
METHODS FOR ROBUST PROPAGATION AND IMPROVED COVARIANCE REALISM
IN LEO

Rachit Bhatia, Piyush M. Mehta, and Jacob D. Griesbach

Space Research Scientist, Mechanical and Aerospace Engineering Department, West Virginia University, Morgantown,
WV, USA, Email: rachit.bhatia@mail.wvu.edu

Associate Professor, Mechanical and Aerospace Engineering Department, West Virginia University, Morgantown, WV,
USA, Email: piyush.mehta@mail.wvu.edu

Aerospace Tech Fellow, Space Domain Awareness, ARKA/Stratagem, 3855 Lewiston St, Ste 250, Aurora, CO, USA,
Email: jgriesbach@arka.org

ABSTRACT

Accurate trajectory modeling and covariance realism
in Low Earth Orbit (LEO) are critical for safe space
operations, but challenges in ensuring numerical sta-
bility over long-term propagation with reliability are
formidable. Supported by the Intelligence Advanced Re-
search Projects Activity (IARPA) Space Debris Identi-
fication and Tracking (SINTRA) program and the Of-
fice of Space Commerce (OSC), we are developing
a next-generation drag modeling framework that accu-
rately characterizes atmospheric density uncertainty due
to space weather through a physics- and data-driven ap-
proach. During the development process, it was observed
that the 2-norm of the position standard deviation exhib-
ited an unexpected dip when a LEO orbit was numerically
propagated beyond three days. This prompted a deeper
investigation into the numerical stability and Gaussian
assumptions underlying the propagation framework. In
this paper, the findings of this study are compared with
Monte Carlo results and the corresponding conclusions
are shared to improve the accuracy of orbit prediction
methods.

Keywords: Orbit Propagation; Atmospheric Drag Mod-
eling; Covariance Realism; Mathematical Modeling;
Monte Carlo Simulation.

1. INTRODUCTION

This study highlights observations made during the de-
velopment of a next-generation drag modeling frame-
work. In our previous research, development of the
Stochastic Unscented Transform (SUT) framework was
presented. This is a mathematical formulation designed
to capture the joint statistics of probabilistic atmospheric
density models and their probabilistic drivers or inputs.
During the development process, an unexpected dip in

the 2-norm of the position standard deviation was ob-
served, when the LEO orbit was numerically propagated
beyond three days. This nonphysical trend emerges when
the state covariance is orthogonalized and sigma points
are recomputed at a fixed cadence, indicating the intro-
duction of nonlinearities. This setup has been employed
such that the half-life, i.e., the temporal correlation, in at-
mospheric density can be modeled. The presence of non-
physical trends in position and velocity uncertainties dur-
ing propagation provides a basis to investigate deviations
from Gaussian assumptions, specifically the divergence
of sigma points from the underlying Gaussian distribu-
tion.

Firstly, a quick comparison with Monte Carlo simula-
tions showed that Gaussian assumptions are maintained
throughout the 7-day propagation time period. This in-
dicated some numerical instability is emerging due to
orthogonalization implementation and hence, normaliza-
tion techniques were applied to improve numerical con-
ditioning. The position and time units are scaled with
respect to the Earth’s radius and the orbital period of the
given LEO orbit, respectively. Although this adjustment
leads to measurable improvements in the conditioning of
the covariance matrix, it does not fully eliminate the in-
stability. Consequently, the standard Cholesky decom-
position, used in the covariance orthogonalization pro-
cess, was replaced by the singular value decomposition
(SVD). The use of SVD significantly enhances numer-
ical stability, allowing for an increase in the covariance-
orthogonalization update cadence from a 5 to 20 minutes,
without introducing excessive instability.

However, the analysis revealed that for update cadences
exceeding 20 minutes, the non-physical trends persist. To
thoroughly understand these trends, a qualitative analysis
is performed using a 10,000 sample Monte Carlo (MC)
simulation. The K-test and the normal probability tests
are applied to the MC statistics to replicate the propaga-
tion scenarios and evaluate the impact of nonlinear devia-
tions in the covariance. The Monte Carlo results confirm
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that the Gaussian assumptions are strongly maintained
for most of the position and velocity components and the
non-physical trend is not observed. This means that re-
peated covariance orthogonalization with repeated sigma
point calculation is the reason for the observed anomalies
in the position and velocity standard deviations.

This comprehensive investigation underscores the chal-
lenges of maintaining numerical stability in the complex
dynamics of LEO modeling. In the following sections,
motivation, introduction to the SUT framework, and in-
vestigation methodology are presented. Lastly, results are
presented along with detailed commentary on the inter-
pretation of the observations, and possible solutions are
highlighted, respectively.

2. MOTIVATION

Accurate modeling of atmospheric density and, therefore,
drag perturbation is critical for LEO operations due to
their dominant role in orbital decay and long-term trajec-
tory prediction [2, 15]. Incorporating temporal correla-
tions and spatial effects due to diurnal changes, solar ro-
tational variations, solar cycle variations, and associated
uncertainty improves real-time estimation [12].

Several research articles have contributed to the devel-
opment of the current suite of physics-based and data-
driven models [5, 7, 8, 9, 10, 18]. Although these models
are critical for simulating the dynamics of atmospheric
density, inherent limitations make accurate characteri-
zation difficult, especially for real-time operations [4].
The work presented here is a continuation of our efforts
to develop a next-generation drag modeling framework
[3, 4, 13, 14].

Previous research by Qian et al. has attempted to iden-
tify these characteristics and quantify their effects during
orbit propagation [12]. In addition, research by Wright
et al. and Gao et al. has presented novel approaches to
calibrate atmospheric density during real-time operations
[6, 17]. However, none of these works discuss the inte-
gration of these models with orbit propagation for real-
time operations. Articles by Vallado et al., Paul et al.,
and Bhatia et al. discuss different techniques to integrate
high-fidelity dynamical modeling for atmospheric den-
sity within the orbit propagation architecture [4, 11, 16].
Although Vallado et al. propagate upto 4 days from
epoch, the other two publications limit propagation to 3
days only. Reduced fidelity and the emergence of non-
linearities have been observed and reported as one of the
reasons for this limitation.

Generally, for day-to-day operations, 3 to 4 days of prop-
agation are reasonable. However, for conjunction assess-
ment and collision avoidance, up to 5 days of propagation
is preferred for the two-line elements (TLEs) issued by
the 18th Space Defense Squadron (18th SDS) [1]. This is
because the sooner a potential conjunction is identified,
the easier it is to mitigate it. During scenarios such as

geomagnetic storm, when uncertainty on model parame-
ters can increase significantly, longer propagation is pre-
ferred.

This paper presents a comprehensive analysis of the non-
linearities encountered in LEO orbit propagation, with a
particular focus on the half-life modeling of atmospheric
density. By examining the interplay between numeri-
cal stability, covariance realism, and the preservation of
Gaussian assumptions, we aim to contribute to the de-
velopment of more accurate and robust orbit prediction
models. Such advancements are crucial for a wide range
of applications, including long-term propagation, colli-
sion avoidance, and high-precision orbit determination,
all of which are essential for the safe and sustainable use
of the increasingly congested LEO environment.

3. STOCHASTIC UNSCENTED TRANSFORM

The Stochastic Unscented Transform (SUT) is a novel
mathematical formulation that captures the joint statis-
tics of probabilistic atmospheric density models and their
inputs [14]. This next-generation drag modeling frame-
work leverages models that provide reliable physics- and
data-driven uncertainty estimates; refer to Figure 1.

Figure 1. A schematic of the next-gen drag modeling
framework. The elements of the new framework are high-
lighted in green while those being replaced are strikeout
in red. SwX: Space Weather, OD: Orbit Determination,
and OP: Orbit Propagation.

The SUT framework separates the system into input,
model, and output components that are all probabilis-
tic. Under Gaussian assumption, SUT uses smartly sam-
pled sigma points to represent input uncertainty that are
transformed through the probabilistic model to produce
an overall output distribution, accounting for both input
and model-induced uncertainties. This is represented in
the SUT density block in Figure 2.

Although the current framework incorporates the uncer-
tainty on atmospheric density, characterization of tem-
poral correlation requires repeated covariance matrix or-
thogonalization to recompute the sigma points at each
timestep. This additional characterization of temporal
correlation using covariance orthogonalization results in
an anomalous dip in the 2-norm of the position standard
deviation when numerically propagated for more than 3
days.

In the next section, the simulation setup and methodol-



Figure 2. SUT Architecture

ogy for the investigation of this anomalous trend are pre-
sented.

4. METHODOLOGY

This section highlights the orbital specification, normal-
ization techniques used, numerical integrators employed,
and covariance matrix decomposition methods used to in-
vestigate observations made during long-term propaga-
tion using SUT and covariance orthogonalization.

4.1. Simulation Setup

To thoroughly investigate the nonlinearities in LEO orbit
propagation, a comprehensive 7-day simulation is con-
ducted. The initial conditions are selected to represent a
typical LEO scenario, refer to Table 1.

The simulation duration of 7 days was chosen to cap-
ture both short-term and medium-term orbital evolution
effects. To improve the numerical conditioning of the co-
variance matrix, position and time units are normalized.
The Earth’s radius is used as the reference length for po-
sition normalization, while the orbital period of the sim-
ulated LEO orbit serves as the time normalization factor.
The mass is normalized by the given mass of the space-
craft, respectively.

Although this normalization technique significantly im-
proves the conditioning of the covariance matrix, it is im-
portant to note that it does not fully eliminate all instabil-
ities. The persistence of some instabilities highlights that
the underlying cause of the nonlinearities is something
else.

Additionally, two different implementations of numerical
integrators are tested: a fixed-step RK45 and a variable-
step ode45. The dual approach was intended to evalu-
ate potential trade-offs between computational efficiency
and numerical stability in atmospheric density model-
ing. The implementation of variable-step ode45, based
on the adaptive Dormand-Prince 4(5) method, employs
adaptive step size control, adjusting time steps between
10−3 and 102 seconds based on local truncation error es-
timates. This method achieves fifth-order accuracy using

Table 1. Simulation set-up for the orbit uncertainty prop-
agation using SUT and MC approach.

Parameter Value/Details

Initial position (ECI) [3782.9, -5441.6, -1420.075] km
Initial velocity (ECI) [-0.606, 1.539, -7.488] km/s

State Position and Velocity
Dynamic Model 2-body, J2 and drag

Propagation period 7 days
Object shape/type Spherical & symmetric

Cross-sectional AMR 0.002 m2/kg

Drag coefficient 2.2
Initial epoch 00:00:00 UTC, October 29, 2003

Orbit propagation SUT Modified MC (Paul et. al.)
Number of MC 10,000

six derivative evaluations per step, resulting in a O(h5)
global error. In contrast, the fixed step RK45 config-
uration enforces constant time steps through a modified
Runge-Kutta 4(5) implementation, using step locking to
force ∆t = 0.1− 10 second increments.

Notably, despite the differing approaches of these inte-
grators, our analysis revealed no significant differences
in their ability to resolve the nonlinear trends observed
in the LEO orbit propagation. Thus, all the results pre-
sented are using a fixed-step RK45 integrator as it has
shorter computational time, respectively.

4.2. Decomposition Method

To further address the instability issues observed in co-
variance propagation, this study compares the results of
the standard Cholesky decomposition with those of the
singular value decomposition (SVD) for covariance or-
thogonalization.

The Cholesky decomposition, while computationally ef-
ficient, can sometimes lead to numerical instabilities
when dealing with ill-conditioned or near-singular matri-
ces. In contrast, SVD offers superior numerical stability,
especially for matrices with high condition numbers.

5. RESULTS

In this section, the results are presented for different sce-
narios that were implemented during this investigation.
Initially, a 5th day dip in the 2-norm of the position stan-
dard deviation reveals numerical instability; see Figures
3 and 4. These results are generated with the SUT frame-
work for a half-life of 60 minutes, respectively. Compar-
ison shown here is against the resulting position 2-norm



1σ trend obtained using the RK45 propagation method of
the mean state only, i.e., not with sigma points and hence
half-life is infinite (in other words, atmospheric density
has a constant value). Clearly, the reason for the nonphys-
ical trend can be linked to covariance orthogonalization.

To confirm this hypothesis, different scenarios are imple-
mented, and the stability of the 2-norm of the standard
deviation of the position is monitored, with covariance
orthogonalization update cadences varied.

Figure 3. Comparison of the denormalized Earth-
Cenetered Inertial (ECI) position 2-norm 1σ for SUT us-
ing orthogonalization and for RK45 propagation method
of the mean state only without orthogonalization. Half-
life is 60 minutes, SVD is used

Figure 4. Comparison of the denormalized Earth-
Cenetered Inertial (ECI) velocity 2-norm 1σ for SUT us-
ing orthogonalization and for RK45 propagation method
of the mean state only without orthogonalization. Half-
life is 60 minutes, SVD is used

5.1. Normalization Effects

The impact of normalization on conditioning is summa-
rized in this section. Both constrained normalization and
adaptive normalization were applied and it was noted that
although numerical conditioning results in delayed non-
linearity, it does not completely remove it. Comparison
of position magnitude with and without normalization is
shown in Figure 5. Condition numbers are noted to im-
prove by a magnitude of 4 for the normalization case.

Figure 5. Comparison of denormalized ECI position
magnitude standard deviation with and without normal-
ization, 60 minutes half-life and SVD method

5.2. SVD vs. Cholesky Decomposition

Comparative performance between SVD and Cholesky
decomposition is analyzed. The implementation of SVD
significantly enhances the overall stability of the co-
variance propagation. This improvement allows for an
increase in the covariance-orthogonalization update ca-
dence from 5 to 20 minutes without introducing excessive
instability.

The extended update cadence not only improves com-
putational efficiency, but also provides a more realistic
representation of how often the covariance matrix would
be updated in practical orbital determination scenarios.
However, it is worth noting that for update cadences ex-
ceeding 20 minutes, some residual nonphysical trends
persist, indicating the complex nature of the nonlineari-
ties involved in LEO orbit propagation; refer to Figure
6.

Figure 6. Results showing denormalized ECI position
2-norm standard deviation for 60 minute half-life using
Cholesky and SVD decomposition



5.3. Monte Carlo Validation

Monte Carlo simulation is set up using the orbit propa-
gation method highlighted in scenario 2 of the study by
Paul et al. [11]. A simulation, with 10,000 sample size, is
run for 180-minute half-life and infinite half-life, respec-
tively. The initial orbit is according to the specifications
given in Table 1. In Figures 7 and 8 it is clear that Gaus-
sian assumptions are maintained throughout the 7-day
propagation time period. This proves the hypothesis that
the nonphysical trend observed with Unscented Trans-
form (UT) propagation is due to nonlinearities emerging
because of repeated covariance orthogonalization.

Figure 7. Monte Carlo results showing denormalized ECI
position magnitude standard deviation for 180 minute
half-life

Figure 8. Monte Carlo results showing denormalized ECI
position magnitude standard deviation for infinite half-
life

Additionally, K-test and normal probability plots are gen-
erated for the day-wise (with data sourced at the end of
each day) segmentation of the position components in the
local vertical and local horizontal (LVLH) frame. The
Normal probability plots matches the quantiles of sample
data to the quantiles of a normal distribution. Whereas

the Kolmogorov-Smirnov test returns a decision for the
null hypothesis that the given data comes from a Gaus-
sian distribution, against the alternative that it does not
come from such a distribution. The result is 1 if the
test rejects the null hypothesis at the 5 percent signifi-
cance level, or 0 otherwise. The objective is to qualita-
tively test the Gaussianity of the data over the propaga-
tion time period. The results show that the radial posi-
tion components become weakly non-Gaussian towards
day 7, whereas for the cross-track and along-track posi-
tion components, Gaussianity is maintained; see Figures
9, 10, and 11. Similar results are noted for the velocity
components, respectively.

Figure 9. Monte Carlo results showing denormalized ECI
position along track standard deviation for 180 minutes
half-life

Figure 10. Monte Carlo results showing denormalized
ECI position cross track standard deviation for 180 min-
utes half-life

6. CONCLUSION AND FUTURE WORK

This paper presented methods to improve numerical sta-
bility in LEO orbit propagation through SVD decom-
position, normalization, and adaptive integration tech-
niques. Implications for LEO orbit modeling and broader
applications in space situational awareness and collision
avoidance are highlighted, with ongoing research aimed
at further improving stability and realism in uncertainty
modeling.



Figure 11. Monte Carlo results showing denormalized
ECI position radial standard deviation for 180 minutes
half-life

Non-linearity in covariance caused due to repeated co-
variance orthogonalization is concluded as a contributing
factor to stability issues. Monte Carlo simulation with
10,000 sample was used to validate this conclusion.

Further work will introduce a new architecture that will
forgo the need for repeated covariance orthogonalization
to characterize the temporal correlation of atmospheric
density while accurately incorporating the uncertainty on
the same during real-time estimation.
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