively apparent that a trade-off exists between
uniqueness and stability: A fingerprint shared by all
RSOs at all times — i.e. one that is maximally non-
unique — is obviously perfectly stable, though not very



useful. On the other hand, every object’s fingerprint being
unique is of limited use if they are not stable, precluding
later identification of an RSO by its fingerprint. We also
note that perfect uniqueness on the domain of all RSOs is
not realistically achievable, at least based on photometric
data alone. There are many classes of RSOs whose mem-
bers are physically practically identically; in fact, due to
the prevalence of mega-constellations comprising thou-
sands of satellites, a large part of the RSO population are
part of one such class.

3. LIGHT CURVE DATA

3.1. ART Data

To investigate the behaviour of the features and compos-
ite fingerprint described above, we recorded light curves
of a diverse set of RSOs using the Airbus Robotic Tele-
scope (ART). ART is a passive optical telescope with an
aperture of 40 cm, equipped with a modern CMOS cam-
era and a set of photometric Johnson-Cousins filters. Lo-
cated in Extremadura, southern Spain, ART profits from
a dark and clear sky ART achieves a photometric perfor-
mance of 0.05 mag RMS on fast LEO targets in the John-
son V band [16]. Additionally, ART is capable of pro-
ducing sub-arcsecond astrometry of RSOs. However, in
light curve observation usually only very rough astrom-
etry at the 20 arcsecond level is recorded, mostly for the
purposes of airmass correction and recording of the ob-
servational geometry.

The observations used in this work encompass 1262 light
curves acquired between June and December 2024. 142
different RSOs were observed, with the most-observed
object (NORAD cat ID 42907) yielding 39 separate light
curves, while others were only observed once - be it for
reasons of weather, geometry or prioritization. The ob-
servations include all sorts of objects from active satel-
lites to rocket stages and debris, in orbits from LEO all
the way to beyond GEO, the most distant observed ob-
jects being the Indian Chandrayaan-3 propulsion mod-
ule (NORAD cat ID 57770) and ESA’s recently-retired
gamma ray observatory INTEGRAL (NORAD cat ID
27540). Most of the light curves were taken in V, though
some were also recorded in Johnson B. A single target is
usually observed for 10 to 30 min, adapting the exposure
time to the expected brightness of the RSO based on its
range. Two example light curves are presented in Fig. 1.
Showing a faint — i.e. far — rocket body rotating moder-
ately quickly and a commercial LEO satellite, they exem-
plify the diversity in RSOs and their lightcurves as well
as the range of image frequencies and target magnitudes
in ART photometric observations.

3.2. Simulations

We complement the real-world data obtained by ART
with a set of synthetic light curves generated by the sen-

sor simulation functionality of SPOOK, an in-house SSA
software suite developed by Airbus Defence and Space
Germany [18]. This serves a dual purpose: First and
foremost, despite its favourable location and extensive
automation, ART is subject to the meteorological, oper-
ational and technical constraints that affect all ground-
based optical telescopes. In particular, the past autumn
and winter were unusually poor in nights suitable for pho-
tometry. Simulations do not suffer these drawbacks; it is
easily possible to obtain a series of observations spanning
an extended length of time without interruptions except
those imposed by geometry. This is useful to assess the
mid- to long-term evolution and stability of RSO finger-
prints described in Sec. 2. Second, simulations allow us
to easily and quickly explore observing different objects
in various physical, orbital and attitude states This lets us
develop an intuition for the light curves arising from these
different conditions and their respective fingerprints.

For this reason, we decided to simulate long series of ob-
servations of only nine fictional objects, each designed
to be representative of a class of RSO regularly observed
by ART. Fig. 2 shows the simple shape models used in
the simulation. We chose four rocket bodies (one each in
GTO and MEO, two in LEO) rotating at different rates,
three winged cuboid (one tumbling in GEO, one three-
axis stabilized each in GEO and LEO) and two cube
shapes (one holding its attitude in high MEO, one tum-
bling in low LEO).

Apart from the absence of inclement weather and other
issues exclusive to the real world, the simulations were as
close to the real ART’s observational programme as pos-
sible. We simulated one observation of up to 20 min per
object and night for the six-month period from June 1st
to November 30th 2024, generating light curves (see Fig.
3) and angle data. This resulted in a total of 1481 light
curves. It is worth stressing that this small population of
fictional RSOs are not at all intended to be a quantita-
tively representative sample of the real RSO population.
Rather, they are intended to provide a set of observations
that is both easily fingerprinted - being a small set of very
diverse objects with abundant data available - and chrono-
logically complete in order to investigate the stability of
RSO fingerprints. A larger, more representative set of
simulated objects might provide interesting insights into
the statistics of RSO fingerprint uniqueness that would
be hard to replicate using real-world data from a single
telescope. However, setting up such a representative pop-
ulation is not a trivial task and was therefore not pursued
for this work. The synthetic lightcurves were processed
separately from, but otherwise in the same manner as the
real-world measurements.

4. RESULTS AND DISCUSSION

4.1. Uniqueness

We extracted the features of Tab. 1 from both the real
and synthetic light curves, obtaining a seven-element vec-
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Figure 2: Object shape models used for the simulations in this work (not to scale): a) cube; b) winged cuboid with
specularly reflecting solar panels; ¢) cylindrical rocket body based on the shape used by Wetterer et al. [1] and Vallverdd

Instrumental Magnitude

w

IS

v

o

Sim_Object_6, Start Time: 2024-06-14T20:34:53

Cabrera et al. [17].

Instrumental Magnitude
= = - — =
I =
w o w o v

,_.
w
o

—
w
w»

100

200 300 400
Time [s]

500

Sim_Object_7, Start Time: 2024-11-19T20:00:43

x

PRIt n i ¥ ¥
HE + ¥ H £ % H H #* H
RN A "a‘k”i‘.‘ N ‘i' H!v
IR T AR Vo ! ¥ A A P
AL [ AR RIS Hop o Pod
‘ 1 i i i
+
! i i § if i
i i f
0 200 400 600 800 1000 1200
Time [s]

Figure 3: Simulated light curves chosen from the set used for this work. Left: Three-axis controlled winged cuboid in
LEO; right: tumbling rocket body in GTO.




Feature Entropy [bits]

Angular velocity 2.6
Mean magnitude 1.6
Difference of means 1.3
Interpercentile range 1.7
Autocorrelation 1.5
Amplitude 2.0
Frequency 1.1
Total fingerprint 6.6

Table 2: Entropy of the individual features and the
fingerprint as a whole.
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Figure 4: Observed frequency distribution of
fingerprints: when including the angular velocity feature
as a fingerprint component, 85 fingerprints (out of 142
observed RSOs) are unique

tor of features — or rather feature bin numbers — for each
observation. For instance, the fingerprint of an observa-
tion of the Starlink satellite with the NORAD catalogue
ID 58231 on 2024/07/19 is (6,1,1,1,4,0,0)!. To assess
the uniqueness of these fingerprints among our set of ob-
served RSOs, we first consider only the first observation
of each distinct object. This is to avoid counting objects
multiple times, as we are now interested in the unique-
ness of the fingerprints among the objects, not among the
observations. Using Eq. 2, we can now calculate the en-
tropy of each component feature and the composite fin-
gerprint as a whole. The results are summarized in Tab.
2.

The entropy of the fingerprint as a whole is 6.6 bits, not
too far below the log2(142) = 7.2 bit theoretically re-
quired to uniquely identify every object in the set. Indeed,
by plotting the number of fingerprints whose anonymity
set is of size n — i.e. fingerprints which occured n times
in our sample — against n (Fig. 4), we can confirm that 85
out of our 142 objects possess unique fingerprints, with

ndicating, in order: high angular velocity, bright magnitude, some
asymmetry, a moderate change in brightness, high autocorrelation (i.e.
a smooth lightcurve), moderate change between subsequent measure-
ments and no periodicity - altogether fairly unsurprising.

a further 32 whose anonymity set is of size 2. The least
unique fingerprint in our sample occurs six times, being
shared by a mix of GPS and Glonass satellites. The next
largest anonymity sets similarly contain different starlink
satellites. We notice that the angular velocity, a non-
photometric feature, is the feature with the highest en-
tropy on its own. Fig. 4 also shows the case of excluding
the angular velocity and limiting the fingerprint purely to
photometric measurements, indeed confirming that such
a non-photometric component can be a worthwhile addi-
tion to the fingerprint. The low entropy of the frequency
component may seem surprising at first, but is explained
simply by the fact that the majority of RSOs in our sam-
ple do not exhibit any periodicity on the timescale of our
light curve observations and therefore get sorted into the
same frequency feature bin. On the other hand, there is
little surprise in the fact that in the simulated set of ob-
jects, all fingerprints are unique - a result of the deliberate
choice of a small number of very diverse objects.

We therefore conclude that in our sample, the fingerprints
as described in Sec. 2 are quite close to being unique.
However, it should be noted that this statement does not
necessarily transfer to other samples of the RSO popula-
tion. In particular, it is apparent that much larger samples
— up to the entire population — would require the addition
of more fingerprint components. Even then, as seen in
the example of the six GNSS satellites mentioned above,
the method can obviously not be expected to be able to
distinguish very similar or even identical objects.

4.2. Stability

A unique fingerprint may still be of little use if does
not allow for identification of the object in question, e.g.
because it changes over time. To investigate the com-
posite photometric fingerprint’s utility in identifying ob-
served objects based on previously recorded fingerprints,
we united observations of objects of the same type (e.g.
Starlink V2-mini, SL-16 rocket bodies, etc.) into classes,
resulting in 48 distinct classes for the real data and nine
— one for each object — for the simulations. Next, we
need a distance measure between fingerprints, opting for
the simple taxicab distance —i.e. the sum of the absolute
differences between fingerprint components:

d(p,q) =Y Ipi — ail 3)

We then attempted identification by a very simple algo-
rithm: choose the fingerprint(s) out of the rest of the data
which minimize the distance to the fingerprint under con-
sideration. If more than one was chosen, pick one of them
randomly. The class of the picked fingerprint is the pre-
dicted class of the fingerprint under consideration.

Applying this identification algorithm to all observa-
tions in the simulated dataset yields the confusion matrix
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Figure 5: Confusion matrix of object identification by
fingerprint in the simulation dataset

shown in Fig. 5. The labels on the left are the true object
class, while those on the bottom are the predicted classes;
therefore, correct predictions are located on the matrix di-
agonal, while off-diagonal elements represent misidenti-
fications. Once again, the small number of very different
object in the simulated data and large number of obser-
vations per class, along with the absence of clouds and
similar factors make identification easy. Repeating the
same on the real-world data produces the result shown in
Fig. 9. Here, we see a larger number of misidentifica-
tions. However, many of them are between fairly similar
objects. This also highlights that the identification per-
formance is of course dependent on the selection of the
classes, with coarser classes tending to enable more re-
liable, but perhaps less useful, identification. It is also
worth noting that for those classes that contain only one
observation, identification in this way is impossible.

Finally, we investigated the stability of the fingerprints
over time by comparing the distance (Eq. 3) between
the fingerprints of observations in the same class to the
length of time between the observations. The result for
the ART data is shown in Fig. 6. First, it is apparent
that, even for observations in very close temporal prox-
imity, the average distance between fingerprints of obser-
vations in the same class is considerably larger than the
value of zero that would indicate equality of the finger-
prints. However, the minimum distance in each bin is
zero and continues to be so up to time differences of al-
most two months. Considering our simple identification
algorithm described above, this minimum distance is the
more important factor in identification, and one might ex-
pect the fingerprint’s utility in identifying observations of
the same class to decrease after about 60 days in our sce-
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Figure 6: Distance between fingerprints of objects from
the same class depending on the time difference between
the measurements, including quartiles, minimum and
maximum for each three-day bin in time difference.
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Figure 7: As Fig. 6, but for only the
autocorrelation feature.

nario. Creating the same plot for single components of
the fingerprint does not reveal any obvious time depen-
dencies. For the sake of conserving space, only the plot
for the autocorrelation component is shown here(Fig. 7).

For the simulated light curves, the same is shown in Fig.
8. In accordance with the results of the identification test
above, in the simulated data set the minimum fingerprint
distance stays at zero for all time differences, enabling
identification. Also of note in this figure is the slight arch
of the average distance curve, slightly rising and then
falling again. This might be related to seasonal effects
due to the changing observation and illumination geome-

try.

We conclude that the composite photometric fingerprint,
in the form and with the components described here, is
stable at least on the scale of weeks to months, in the
sense of its utility for identification.
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Figure 8: As Fig. 6, but for the simulated light curves.

5. OUTLOOK AND SUMMARY

In this paper, the concept of a composite RSO fingerprint
made up of photometric and other features was described,
implemented and first tests conducted. We selected seven
features to comprise our fingerprint and extracted finger-
prints from two sets of RSO light curve data, one simu-
lated and the other created from real-world observations
of the Airbus Robotic Telescope (ART).

We found that most of the objects in our real-world sam-
ple have a unique fingerprint, with many of those that do
not sharing theirs with objects of the same or very simi-
lar types. However, we caution that larger sets of RSOs
may require the augmentation of the fingerprint with ad-
ditional features. We also attempted to classify which
RSO produced a light curve based on the fingerprint de-
rived from the light curve. This was highly successful
in the very fingerprintable simulation dataset, while the
real data suffered from a higher number of misidenti-
fications. However, most of these were again between
fairly similar objects, highlighting the fundamental in-
ability of photometry-based methods in distinguishing
between physically highly similar objects. Lastly, we in-
vestigated the change of the fingerprints over time. We
found that the average distance between fingerprints of
the same object is already surprisingly large even for ob-
servations in close temporal proximity. However, it does
not rise quickly with the time difference between obser-
vations, showing a marked increase only after almost two
months.

While these initial results are promising, showing that
even a fingerprint consisting of relatively few very sim-
ple features can aid in distinguishing between and iden-
tifying RSOs, there are certain improvements that should
be investigated, both in the selection of fingerprint com-
ponents and the linking of fingerprints from different ob-
servations. Not only is there a multitude of features that
were not considered in this work, but the very crude bin-
ning of feature values performed in this work could be

compared to more sophisticated approaches. Similarly,
the simple fingerprint linking by minimal taxicab dis-
tance could like be improved. The application of modern
modern machine learning approaches to both tasks ap-
pears an enticing prospect. Additionally, the application
to a larger set of light curves is planned.
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Figure 9: Confusion matrix for object identification by closest fingerprint in the ART data. While there are many
misidentifications, they often occur between very similar objects (e.g. GPS Block IIR/F and Glonass in the top right).
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