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ABSTRACT

Space traffic congestion has significantly increased the
number of conjunctions that could potentially lead to col-
lisions. Consequently, the workload associated with con-
junction analysis, the decision on the need to perform a
collision avoidance maneuver, and, where appropriate, its
design, has increased significantly. It is necessary to im-
prove the tools available for decision support and for the
detailed design of the maneuver to cope with the current
situation. This paper presents a framework that supports
satellite operators in the decision-making and design pro-
cess for a collision avoidance maneuver. In a first step,
a multi-objective problem is posed and solved to iden-
tify the most appropriate maneuver, given the desired risk
minimization, compatible with other objectives such as
the time required for return to the nominal orbit or the re-
quired propellant. Once the most appropriate maneuver
has been identified, a constrained optimal control prob-
lem is proposed, the solution of which provides the op-
timal maneuver compatible with the platform and opera-
tions. This framework has been tested with real-life case
studies using CDMs. This paper presents preliminary re-
sults of the tool, which verify the feasibility of the pro-
posal and its ability to provide a holistic solution to the
problem of deciding and designing collision avoidance
maneuvers.

Keywords: collision avoidance; Genetic algorithm; Non-
linear programming.

1. INTRODUCTION

Collision avoidance is one of the main pillars of the strat-
egy to mitigate the growth of the space debris population.
The current trends in space traffic have significantly in-
creased the number of objects in LEO and, accordingly,
the number of conjunctions. Satellite operators must deal
with this new situation with new tools to avoid high oper-
ating costs. To achieve this, among other improvements,
it is necessary to have tools that help better decision-
making when carrying out collision avoidance maneuvers
and that allow these maneuvers to be designed in an ef-
ficient and safe manner. This translates into the require-

ment to properly calculate the metrics associated with the
collision risk (e.g., the probability of collision or miss-
distance), to carry out a screening of the possible future
conjunctions considering the maneuvering plan, to take
into account the uncertainty associated with the realiza-
tion of the maneuver, and to carry out safe maneuvers in
case of a sudden propulsion system failure in the middle
of avoidance operation.

This field has been the subject of intense research in the
last years. Solutions of different optimization formu-
lations using different optimization methods have been
studied in the literature. Bombardelli and Hernando-
Ayuso [1] explored several analytical and semi-analytical
methods to solve the minimum energy problem to get the
lowest Av to meet a desired distance in the encounter
plane or to maximize the statistical or Euclidian distances
for a given Av. Gonzalo et al. [2] also implemented
Gauss’ Planetary equations to analytically solve for an
impulsive avoidance maneuver when maximizing the sta-
tistical or Euclidian distances. Different heuristic algo-
rithms have also been explored in literature: genetic al-
gorithms have been implemented to solve for a single im-
pulsive avoidance maneuver by Lee et al. [3] as well as
to solve for avoidance of multiple threats by Kim et al.
[4]. Gradient-based direct and indirect optimization has
been used to solve several formulations which include
energy-optimal, fuel-optimal, and time-optimal problems
with some even considering uncertainty reduction along
the way [5].

Although the works cited have addressed the problem
from multiple perspectives, few of them have considered
the problem as a multi-objective problem and were fo-
cused on only one objective function. To make informed
decisions about whether and how to perform a collision
avoidance maneuver, it is necessary to consider the im-
pact of the maneuver on multiple aspects related to satel-
lite operations. This is the rationale behind posing the
problem as a multi-objective optimization problem, in
which the user can evaluate and assess how a given CAM
affects the payload time off, the propellant cost, the de-
crease in PoC and/or miss-distance, amongst others. This
first stage consists of a global search based on surro-
gate models for supporting decision making. Based on
the operator decision, an initial guess for the trajectory
and maneuver is selected, as well as the weights of the
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different cost functions. In a second stage, the single-
objective optimization problem is solved using a sequen-
tial programming approach in which all the constraints
relevant for the maneuver are taken into account. From
this perspective, the second stage is a multidisciplinary
optimization problem, in which models for the satellite
subsystems, such as propulsion, power, AOCS, etc., are
incorporated to constraint the search space and to produce
the optimal feasible maneuver compatible with collision
risk mitigation. In this line, Dutta and Misra [6, 7] ex-
plored the effect of convex and non-convex optimization
for avoidance trajectories along with return when consid-
ering linear and nonlinear evolution of uncertainties. Al-
ternatively, De Vittori et al. [8] developed an analytical
method concerning avoidance from short-term encoun-
ters with low thrust using indirect optimization. In ad-
dition, some recent works have already explored the ca-
pabilities of sequential quadratic programming [9] with
second-order cone programming, and differential algebra
in the context of multiple encounters.

The method is tested on realistic scenarios involving dif-
ferent orbit regimes — LEO and GEO. The performance
of the short-term encounter model is tested in the GEO
regime when it comes to providing an initial CAM hy-
pothesis in the global optimization problem. The method
is also tested to comply with different propulsion types
and accommodate several uncertainties like control actu-
ation errors, temporal and spatial uncertainties in CDM
information, etc.

2. GENERAL APPROACH

The collision avoidance maneuver design is posed as a
multi-objective optimization problem because the real-
ization of the CAM has an impact on different aspects of
the mission life, in addition to the reduction of the colli-
sion risk. The propellant consumption, the off time of the
payload, the required related attitude maneuvers are to be
considered jointly with the risk reduction in order to de-
cide which CAM is the optimal. The solution to a multi-
objective optimization problem is the set of Pareto opti-
mal solutions, that is, solutions that cannot be improved
in any of the objectives without degrading at least one of
the other objectives. Although there are other philoso-
phies to obtain the Pareto front (set of Pareto optimal so-
lutions), when decision making is emphasized, the objec-
tive is to inform the decision maker about all the possible
Pareto optimal options and the corresponding trade-off,
supporting him or her in finding the most preferred solu-
tion according to their preferences. The ultimate goal is
the selection of one solution that will be implemented in
practice. In this way, the human decision maker, an ex-
pert in the problem domain, is at the core of the optimiza-
tion process. There are different philosophies for solv-
ing multi-objective optimization problems, depending on
how the information is provided. The classical classifi-
cation of the methods is: i) no-preference methods, in
which a neutral compromise solution is identified without
preference information, ii) a priori methods, where pref-

erence information is first asked from the decision maker,
and then a solution best satisfying these preferences is
found, iii) a posteriori method, in which a representative
set of Pareto optimal solutions is first found, and then the
DM must choose one of them and iv) interactive methods,
the decision maker is allowed to search for the most pre-
ferred solution iteratively. In the case at hand, we opt for
a posteriori method, providing the decision maker with
all the required information for the selection of the type
of CAM to be implemented.

According to the strategy followed by the optimiza-
tion methods to find the set of Pareto optimal solutions,
they can be classified as mathematical programming-
based, evolutionary algorithms and deep learning algo-
rithms. The mathematical programming-based methods
are based on the scalarization of the problem to find se-
quentially individual solutions of the Pareto-front. From
that point of view, they can be computationally expen-
sive and were discarded. Deep learning conditional ap-
proaches have recently arisen as methods to build Pareto
fronts from a reduced data set of optimal points [6].
These methods were not considered suitable for the prob-
lem at hand because they do not provide any informa-
tion about the characteristics of the CAM, only its perfor-
mance. Finally, evolutionary algorithms are commonly
used in solving multi-objective optimization problems. In
general, they implement Pareto-based ranking schemes to
directly provide the Pareto front without scalarization.

Among them, Genetic Algorithms (GAs) have been se-
lected for its adaptability for different problems and types
of optimization variables. The method evolves the initial
population towards the global optimal solution by check-
ing the performance of the chosen candidates based on
the defined objectives. Since these methods involve direct
comparison of each candidate solution against the objec-
tives and does not involve any gradient method to move
towards optimality, the objectives, constraints or dynam-
ical functions do not have to be continuous or differen-
tiable like in the direct or indirect optimization methods.
So, these methods can handle complex dynamical sys-
tems along with more intricate constraints and solve for
the global optimal solution. However, the performance
of the method depends on the number of parameters to be
tuned. The selection of the initial population plays a role
in the final converged solution. If the initial population is
not diverse enough, the entire feasible solution space will
be more difficult to explore in order to find the optimal
global solution. The algorithm also requires the crossover
and mutation schemes and values to be chosen to deter-
mine how to combine the properties of the acceptable
candidates from a generation and introduce novel charac-
teristics to explore and create better candidates in the fol-
lowing generation to move the closer to the global opti-
mal solution. Restricting genetic changes across the gen-
erations can lead converging to a locally minimum solu-
tion whereas a high frequency of genetic change can lead
to failure of efficient transmission of useful information
from one generation to the next. Thus, adjusting these pa-
rameters is a trial-and-error process and so the global op-
timal solution is not guaranteed. Unfortunately, GAs are



computationally intensive. For that reason, it is advisable
to use surrogate models to reduce the computational cost
of the algorithm. It is also advisable to guide, to the extent
possible, the search of the GA defining individuals with
an a priori satisfactory performance. This is the justifica-
tion for resorting to analytical or semi-analytical methods
for the computation of the performance of the individuals
(here individuals correspond to the minimum number of
variables required to completely define a unique collision
avoidance maneuver). An analytical formulation can pro-
vide quick solutions. However, deriving analytical results
involves simplifying the problem, the constraints along-
side the use of quite a few approximations. In section 3,
we provide the survey of methods included in the perfor-
mance computation within the GA framework.

A multi-objective formulation of the collision avoidance
problem can provide a global view of the possible trade-
offs between objectives, but the surrogate models using
for exploring the search space do not provide the re-
quired accuracy or level of detail for the maneuver de-
sign. Therefore, in a second stage, it is mandatory to
solve the full collision avoidance problem without any
assumptions and approximations. In this form, it is a non-
convex optimization which has multiple local minima,
so the manner of formulating the problem and the opti-
mization method chosen plays crucial role in determin-
ing the solution time and the converged optimum. There-
fore, a gradient-based solver is used within this context to
provide the single-objective solution of the problem. In
section 4, we include a literature review on works using
gradient-based methods for the design of collision avoid-
ance maneuvers, and the formulation used in this work.

3. MULTI-OBJECTIVE OPTIMIZATION

The general mathematical formulation of a multi-
objective optimization problem is as follows:

max f(x), ()
with X C R™ and f € R™. Genetic algorithms generate
a population of random individuals x; € X and evalu-
ate their performance f(x;). According to their perfor-
mance, the individuals are sorted and combined for pro-
ducing a new generation. For details on the operation of
non-sorted we refer to [7]. Fast evaluation of the perfor-
mance is therefore key to keep the computational cost of
the GA as low as possible. Thus, we explored analytical
and semi-analytical methods that can help in exploring
the search space in an efficient manner.

In this line, Bombardelli performed several studies de-
veloping fast analytical and semi-analytical methods to
solve for a single impulsive avoidance maneuver. The
problem formulations are concerned with the avoidance
of the oncoming space object and do not deal with the
return of the satellite back to its nominal orbit. An ana-
Iytical linear relationship is established between the im-
pulsive Av and the displacement at TCA in [8]. The rela-
tionship is derived under the assumption that the velocity

vector at the time of closest approach is the same as the
nominal velocity vector even after the application of the
impulsive maneuver at time t,, (where t,, < t.). The
derivation also assumes a Keplerian orbit and the fact
that the displacement due to the avoidance maneuver is
much smaller when compared to the orbital radius of the
satellite. The linear dependence of the displacement on
the impulsive Awv aids in framing the objective function
as a quadratic function which can later be solved as an
eigenvalue problem when maximizing the miss distance
or minimizing the collision probability (in the form of
maximizing the Mahalanobis distance in the b-plane at
TCA). In [1], the optimal single impulsive maneuver di-
rection is solved using the eigenvalue problem for a given
Av magnitude to find the maximum Euclidean and Maha-
lanobis distance possible. The gravitational perturbations
were also found to have negligible effects on the result
obtained. Ayuso [9] also designed for the minimum Awv
requirement for pre-determined Mahalanobis distance or
Euclidean distance in the b-plane using a semi-analytical
method. The problem needs to be solved at several ma-
neuver times (¢,,,) to find the best maneuver location re-
sulting in the lowest Av requirement to equal a certain
Mahalanobis distance at the TCA. Although the Bom-
bardelli’s method for computing PoC is limited to LEO
and high-velocity conjunctions, it is proposed to extend
the utilisation of the method in MEO and GEO. The ra-
tionale for that is the use of the Mahalanobis distance as
proxy for PoC and risk metric. In LEO, Mahalanobis dis-
tance at TCA works perfectly well as a proxy for risk.
In MEO and GEO, there exists the possibility that this
proxy does not work as well as in LEO, because TCA is
less deterministic (better described by a probability den-
sity function). Notwithstanding, Bombardelli’s method
is a perfect candidate as a surrogate model because one
would not expect big changes in tendency / meaning in
the Pareto front obtained with the surrogate versus the
full optimal control problem.

Assumptions used in the method are listed below:

* A Keplerian orbit is assumed. It was also shown
that perturbations like J2 does not have much effect
on the result [1].

* The displacement of the satellite for the avoidance
is much smaller than its orbital radius.

* The avoidance maneuver conducted at maneuver
time (t,,) results in no changes in the nominal ve-
locity vector of the satellite at the time of closest
approach (TCA =t,).

The formulation uses Pelaez’ orbital elements (also
known as DROMO elements) to derive the deviations in
radial, out-of-plane directions and the accumulated time
delay from the nominal at £, resulting from the impulsive
Awv at t,,,. Using the assumption, the unchanged (nom-
inal) velocity vector at t. is then used to resolve these
deviations into deviations in the b-plane at the TCA (%.).



Thus, the method establishes a direct linear relationship
between the Aw applied at a chosen maneuver time (¢,,)
and the resulting displacement in the b-plane at the time
of closest approach (t.).

r=re+ MAV 2)

where r is the relative position between the primary and
secondary at TCA, re is the nominal miss distance at
TCA and M is the matrix establishing the linear relation-
ship between the Av components in the RTN frame and
the displacement vector in the encounter plane.

The chosen procedure is a semi-analytical method when
trying to solve for the minimum Awv requirement while
the primary satellite is constrained to be at a fixed Ma-
halanobis distance (M, )from the secondary object at the
time of closest approach.

Cost function: J = Av’ Av
Constraint: rTP~1r = M}
where is the Av vector in the RTN frame, P is the co-
variance associated with the position coordinates in the
encounter plane. Using P as identity matrix would con-
vert the Mahalanobis distance into a desired Euclidean
miss distance.
Thus, the Lagrangian function (L) can then be written as:
L(AV,)\) = AVTAV +
A ((re + MAV)T P~ (r. + MAV) — Mgo)

Now letting A = M'P'M, b =
rIP~'M, c:rZP_lre—Mgo

L(AV,\) = AVT(I + MA)AV +2Xb7 AV + Xe (3)

To find the Av for which L is minimum:

> =0= AV =-AT+X4)""b 4

where -1*: pseudo-inverse.

Using the eigen values (A], \3), eigenvectors (s, s3) of
A and the dual formulation of the Lagrangian, root of
the following function F(\) would provide the required
) to be substituted in the previous equation to obtain the
optimal Av.

(577D A 24+ A1) (s570)2 A (24 A3
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The above equation can be solved using Newton’s
method starting from the initial guess(\(?)):

1 1
MO = max | 1+ —
Al N
(si70)°
1 1
— | -1+ — (6)
2 _ 2C
(s378)"

Since this method solves for the minimum Awv that would
be required at a certain time (¢,,) for the satellite to meet
the constraints at ¢, therefore the problem must be solved
at different time steps leading up to the close approach at
t. to find the time that would require the lowest possible
Aw to meet the constraints. This can be implemented by
the genetic algorithm which can solve this method with
different ¢,,,, where ¢,,, can be a gene (optimization vari-
able) of an individual candidate (chromosome).

Now considering the return to nominal true anomaly us-
ing impulsive maneuvers, it can be defined in two ways:

* Return to the nominal orbit at the nominal true
anomaly: This is especially useful for constellation
satellites, sun-synchronous satellites, GEO satellites
where respecting the assigned true anomaly at a
given time is of utmost importance for their oper-
ations.

* Return to the nominal orbit at an arbitrary true
anomaly in the orbit: This can be chosen for the
satellites where only traversing the orbit path mat-
ters. This return approach can be employed if it
delivers a more fuel-efficient return maneuver com-
pared to that when returning to the nominal true
anomaly.

When the nominal true anomaly is to be matched, Lam-
bert’s solution can be used to position the satellite from
the avoidance trajectory after the TCA to the desired po-
sition in the nominal orbit in the required time to match
the nominal true anomaly. The primer vector can be used
to adjust the maneuver times to find the fuel-optimal or-
bital transfer from the avoidance trajectory to the nom-
inal trajectory [28]. Finding the fuel-optimal orbit can
involve changing the initial and final maneuver times for
return or using additional mid-course impulses depend-
ing on the profile of the magnitude of the primer vector.
Depending on the other mission and avoidance require-
ments meeting those optimal conditions may or may not
be possible, such as, increasing the final time for return or
adding operational burden by adding more impulses for a
small gain in Av. The primer vector (p(t)) follows the
same dynamical system as the orbit states for this opti-
mal transfer problem as follows [28]:

{ p(t) } _ & (tt) { zggg }

p(0) @



where ® (¢, 1) is the state transition matrix partitioned
using 3 X 3 matrices:

M (t,t9) N (t,t0)

D (t,t) = S (t,to) T (t,to) ®)

Also, for the first guess to obtain the profile of primer vec-
tor, po, pr are assigned using the Av required to move
from the avoidance trajectory to Lambert’s transfer tra-
jectory at time ¢ty and Av required to move from Lam-
bert’s transfer trajectory to the nominal state at ¢ ; respec-
tively.

p(to) =po = AVo/AVpand p (ty) = py = AV /AV;
9)

Thereafter, p(t) and p(t) calculated in the following
equations help indicate the adjustments required for opti-
mality. As quoted from [28],“If pg > 0, an initial coast
will lower the cost. Similarly, if py < 0, a final coast will
lower the cost” and “ if the value of p(t) exceeds unity
along the trajectory, the addition of a midcourse impulse
at a time for which > 1 will lower the cost”.

Do = N;ol [pf - Mfopo} andpf = Sfopo + T roPo

NN ;o AVy . AVp
p(t) = AV, + [Mto _NtONfoMfO} N
(10)

When nominal anomaly is not to be matched, the return
maneuver can be chosen to be executed when the satellite
returns to its initial location after one orbital period, to
complete the avoidance and return in just two maneuvers.

Linear Quadratic Regulator (LQR) for finite thrust
maneuvers: Finite horizon LQR can be used to ensure
that final states approach the desired values while reduc-
ing the total control cost over the considered optimiza-
tion time. LQR results in a continuous control require-
ment. The weighting matrix (R) for the control in the
cost function of LQR can be adjusted accordingly over
time to shift the control requirement from continuous to
finite arcs. The LQR optimization problem is formulated
as follows [29]:

* State dynamics: X(t) = A(¢)x(t) + B(t)u(t)

* End constraint: x(¢7) = x,(t;), where x,.(¢) is the
desired nominal state vector.

¢ Cost function:

o= (xltg) ()T Q@ (xltg) — (1)) +
| [t =) Q) =, ) +

(u(r) = u,(7)" R (u(r) = u,(r))]

whereQT:Qf >0,QT=Q>0,RT=R >0,
and x,., u,. are desired state and control references respec-
tively. The matrices A(t), B(t), Qs(t), Q(t) and R(t)
can vary with time but for easier representation these
would be attributed as A, B, Q¢, Q and R respectively
from here on in this document.

The optimal control is calculated as:
u(t) = u,(t) — R7'BT (S0 (t)x + s.(1)) (11)

S (t) and s, (t) can be solved by integrating the follow-
ing equations backward starting from the accompanying
final conditions at ¢

Suz(t) = —Q+S..(H)BRT'BTS,, (t)—S,. () A—ATS . (1)

$:(t) = Qx, (1)~ (AT — Sy (1) BR'BY) 5, ()~ S, (t) Bu,(t)
)

with terminal values S,,(t;) = Qy and s,(¢f
—Qrx(ty).

Genetic algorithm to find the Pareto-optimal front of
multi-objective. Genetic algorithm is a kind of heuris-
tic evolutionary algorithm that evolves a randomly gener-
ated initial population to produce fitter solutions based on
a given set of objectives. In case of the presence of mul-
tiple objectives, each of the non-dominated candidates of
the final population form the Pareto-optimal front. A can-
didate is termed as “dominated” if there exist other can-
didates in the population which are better than that con-
sidered candidate in terms of every objective.

Genetic algorithm starts with a diverse population of can-
didates to be evaluated against the given objectives or
a fitness function which determines the probability of
a candidate getting selected for crossover to generate
candidates for the next population. There are different
selection and crossover schemes available and different
schemes can be adapted depending on the logic and re-
quirement of the optimization problem.

Some of the different selection criteria involve ‘Roulette
Wheel Selection’, ‘Stochastic Universal Sampling’ both
of which allow the fitter candidates from a generation
a greater chance of being selected by offering a greater
fraction of the wheel to them. ‘“Tournament selection’
is a ranking based selection where the fittest candidate
from a random group of candidates is selected as a parent.
‘Elitism’ is a procedure which ensures that the top solu-
tions from a generation are not lost when moving onto the
next generation and getting passed on. The ‘elite group’
is defined as a certain percentage of the population which
performed the best as per the fitness function. A de-
sired percentage of the top elite candidates can be chosen
to produce the candidates for the next generation while
the rest of the elite population can be chosen to perform
cross-over with randomly selected ‘non-elite’ members
[10]. Thus, there are multiple heuristic ways of selecting
parents for the next generation to preserve the best solu-
tions and generate even better ones with trial-and-error
process.



There are different methods of performing the cross-over
as well. The cross-over candidate generated depends on
the number and location of cross-over points for infor-
mation exchange between the two parents to create the
next generation candidate. Mutation is a process of intro-
ducing new information to the population by introducing
features to the candidates absent in either of the parents.
This helps in better exploration of the solution space. Fi-
nally, when a desired number of generations/iterations are
reached or the result has converged within a desired tol-
erance, the genetic algorithm can be terminated resulting
in the best fit candidate as the global optimal answer.

The main advantage of this method is that it does not the
objectives, constraints or the system dynamics to be con-
tinuous or differentiable mathematical functions but can
just explore the solution space for the global optimal can-
didate by measuring the performance of probable candi-
date solutions over several generations. However, as can
be observed there are too many decision parameters to
be tweaked by trial-and-error to determine the selection,
cross-over and mutation schemes.

For solving the optimal avoidance trajectory, the genetic
algorithm is used to find the optimal locations of the ma-
neuver times and magnitudes for the most fuel-efficient
transfer alongside causing the least hindrance to the satel-
lite mission in terms of time spent off the nominal orbit.
The purpose of using genetic algorithm in this problem
formulation is to generate the Pareto-optimal front can-
didates providing solutions with different trade-offs be-
tween the objectives. For each candidate, which com-
prises a unique set of start and end times for the avoidance
trajectory, the genetic algorithm runs the previously men-
tioned algorithms to find the lowest delta-v requirement
for that situation. Thereafter, the Pareto-front is gener-
ated with different combinations of start, end times, num-
ber of maneuvers and Av requirements. The user is then
required to choose the desired trade-off which would then
be used as the initial guess for gradient - based optimiza-
tion which would be customized with more operational
and system constraints.

Direct optimization. With the initial guess for the
avoidance trajectory available from the previously men-
tioned algorithms and the trade-off between the multi-
ple objectives determined, a direct optimization prob-
lem can be formulated. Direct optimization involves
discretizing the state dynamics and constraints over the
timeline and thereafter using a non-linear programming
problem (NLP) to solve for the optimal states and con-
trols at each of the discretized time steps. Different
kinds of discretization scheme can be used for setting
up the NLP. Uniform trapezoidal discretization imple-
ments linear functions between two consecutive time
steps whereas Hermite-Simpson collocation discretizes
the timeline uniformly assuming a cubic spline between
two consecutive time steps. Non-uniform discretiza-
tion can be particularly useful if the functions are not
very smooth (which is required for such a gradient-based
method). Since the sharp edges of the functions can be

discretized in a finer way compared to the rest of the time-
line. This also helps in reducing the number of optimiza-
tion variables by reducing the number of nodes compared
to uniform fine grid on the timeline and distributing the
nodes where its more needed. Unlike the indirect opti-
mization method, the optimization variables are not dou-
bled in number by the introduction of Lagrange multi-
pliers. The introduction of Lagrange multipliers also re-
quires furnishing initial guesses for them which can be
of different orders of magnitude as compared to the sate
variables and may also lack physical significance. Path
constraints are also easier to enforce in direct optimiza-
tion. The basic structure of a direct optimization using
Hermite-Simpson collocation is shown below [11]:

2

h
min J(u,) = i
Ug, Xk L—0 6

('U/k + 4uk+% =+ uk+1bl2)

Yk =0,1/2,1,..., N, subject to

1 h
Xy = 5 (X + Xpg1) + gk (fr — fis1)

k =10,...,N — 1], interpolation constraints  (13)

hg
Xpp1 = Xk = (£x 4 4f1 112 + fog1)
k=10,...,N — 1], collocation constraints  (14)
— dmax < @1 < dmax , path constraints (15)
— Umax < U < Upax , path constraints (16)
X, XN given, boundary conditions 17

4. NON LINEAR PROGRAMMING PROBLEM

The use of optimal control theory to solve the collision
avoidance problem has a long tradition in the literature.
In particular, the use of collocation methods and the trans-
lation into a non-linear programming problem has been
used in previous works. The following review of the lit-
erature is not extensive but covers similar approaches to
the one presented in this section. Some of them were al-
ready mentioned in the section 1.

Scharf et al. [12] presented a Reactive Collison Avoid-
ance (RCA) scheme to be implemented in real time to
handle planar scenarios and avoid oncoming space ob-
jects by considering a pre-specified avoidance region
to be maintained around the space objects. Martinson
[13] solved for impulsive thrusts with the assumption
of Clohessy-Wiltshire equations to solve for the avoid-
ance of multiple encounters using feedback mechanism.
Avoidance was ensured by maintaining pre-determined
ellipsoidal regions around space objects and the solution
was based on a weighted objective function. Sales [14]
studied the effect of continuous as well as impulsive in-
plane and out of-plane thrusts for collision avoidance ma-
neuvers using Radau Pseudospectral method in GPOPS-
II software. Starting from Bombardelli’s solution [8],



G. Salemme [15] extended it to finite thrust maneuver
to avoid the collision. Results were obtained using nu-
merical solutions of multiple two-point boundary value
problem to get to the bang-bang thrust profile using ho-
motopy method. Zimmer [5] explored reducing uncer-
tainty and making the trajectory more observable in addi-
tion to minimizing the fuel cost using indirect optimiza-
tion. It was found that while the result was dependent
on the initial condition of the data but reducing uncer-
tainty of a relatively good estimate can come at a rel-
atively high price. Also, while different paths had dif-
ferent uncertainties and fuel cost associated with them
minimizing the covariance at a certain instant in the cost
function could also very well lead to maximizing it at
some other instant. To avoid the problem of initial guess,
convex optimization has been used in different domains
like collision avoidance, rendezvous or formation flying
problems. A successive second-order cone programming
problem was used to solve the convex rendezvous prob-
lem without the consideration of uncertainty [16], while
in [17] a formation flying problem was solved using lin-
ear programming problem. Robustness was implemented
by requiring the same avoidance constraint to be satisfied
for several uncertain initial relative states. Li et al. [18]
used a combination of multiresolution technique using

convex optimization and mesh-refinement on Clohessy-
Wiltshire equations. The avoidance region was handled
using a tangent method similar to the one used in [17] for
planning close-proximity operations. Armellin [19] used
differential algebra and successive linearizations to solve
multi-impulse convex optimization problem concerning
only the avoidance maneuvers without return to the orig-
inal trajectory. Dutta and Misra [20, 21, 22] explored the
effect of convex and non-convex optimization for avoid-
ance trajectories along with return when considering lin-
ear and nonlinear evolution of uncertainties. De Vittori et
al. developed an analytical method concerning avoidance
from short-term encounters with low thrust in [23] using
indirect optimization and in [24] solved for the avoidance
trajectory while incorporating Gaussian nature of uncer-
tainty and the return as well for space objects in LEO.

4.1. Problem Statement

The collision avoidance maneuver is designed as the solu-
tion of an optimal control problem with a single objective
function.

ty
min J((),t;) = w / I[(t)|2dr +
u(t),ty to
+ w2 (tf — to)
= wymin [(xeer2(t) = x1(8))TP(8) 7 (eer2(t) — x1.(1)] +
—  wy rntin [(Xref,2(t) — x1 ()T (Xeer2(t) — x1(t)] + ... (18)
subject to
0x1(tg) =0 Initial conditions (19)
0x1(tf) € Xeoal Terminal conditions (20)
0% (t) = £(dx1(t),u(t),t) System dynamics (4.2) 21
0X1(t) € Xfree, Vt € [to, tf] Collision avoidance (4.3) (22)
u(t) € U(x(t)) Control feasibility (23)

where X1 = Xyf,1 + 01 is the state of the primary, Xyef,1
is the nominal trajectory of the primary without perform-
ing the collision avoidance maneuver, dx; is the relative
state of the primary with respect to the nominal and X 2
is the nominal state vector of the secondary; P(¢) is the
combined covariance of both primary and secondary at
time ¢, R(¢) and the covariance resulting from the ma-
neuver uncertainty P(t) = Cy(¢) + Ca(t) + R(t). The
weights are computed from the solution of the global
optimization in the previous step. Let m be the ob-
jective function of the global optimization, with m; =
fttof [lu(t)||2d7, ma = (t5 — to), and so on. If a specific
solution is selected from the Pareto front, mgeo, then the
weights can be defined as w; = mg ,;/||mcoll5. Equa-
tion (18) establishes the mathematical description of the
objectives. The collision probability is minimized using

the Mahalanobis distance as a proxy (third element in Eq.

(18)).

4.2. System Dynamics

The propagation of the nominal trajectories of both pri-
mary and secondary is performed using a high-fidelity
dynamical model.

X1 2(t) = fur(x1,2,t), x12(t0) = X10,20, (24)

where the subscripts 1 and 2 have been used to denote pri-
mary and the secondary. The dynamics considered in the



optimal control problem are the analytical relative mo-
tion approximation with respect to the nominal trajectory
of the primary, Xef1 = [r;";f_rl, Vr:’ejfyl]T,

i 0x
dy
0z
2
f = ( %’u + hzlcm) Sz — Q(Vrcl',l'Zrcl"l)hrcl',l 5y + 2]:2:(11 5y

Tref, 1 Tref,1 Tref, 1

ref,
h 2(Vref, 1 Tref, 1) Pref h .
( ilef.l _ éU« ) é'y + ( ref,1 4ret,1) ref, 1 6.’1: _ 2 r2ef.1 6:1,;
rref ,1 Tref 1 Tref ,1 Tref ,1
— K 5z

L Tref, 1

where 6x; = [0z, 6y, 02,6, 8y,62]T, u is the Earth’s
gravitational constant, and A, is the modulus of the
specific angular momentum of the primary refrence tra-
jectory. The state transition matrix can be computed as

(}(t,to) = A(t)q’(tato)? @(t07t0) = I) (25)
with the Jacobian matrix A = O0f /9(dx;1) and can be
used for the propagation of the covariances, if required.

A non-dimensional version of the dynamics is used in
the implementation of the prototype to avoid scalability
issues in the non-linear programming problem. Thus,
the non-linear version of the dynamics reads: 0%; =
f(0x1) 4 [03x1, uT]T, where states involved are scaled
correspondingly by the characteristic length and time.

4.2.1. Transformations from ECI to RTN reference
frames

The state of the secondary must be transformed to the
reference frame relative to the primary reference trajec-
tory. The reference frame is a local RTN, defined by
Xref,1. Hereafter, for clarity, vectors with components in
the RTN or ECI reference frames will be denoted with a
superscript (RT'N or ECI, respectively). The rotation
matrix from RTN to ECI is called 7, and thus, for any
general vector s:

gECI _ TgRTN

The matrix 7 has as columns the unit vectors 7 =
[u,; ug; uy), defined as:

r rxXvwv

u, = — Uy = up X U,

uh:|r><v|

4.3. Collision avoidance constraint

Collision avoidance constraints are dealt with as a Keep
Out Zone (KOZ) constraint. KOZ is defined as the com-
plementary of the free space, in terms of the covariances
of the primary and secondary.

XKOZ = Xfpee (26)

xkoz = {x|(x — x2)TE(x — x3) > Mgo} 27

where E = C7 + Cy, with C;, i = 1,2, the covariance
matrices of primary and secondary, respectively and M 30
is the desired Mahalanobis threshold to be maintained.

Additionally, the Functional requirement COO3-CAM-
FUN-13 ! enforces the consideration of more than one
CDM when available. In such a case (when two CDMs
A and B are available), the KOZ is defined as

XKoz = {X|(X - X?)TEA(X - Xéq) > Md20/\

Ax = x§)TEP (x - x) > M3, }

4.4. Fail-safe maneuver constraint

An additional constraint is included to ensure that the
CAM is a fail-safe maneuver, i.e. the collision risk is not
increased at any point of the maneuver with respect to
the no maneuver case. Thus it ensures that the probabil-
ity of collision is lowered even in the case of a propulsion
failure. The condition is checked at or in a time-window
around the nominal TCA (t.). The constraint is defined
as follows for a time step ¢, in the time window around
te.

(D (te,, tr)x(tr) — Xa(te,) " E(P(te, , tr)x(tr) — x2(te,)" >
(D(te,, thr1)X(trr1) — Xa(te,)) " E(D(te, , trp1)X(trr1) — Xa(te,))”

Vk € [07 Ci].

5. RESULTS

The prototype is being progressively developed to handle
all the required constraints and objectives, with the goal
to de-risk and accelerate the subsequent production im-
plementation. The prototype has implemented the multi-
objective optimization to generate the Pareto front and
provide a quantitative analysis of the trade-offs among
different objectives. The primary constraints like avoid-
ance, return, fail-safe constraints have been implemented
so far in the prototype while some of the more enhanced
features are yet to be progressively implemented.

In this section the prototype has been tested for a fuel-
optimal avoidance trajectory. The fail-safe criterion is
implemented whereby the control at any time step would
ensure that the two satellites never get closer than the dis-
tance they would have had without the implementation of
the control at that time. The satellite is also constrained
to return to the same orbit and match its nominal true
anomaly at the end of the avoidance trajectory. The sce-
nario for the example has been described as follows:

ICAM shall measure the collision risk considering different sources
of CDMs (if available).



5.1. Example scenario

A close approach scenario between two LEO satellites
with TCA at midnight UTC on January 1, 2007.

The nominal orbit of the primary has the following Kep-
lerian parameters:

e g =7004.7 km;

e =0.00137;
i = 97.4869 deg;
* RAAN=-49.2587 deg;

w=58.071 deg.

The orbit of the secondary has the following Keplerian
parameters:

a = 7004.656 km;

e = 0.001346;
* ;¢ =89.51 deg;

RAAN =-74.589 deg;
* w =60.07deg

The mass of the primary is 156 kg, and the relative dis-
tance at TCA is 357.4 m. In turn, the relative position
vector at TCA:

* In the ECI frame: [-163.71649735, 290.44110637,
128.83620463] m

* In the b-plane: [-21.75, 356.77] m

Combined covariance at TCA in the b-plane :

164.03  —85.11 )

P=1_g511 224874.08] ™"

5.2. Result from the multi-objective optimization:

The Non-dominated Sorting Genetic Algorithm - II
(NSGA-II) has been implemented to find the solutions
representing the Pareto-optimal front. The objectives
considered in this step are the following.

* Minimization of the total Av used for both avoid-
ance and return

* Minimization of the total time spent off the nominal
orbit

» Maximization of the Mahalanobis distance between
the two concerned RSOs at TCA

For this example, the genetic algorithm evaluates the
Aw requirement for avoidance as per the semi-analytical
method proposed in [9] which solves the minimum en-
ergy problem for the Av required to meet a certain Ma-
halanobis distance at TCA. Following which the Lam-
bert’s problem is implemented to find the return maneu-
vers to match the nominal states of the primary. The ge-
netic algorithm shuffles through different relative posi-
tions at TCA and different maneuver times marking dif-
ferent departure and return locations from the nominal or-
bit. The two-maneuver solution is also explored by which
the satellite returns to the nominal orbit after an integral
number of complete orbits.

Fig. 1 shows the Pareto-front for the three-burn maneuver
solution for above mentioned multi-objective problem. It
can be seen in the following figures that the maximization
of Mahalanobis distance and minimization of time off the
nominal orbit comes at the cost of a higher overall Av re-
quirement, which is as would be expected. But this anal-
ysis brings forth the quantitative trade-offs among the dif-
ferent objectives. Other than the obvious avoidance and
return constraints, there are also several other constraints
with configurable thresholds in place to refine the search
space of the genetic algorithm, such as the following. Re-
specting these ensure that unnecessary high cost plans are
not being included in the solution because it brings down
the time or maximizes the Mahalanobis distance beyond
the practically required thresholds.

e Minimum time before TCA for the avoidance ma-
neuver

* Minimum time to be spent for the entire avoidance
trajectory

* Minimum time to be allowed between second and
third maneuvers for a 3-maneuver avoidance trajec-
tory

¢ Maximum Mahalanobis distance at TCA

* Any additional thresholds from the user to restrict
the search space

With the inclusion of the two-impulse solution in the
search space, the Pareto-front solution is seen to favour
the two-maneuver solutions more, so the candidates are
seen to cluster more at the integer number of orbital peri-
ods spent off the nominal orbit. However, this step does
employ only Keplerian dynamics with no orbital pertur-
bations among several other approximations listed in Sec-
tion 3.

5.3. Result from direct optimization

In the production implementation, the operator can se-
lect the desired combination of the objectives to use as
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Figure 1. The Pareto front solution from the multi-
objective optimization for the example scenario.

the baseline for step 2 of the CAM. In this case, a fuel-
optimal solution over one orbit is chosen as the guess
for the next step, which would return to the nominal or-
bit within one orbital period while maintaining a desired
Mahalanobis distance of 3 between the concerned RSOs.
The corresponding solution from the genetic algorithm
serves as the initial guess for this step. The following
results show how introducing more constraints over the
basic avoidance and return impact the required control.

Avoidance is enforced by using both the Euclidean and
Mabhalanobis distances between the two concerned RSOs
over the entire time window. The primary satellite is
again constrained to match the nominal states by the end
of the avoidance trajectory. The maximum thrust con-
straint is also in place from the thruster model of the pri-
mary.

The convergence to a locally optimal solution is depicted
by the resulting ‘bang-bang’ solution for the optimal con-
trol acceleration magnitude, whereby the magnitude of
the control acceleration switches between the maximum
and the minimum values (2). A ‘bang-bang’ solution is
desirable because, at least theoretically, they produce the
maximum available thrust acceleration at the locations of
the orbit where it is effective and do not thrust at all when
not effective. Fig.3 shows the deviation of the primary

satellite position from its nominal along the avoidance
trajectory and its return at the end. The total Av require-
ment for this equals 0.041 m/s.

Control Acceleration (m/s”2)
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Figure 2. The control thrust profile for the necessary con-
straints.
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Figure 3. The deviation of the primary satellite position
from its nominal.

Now the effect of the fail-safe constraint on the optimal
control profile is explored. The fail-safe constraint en-
sures that the optimal avoidance trajectory is so designed
that the control input at no point in time would make the
satellite reach a riskier position with the secondary than
without the control, thus ensuring safety in case of a sud-
den propulsion failure at any stage without completion
of the entire planned avoidance trajectory. The satellite
state (position and velocity) from every time step is prop-
agated with and without the control at that time step upto
a certain time window around the original TCA (where
the orbits or primary and secondary are in proximity) and
it is ensured that the Euclidean and Mahalanobis distance
between the primary and the secondary with the control
is not lesser than that without the control input.

With the fail-safe constraint switched on, the Av require-
ment is observed to increase from 0.041 m/s to 0.072 m/s
and the scenario is seen to require more contribution from
normal component of thrust than when the fail-safe con-
straint is switched off.



Control Acceleration (m/s~2)

1008 - — — = -

S i

23:30 23:45 00:15 00:30 00:45

Figure 4. The control thrust profile with the fail-safe con-
straint alongside the necessary constraints.
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Figure 5. The deviation of the primary satellite position
from its nominal when the fail-safe constraint is switched
on.

6. CONCLUSIONS

In this work, a methodology for supporting the decision
making in a conjunction assessment scenario and the de-
sign of an optimal collision avoidance maneuver compat-
ible with all the ground and space segment constraints is
presented in this paper. The framework consists of two
steps: a first one devoted to explore the full search space;
the second step provides with a detailed solution of the
collision avoidance maneuver. The first step is based on
the use of a heuristic algorithm, a genetic algorithm, that
provides a trade-off among the different conflicting ob-
jectives, e.g. fuel consumption, time to come back to the
nominal orbit, or risk reduction. In the scenario presented
in this paper, the Pareto front in Fig. 1 shows the prelim-
inary cost of the different optimal solutions and allows
operators to select the type of maneuver that best fits the
needs of the satellite mission. Once the decision of mak-
ing a CAM is taken, a second step, based on the definition
of an optimal control problem, is solved using non-linear
programming. At this step, all the constraints related to
the platform and the satellite operation can be included.
The result of the second step is the history of the required
control inputs (thrust and steering laws) to reduce the col-
lision risk and satisfy all the constraints. In the prelimi-
nary results, we have shown an example of the design of
a CAM and how the inclusion of constraints modify the

control profile.

In this way, the tool presented here helps in the entire
process related to CAM, from decision making to the de-
tailed design of the maneuver.
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