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ABSTRACT 

In the field of Space Situational Awareness, the 
characterization of Resident Space Objects is a crucial task. 
Generated by optical systems, Light Curves can provide 
valuable insights in this context as they depend on the 
object’s shape, material properties, orientation, and 
position relative to both the Sun and the observer. Thus, it 
is possible to perform the inverse process to estimate such 
characteristics exploiting photometric measurements. In 
this framework, this paper proposes an algorithm to 
retrieve the attitude of space objects, based on the 
knowledge of their shapes and reflective properties, by 
integrating the Particle Swarm Optimization and the 
Unscented Kalman Filter to exploit their complementary 
advantages while coping with their individual drawbacks. 
The effectiveness of the work is evaluated in a simulation 
environment that can replicate truthful orbital and 
rotational dynamics evolution and synthetic light curves 
that account for complex object geometries. Error metrics 
are computed to compare the estimated attitude histories 
provided by the algorithm to the true attitude evolution 
showing good accuracy with significant room for 
improvement. 

1 INTRODUCTION 

The growing interest in space activities in the last decades 
has led to a crowded space environment. Indeed, the 
number of Resident Space Objects (RSOs), constituted of 
natural and active/inactive artificial objects, has risen 
consistently escalating the risk of collisions entailing the 
proliferation of space fragments and possibly leading to the 
Kessler Syndrome [1, 2]. For these reasons, the Space 
Situational Awareness (SSA) field, which focuses on the 
acquisition and analysis of a comprehensive picture about 
space risks, has gained much importance during the years. 
Within SSA, the Space Surveillance & Tracking (SST) 
activities have the objective of monitoring RSOs providing 
information concerning the position, shape, attitude motion 
and, in general, properties of space objects. The attitude 
retrieval of RSOs is one of the most important and 
challenging activities in SSA. Indeed, it plays a crucial role 
in understanding the behaviour of RSOs, particularly in the 
case of non-operational objects. One significant example 
where attitude estimation is particularly important 

concerns the re-entry of objects into Earth's atmosphere. 
Precise knowledge of an object's orientation and motion 
characteristics can be determining factors in predicting its 
trajectory. This, in turn, affects the ability to estimate the 
impact location and potential risks associated with 
uncontrolled re-entries, which is vital for ensuring the 
safety of both space assets and populations on the ground. 
Moreover, attitude estimation can be used to distinct 
between space debris and active satellites. By analysing the 
rotational state and stability of an object, it is possible to 
determine whether it is actively controlled or simply freely 
rotating due to external torques (i.e., atmospheric drag, 
solar radiation pressure, gravitational perturbations etc.). 
This distinction is crucial to avoid misidentifications and 
improve overall cataloguing accuracy. In addition, 
understanding the attitude of a space object provides 
valuable insights into its operational capabilities and 
intended function. In fact, it is possible to link the attitude 
of the object to its designed mission, or to make 
assumptions about possible malfunctioning and threats due 
to unexpected behaviours. 

The characterization of RSOs is accomplished with the 
help of several types of sensors, either active (e.g., radars) 
or passive (e.g., telescopes). Passive optical sensors are 
particularly effective in the characterization of RSOs as 
they are capable of providing data for faint objects in 
higher orbits under favourable weather and illumination 
geometry conditions, without needing the large amounts of 
power required by active sensors. Specifically, they 
retrieve the visual apparent magnitude of the target and its 
collection over time constitutes a Light Curve (LC).  

LCs are affected by the reflective properties exhibited by 
the objects under observation together with its shape and 
relative geometry between the Sun, the sensor and the 
object itself. Given these dependencies, it is possible to 
exploit LCs in an inversion process to retrieve such 
properties. Focusing on attitude estimation, the LC 
inversion process presents numerous challenges, mainly 
related to the non-linearity of the rotational dynamics and 
to the presence of ambiguities Indeed, a single value of 
magnitude can be associated with a multitude of conditions 
in terms of observation geometries and attitude states. 
Furthermore, a priori knowledge about the object (i.e., its 

Proc. 9th European Conference on Space Debris, Bonn, Germany, 1–4 April 2025, published by the ESA Space Debris Office

Editors: S. Lemmens, T. Flohrer  & F. Schmitz, (http://conference.sdo.esoc.esa.int, April 2025)

mailto:pasquale.bencivenga@unina.it
mailto:giovanni.capasso9@studenti.unina.it
mailto:giorgio.isoletta@unina.it
mailto:roberto.opromolla@unina.it
mailto:g.fasano@unina.it


 
Figure 1. Workflow of the algorithm

shape and reflective properties) is required in order to 
extract information about the target. Different approaches 
have been proposed so far, involving population-based 
optimization techniques (e.g., genetic algorithms [3]) and 
filter-based algorithms (e.g., particle filters [4]). 

Reference [5] studied the application of the Particle Swarm 
Optimization (PSO) technique [6] in this context, 
implementing a two-phase algorithm to achieve accurate 
results: a first PSO to find probable attitudes at the initial 
time instant of the light curve under analysis, and a second 
one to complete the attitude retrieval starting from a subset 
of the solutions found by the first PSO. 

Reference [7], instead, exploited the Unscented Kalman 
Filter (UKF) to estimate the attitude history of space 
objects starting from initial conditions close to the true 
values. 

However, both the techniques have some weakness points. 
In fact, the PSO requires a large number of particles (and, 
consequently, a large computational effort) to converge to 
acceptable results, while the UKF needs an accurate 
initialization to reach the same purpose. Therefore, this 
paper proposes a novel architecture based on the 
combination of the UKF and PSO techniques to exploit 
their complementary advantages while coping with their 
individual drawbacks. The proposed architecture uses the 
PSO to get initial guesses for the state of space objects, 
which are then used to initialize the UKF in order to reduce 
the total computational cost. 

The remainder of the paper is organized as follows. Section 
2 explains how the PSO and UKF are implemented in the 

algorithmic structure while Section 3 presents the LC 
simulator and classifier used to produce visual apparent 
magnitude values and to estimate the attitude motion of the 
target under observation. Section 4 describes the results 
obtained. Finally, conclusions are drawn in Section 5.  

2 METHODOLOGY 

Fig. 1 depicts the workflow of the algorithmic architecture. 
The work makes use of two PSO-based methods so that 
firstly the LC is processed by a PSO to find a selection of 
initial attitudes corresponding to the first LC measurement 
(i.e., the first value of the visual apparent magnitude of the 
LC) and, afterwards, a second PSO is used to find the best 
initial angular velocity having in input the best initial 
attitude from the first PSO and an analysis on the angular 
velocity’s initial guess based on the processing of the LC. 
Indeed, the LC in input is managed by a classifier, 
described in Section 3, to estimate the attitude motion of 
the target. If the target is found to be spin-stabilized, an 
initial guess for the angular velocity (𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) is estimated 
as the rate to complete a spin period (𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). Otherwise, a 
maximum value for 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, related to the Nyquist 
frequency of the LC and equal to 𝜋𝜋

ts
 [5] in which 𝑡𝑡𝑠𝑠 is the 

sampling rate of the LC, is set. Nonetheless, this branch of 
the algorithm is described in detail in Subsection 2.1. 

The results from the application of the two PSO-based 
algorithms, constituted of the solutions from the first PSO 
coupled with the best solution from the second PSO, 
compose a set of initial guess attitudes and angular 
velocities that are passed to different UKFs to be refined. 
This operation is described in Subsection 2.2. 



It is fundamental to point out that a LC simulator is used in 
the implementation of the two PSO-based algorithms and 
in the application of the UKF. In fact, ancillary data 
involving characteristics of the propagation and features of 
the target (in terms of its geometry, reflective properties, 
etc…) are used as inputs in the LC simulator as it is 
described in Section 3. 

2.1 PSO Implementation 

The employment of the PSO in this work builds upon other 
successfully tested applications [5]. As anticipated, a first 
application of the PSO is used to find the best initial 
attitudes related to the first measurement of the visual 
apparent magnitude of the light curve. The objective of the 
PSO is to minimize a cost function 𝒥𝒥 which, in this work, 
assumes the shape of  Eq. 1 as it is the relative error 
between the simulated visual apparent magnitude, ℳ𝑆𝑆𝑆𝑆𝑆𝑆, 
and the true value at the initial measurement of the LC 
under analysis, ℳ𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐼𝐼𝐼𝐼 . 

𝒥𝒥 = �
ℳ𝑆𝑆𝑆𝑆𝑆𝑆− ℳ𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐼𝐼𝐼𝐼

ℳ𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐼𝐼𝐼𝐼
� (1) 

Each particle 𝑖𝑖 in the swarm is associated with a position 
𝑥𝑥𝑖𝑖𝑡𝑡 and a velocity 𝑣𝑣𝑖𝑖𝑡𝑡  at the iteration 𝑡𝑡. Being inspired by the 
behaviour of flock of birds, the update of the particles’ state 
tries to mimic the inertia, cognitive and social aspects of 
the swarm motion. Indeed, the velocity is updated 
following Eq. 2, 

𝑣𝑣𝑖𝑖𝑡𝑡+1 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑡𝑡 + 𝑘𝑘1𝑟𝑟1(𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡) + 𝑘𝑘2𝑟𝑟2(𝑠𝑠 − 𝑥𝑥𝑖𝑖𝑡𝑡) (2) 

where 𝑤𝑤 is the inertia weight, 𝑘𝑘1 and 𝑘𝑘2 are the cognitive 
and social coefficient, respectively, 𝑟𝑟1 and 𝑟𝑟2 are two 
random numbers varying between 0 and 1, 𝑝𝑝𝑖𝑖 is the 
personal best position of the particle, while 𝑠𝑠 is the swarm 
best position. In particular, 𝑝𝑝𝑖𝑖 and 𝑠𝑠 are the positions 
having the lowest cost with respect to the 𝑖𝑖𝑡𝑡ℎ particle and 
the swarm, respectively. 

The inertia weight usually is set to decrease during the 
iterations to favor the exploration phase at the beginning of 
the process and the exploitation phase in the last iterations. 
The calculation of 𝑣𝑣𝑖𝑖𝑡𝑡+1 allows to derive the update of the 
position, represented by Eq. 3. 

𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑡𝑡+1 (3) 

The position of a particle is the portrayal of an initial 
attitude. According to the Euler’s theorem, any rotation of 
a rigid body can be expressed by a rigid rotation Φ (called 
Euler’s angle) around an axis 𝑒𝑒 (called Euler’s axis) which 
remains unchanged during the given rotation. Thus, Euler’s 
theorem can be used to express the rotation of a space 
object’s BRF with respect to the ECI reference frame. 
Based on this, attitudes of space objects can be expressed 

with unit quaternions. A quaternion 𝑞𝑞�, represented in Eq. 
4, is an array composed of four elements in which three 
elements provide the direction of the Euler’s axis, and a 
fourth element gives information about the rotation angle. 

𝑞𝑞� = [𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑞𝑞4]𝑇𝑇 (4) 

In this work, the scalar-last notation is used to represent 
quaternions meaning that the fourth element mentioned 
before is the last component of the quaternion. The 
superscript 𝑇𝑇 in Eq. 4 denotes the transposition operation. 
Eq. 5 explicates the relationship between the quaternion’s 
components and the Euler’s axis and rotation angle. 

𝑞𝑞1 = 𝑒𝑒1 sin �
Φ
2� 

𝑞𝑞2 = 𝑒𝑒2 sin �
Φ
2� 

𝑞𝑞3 = 𝑒𝑒3 sin �
Φ
2� 

𝑞𝑞4 = cos �
Φ
2� 

(5) 

Since the PSO is a population-based technique, 𝑛𝑛𝑝𝑝1 
particles must be initialized with an initial position (i.e., 
quaternion). Instead of generating random quadruplets, 
quaternions are created by uniformly sampling values for 
𝑒𝑒 and Φ. Considering a sphere of unit radius centred in the 
BRF, points on the border of the sphere can be found via 
spherical coordinates thanks to Eq. 6-8. 

𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (6) 

𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (7) 

𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (8) 

The triplet [𝑥𝑥, 𝑦𝑦, 𝑧𝑧] constitutes the position of a point in the 
BRF, as 𝜃𝜃, varying between 0 and 𝜋𝜋, and 𝜆𝜆, varying 
between 0 and 2𝜋𝜋, are the azimuth and zenith angle, 
respectively. Therefore, for the generation of 𝑒𝑒, the domain 
of 𝜃𝜃 is sampled with a value of �𝑛𝑛𝑝𝑝14 , while the domain of 
𝜆𝜆 is sampled with a value of 4�𝑛𝑛𝑝𝑝14  allowing the 
generation of 4�𝑛𝑛𝑝𝑝1 combinations of 𝑒𝑒. Meanwhile, the 
domain of the rotation angle Φ, equal to [0,𝜋𝜋[ ∪ ]𝜋𝜋, 2𝜋𝜋[, is 
sampled with a value of  √𝑛𝑛𝑝𝑝1

4
 completing the generation of 

𝑛𝑛𝑝𝑝1 initial quaternions. Although, the rotation angle can 
assume the value of 𝜋𝜋, it is excluded from the domain to 
sample because it gives ambiguous direction, since with 



Φ = 𝜋𝜋 two opposed directions of 𝑒𝑒 would give the same 
attitude. It may be useful to highlight that, if decimal 
numbers occur, they are rounded off by excess. 

Although representing attitudes in a convenient way, the 
management of quaternions is affected by some challenges 
among which the impossibility to add two or more 
quaternions to obtain a desired attitude since it would 
violate the norm constraint of the resulting quaternion. For 
this reason, it is impossible to use directly quaternions in 
the PSO since it relies on iterative updates of the position 
of the particles. Indeed, quaternions are converted into the 
corresponding Euler angles with a 321 sequence. 

The conversion operation can create singularities due to the 
gimbal lock problem affecting Euler angles. In particular, 
singularities occur when the Pitch angle is ± 90°. As a 
consequence, when the Pitch angle is in the interval ] −
91°,−89°[∪]89°, 91°[ it is corrected to the nearest 
extremity of such interval. 

After this process, each particle is associated with a 
quaternion and the relative Euler angles can be used to 
update the position and velocities of the particles in an 
additive way, avoiding the mentioned problems. 

Finally, after the update, the attitudes are expressed newly 
into quaternions to be managed by the LC simulator and 
generate the visual apparent magnitude and the consequent 
cost for each particle. At the end, solutions are filtered with 
respect to a threshold. 

The best solution is passed to the second PSO which has 
the objective of looking for a reliable value of the target’s 
angular velocity. The assumption of a torque-free motion 
is made for the whole duration of the LC. In this case, the 
PSO is initialized with 𝑛𝑛𝑝𝑝2 particles whose positions 
represent different angular velocities.  

Similarly to what happens with the first PSO, instead of 
generating random vectors, angular velocities are created 
by uniformly sampling a sphere of radius 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. If the 
target is found to be spin-stabilized, 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is taken as a 
reference value for the estimation of all the angular 
velocities implying that the particles’ positions are 
initialized only with the border of the sphere. Instead, if the 
target is not found to be spin-stabilized, particles’ positions 
are initialized also with points within the sphere. Thus, the 
components �𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦,𝜔𝜔𝑧𝑧� of each angular velocity can be 
calculated with Eq. 9-11. 

 𝜔𝜔𝑥𝑥 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 (9) 

 𝜔𝜔𝑦𝑦 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 (10) 

 𝑧𝑧 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 (11) 

Where 𝜌𝜌 is the radius from the origin to the point and varies 
between 0 and 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, while 𝜃𝜃, varying between 0 and 𝜋𝜋, 
and 𝜆𝜆, varying between 0 and 2𝜋𝜋, are the azimuth and 

zenith angle, respectively. Hence, the domains of 𝜌𝜌,𝜃𝜃 and 
𝜆𝜆 are sampled with �𝑛𝑛𝑝𝑝23 , √𝑛𝑛𝑝𝑝2

3

2
  and 2�𝑛𝑛𝑝𝑝23  values, 

respectively. If the target is classified as spin-stabilized, 𝜌𝜌 
is imposed to be equal to 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and the domains of  𝜃𝜃 and 
𝜆𝜆 are sampled with √𝑛𝑛𝑝𝑝2

2
 and 2�𝑛𝑛𝑝𝑝2 values. As it happens 

in the first PSO, if decimal numbers occur, they are 
rounded off by excess. After the initialization phase, the 
best solution of the first PSO is propagated with the 
assumption of a torque-free motion until the end of the LC 
with the angular velocities of the particles. Thus, each 
particle’s cost 𝒥𝒥 is found as the relative error between the 
simulated and true visual apparent magnitude 
corresponding to the last sample of the LC, as it is depicted 
in Eq. 12. 

 

 
𝒥𝒥 = �

ℳ𝑆𝑆𝑆𝑆𝑆𝑆− ℳ𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
ℳ𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

�  (12) 

Afterwards the process continues with the update of the 
velocities and positions until the end of the iterations. 
Additionally, when the target is classified as spin-
stabilized, corrections on the update of the particles’ 
positions are made to adjust the norm to the value of 
𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. 

2.2 UKF Implementation 

Different UKFs is set up to take into account the solutions 
from the first PSO and the best angular velocity from the 
second PSO. The quaternions are converted into the 
respective Euler angles which, together with the angular 
velocity, constitute the 6-dimensional state 𝑥𝑥. However, to 
capture the process and measurement noise more 
accurately, the state is augmented to 13 dimensions, as 
shown in Eq. 13 (where 𝑥𝑥𝐸𝐸 denotes the Euler angles), since 
the process noise matrix 𝑄𝑄 is defined a 6x6 matrix while 
the measurement noise matrix 𝑅𝑅 reduces to a scalar as the 
only measurement is the visual apparent magnitude. 𝑅𝑅 is 
particularly important in the filter because it accounts for 
the missing noise addition in the generation of visual 
apparent magnitude values, as it is described in Section 3.  

 

 
𝑥𝑥𝑎𝑎 = [𝑥𝑥𝐸𝐸 𝜔𝜔 06𝑥𝑥1 0]  (13) 

Therefore, (2𝐿𝐿 + 1) the augmented sigma points 𝜒𝜒 are 
generated for a total of 27 points as 𝐿𝐿 is the dimension of 
the augmented state. The calculation of the sigma points is 
shown in Eq. 14-16. 

𝜒𝜒0𝑎𝑎 = 𝑥𝑥𝑎𝑎  (14) 

𝜒𝜒𝑖𝑖𝑎𝑎 = 𝑥𝑥𝑎𝑎 + �(𝐿𝐿 + 𝜆𝜆)𝑃𝑃𝑎𝑎                     𝑖𝑖 = 1, … , 𝐿𝐿 (15) 

𝜒𝜒𝑖𝑖𝑎𝑎 = 𝑥𝑥𝑎𝑎 − �(𝐿𝐿 + 𝜆𝜆)𝑃𝑃𝑎𝑎          𝑖𝑖 = 𝐿𝐿 + 1, … , 2𝐿𝐿 (16) 



Where 𝑃𝑃𝑎𝑎 is the augmented state covariance matrix given 
by Eq. 17, 𝜆𝜆 is a scaling parameter given by Eq. 18 in which 
𝛼𝛼 and 𝜅𝜅 are the tuning parameters of the UKF together with 
𝛽𝛽, regulating the spread of the sigma points distribution. 

 

 
𝑃𝑃𝑎𝑎 = �

𝑃𝑃𝑥𝑥 0 0
0 𝑄𝑄 0
0 0 𝑅𝑅

�  (17) 

 

 
𝜆𝜆 = 𝛼𝛼2(𝐿𝐿 + 𝜅𝜅) − 𝐿𝐿  (18) 

In Eq. 17, 𝑃𝑃𝑥𝑥 is the 6x6 state covariance. It may be useful 
to evidence that the square roots appearing in Eq. 15-16 are 
calculated using the Cholesky decomposition.  

After the initialization, the Euler angles components of the 
sigma points are converted into the corresponding 
quaternions, propagated until the next filter step under the 
assumption of a torque-free motion, and re-converted into 
Euler angles. This operation occurs at each step so that the 
first 6 components of the propagated augmented sigma 
points, denoted as 𝜒𝜒𝑖𝑖𝑘𝑘|𝑘𝑘−1

𝑥𝑥 , are used in Eq. 19-20 to predict 
the a priori state and state covariance matrix. 

𝑥𝑥�𝑘𝑘− = �𝑤𝑤𝑖𝑖𝑚𝑚
2𝐿𝐿

𝑖𝑖=0

𝜒𝜒𝑖𝑖𝑘𝑘|𝑘𝑘−1
𝑥𝑥  (19) 

𝑃𝑃𝑥𝑥𝑘𝑘
− = �𝑤𝑤𝑖𝑖𝑐𝑐 �𝜒𝜒𝑖𝑖𝑘𝑘|𝑘𝑘−1

𝑥𝑥 − 𝑥𝑥�𝑘𝑘−� �𝜒𝜒𝑖𝑖𝑘𝑘|𝑘𝑘−1
𝑥𝑥 − 𝑥𝑥�𝑘𝑘+1− �

𝑇𝑇
2𝐿𝐿

𝑖𝑖=0

+ 𝑄𝑄 (20) 

Where 𝑤𝑤𝑖𝑖𝑚𝑚 and 𝑤𝑤𝑖𝑖𝑐𝑐 are the weights accounting for the mean 
and the covariance and are expressed in Eq. 21-23, 
respectively 

𝑤𝑤0𝑚𝑚 =
𝜆𝜆

𝐿𝐿 + 𝜆𝜆 (21) 

𝑤𝑤0𝑐𝑐 =
𝜆𝜆

𝐿𝐿 + 𝜆𝜆 + (1 − 𝛼𝛼2 + 𝛽𝛽)          𝑖𝑖 = 1, … , 2𝐿𝐿 (22) 

𝑤𝑤0𝑚𝑚 = 𝑤𝑤0𝑐𝑐 = 1
2(𝐿𝐿+𝜆𝜆)

                        𝑖𝑖 = 1, … , 2𝐿𝐿 (23) 

The propagated sigma points are exploited to obtain the 
prediction of the visual apparent magnitude relative to the 
successive filter step as it is expressed in in equation Eq. 
24. 

 

 
𝑌𝑌𝑖𝑖𝑘𝑘|𝑘𝑘−1 = ℎ �𝜒𝜒𝑖𝑖𝑘𝑘|𝑘𝑘−1

𝑥𝑥 � + 𝜒𝜒𝑖𝑖𝑘𝑘|𝑘𝑘−1

𝜈𝜈𝑅𝑅   (24) 

Where 𝑌𝑌𝑖𝑖𝑘𝑘|𝑘𝑘−1 represents the expected measurements for 
all the sigma points, ℎ is measurement function which 
englobes the LC simulator while 𝜒𝜒𝑖𝑖𝑘𝑘|𝑘𝑘−1

𝜈𝜈𝑅𝑅  is the measurement 
component of the augmented sigma points. The individual 
expected measurements for the different sigma points are 

then combined using the weighting scheme to determine 
the mean expected measurement 𝑦𝑦�𝑘𝑘  as it is done in Eq. 25. 

 

 𝑦𝑦�𝑘𝑘 = �𝑤𝑤𝑖𝑖
𝑚𝑚𝑌𝑌𝑖𝑖𝑘𝑘|𝑘𝑘−1

2𝐿𝐿

𝑖𝑖=0

 (25) 

Hence, the measurement covariance matrix 𝑃𝑃𝑦𝑦𝑘𝑘and the 
state-measurement cross-covariance matrix 𝑃𝑃𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘  are 
calculated as follows in Eq. 26-27 and used to calculate the 
Kalman gain matrix 𝐾𝐾𝑘𝑘 as it is done in Eq. 28. 

𝑃𝑃𝑦𝑦𝑘𝑘 = �𝑤𝑤𝑖𝑖𝑐𝑐 �𝑌𝑌𝑖𝑖𝑘𝑘|𝑘𝑘−1 − 𝑦𝑦�𝑘𝑘� �𝑌𝑌𝑖𝑖𝑘𝑘|𝑘𝑘−1 − 𝑦𝑦�𝑘𝑘�
𝑇𝑇

2𝐿𝐿

𝑖𝑖=0

+ 𝑅𝑅 (26) 

𝑃𝑃𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘 = �𝑤𝑤𝑖𝑖𝑐𝑐 �𝜒𝜒𝑖𝑖𝑘𝑘|𝑘𝑘−1
𝑥𝑥 − 𝑥𝑥�𝑘𝑘−� �𝑌𝑌𝑖𝑖𝑘𝑘|𝑘𝑘−1 − 𝑦𝑦�𝑘𝑘�

𝑇𝑇
2𝐿𝐿

𝑖𝑖=0

 (27) 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘𝑃𝑃𝑦𝑦𝑘𝑘
−1 (28) 

The superscript (−1) in Eq. 28 denotes the inversion 
operation. The UKF can be set to work with a sampling rate 
much lower than the sampling time of the LC. Thus, it is 
possible to have the absence of a true measurement at 
certain filter steps. If this case occurs, the a posteriori 
estimated state 𝑥𝑥�𝑘𝑘+ is imposed to be equal to the a priori 
state 𝑥𝑥�𝑘𝑘− as it is impossible to correct the predicted 
measurement. Meanwhile, if there is a true measurement 
ℳ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  available, the a posteriori estimated state 𝑥𝑥�𝑘𝑘+ and 
state covariance matrix 𝑃𝑃𝑥𝑥𝑘𝑘

+ are calculated with Eq. 29-30. 

𝑥𝑥�𝑘𝑘+ =  𝑥𝑥�𝑘𝑘− + 𝐾𝐾𝑘𝑘�𝑦𝑦�𝑘𝑘 −ℳ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘� (29) 

𝑃𝑃𝑥𝑥𝑘𝑘
+ =  𝑃𝑃𝑥𝑥𝑘𝑘

− + 𝐾𝐾𝑘𝑘𝑃𝑃𝑦𝑦𝑘𝑘𝐾𝐾𝑘𝑘
𝑇𝑇 (30) 

The UKF continues with the described operations until the 
end of the LC. 

3 LC SIMULATOR AND CLASSIFIER 

As has been stated, the implementation of the PSO and UKF 
necessitates a simulator to obtain realistic magnitude 
values. Thus, a light curve generator has been developed 
which is part of a larger software tool involving an orbital 
and attitude propagator built upon [8]. 

The LC simulator, based on [9], accepts the following 
inputs: 

• Geometric model and reflectivity characteristics of the 
target: the target can be represented either by importing 
a CAD model of any complexity or by combining basic 
shapes, with their surfaces discretized into a triangular 
mesh. Each triangle is characterized by an area, a normal 
unit vector, and the diffusive and specular reflectivity 
coefficients. 

• Initial state vector: this includes the target’s orbital and 
attitude information. The position is defined in the 



Earth-Centered Inertial (ECI) frame, while the angular 
velocity is given in the Body Reference Frame (BRF); 
the target’s orientation is described by a quaternion 
relating the BRF to the ECI. 

• Start and end epochs for the simulation period of
interest.

• Properties of optical sensors, such as their Field of View
and Signal-to-Noise Ratio (SNR).

• Geodetic coordinates for ground-based sensors.
• Orbital parameters for space-based sensors.

Hence, in output, the LC simulator provides light curves of 
the target as observed by each sensor during the observation 
periods. 

The generation of light curves is enabled by employing the 
Cook-Torrance model [10]  to simulate the target's optical 
behaviour. Here, the visual apparent magnitude of the target 
being observed is indicated by ℳ  and is modelled in Eq. 
31. 

ℳ =  −26.7 − 2.5 ⋅ log10 �
ℬ

ℬ𝑆𝑆𝑆𝑆𝑆𝑆
� (31) 

The value of -26.7 depicts the visual apparent magnitude of 
the Sun, while ℬ and ℬ𝑆𝑆𝑆𝑆𝑆𝑆, representing irradiances [𝑊𝑊

𝑚𝑚2], 
denote the brightness values of the target and the Sun, 
respectively. These values are calculated using the Cook-
Torrance model which accounts for the contributions from 
all illuminated and visible meshed sections of the target. A 
facet is considered visible if it satisfies two simultaneous 
conditions: it is lit by the Sun and it is within the sensor’s 
line of sight. Finally, the classification of the LC to 
estimate the attitude motion of the target is made by means 
of a spectrum analysis performed via the Lomb-Scargle 
Periodogram (LSP) [11] and the Phase Dispersion 
Minimization (PDM) [12]. 

In this work, the LC simulator is used also to generate a 
synthetic LC to be employed as the input of the algorithmic 
architecture. Nonetheless, the production of visual 
apparent magnitude values in the generation of the input 
and in the implementation of the two PSO-based 
techniques and of the UKF is different. Indeed, noise is 
added in the origination of the LC to analyse while this 
does not happen in the rest of the algorithm. In particular, 
in the synthesis of the LC to analyze noise is added to the 
photometric measurements with a WGN model in which 
the standard deviation is set equal to the mean of the 
measurements of brightness obtained by the sensor which 
collects the photometric measurements, and divided by 𝑆𝑆𝑆𝑆𝑆𝑆
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where SNR is the Signal-to-Noise Ratio of the observing 
sensor. 

4 RESULTS 

This section presents the application of the pipeline to a 
target modelled as a cylinder-shaped object whose 

extremities are hemispherical in order to emulate the 
structure of a rocket body. Tab. 1 shows the geometric 
characteristics of the target. The initial epoch of the 
propagation is the 24th of March 2003 at 13:30:26 with the 
propagation lasting 9 hours. The initial orbital parameters 
are listed in Tab. 2. 

Table 1: Characteristics of the target’s model 

Feature Cylinder body Hemispherical 
end caps 

Number of 
facets 100 100 

Height [m] 1.5 1.5 

Radius [m] 9 1 

Table 2. Target's initial orbital parameters 

a [km] e RAAN [°] i [°] AoP [°] 

7302.1 0.06 73.9 30.3 327.2 

The target’s initial quaternion is 𝑞𝑞𝐼𝐼𝐼𝐼 =
[−0.4401,−0.3532,−0.1847, 0.8047]𝑇𝑇  while its initial 
angular velocity is 𝜔𝜔𝐼𝐼𝐼𝐼 = [10,−0.2,− 0.3]𝑇𝑇 °/𝑠𝑠 having a 
norm of 10.01 °/s. Fig. 3 depicts the simulated light curve 
with the ground-based telescope whose characteristics are 
listed in Tab. 3 where the longitude, latitude and altitude 
values refer to the WGS84 model of the Earth. The dusk 
angle is defined as the minimum angle below the local 
horizon of the sensor at which the Sun must be for an object 
to be observable, while the mask angle is the minimum 
elevation angle above the observer's horizon that an object 
must have in order to be observable. The LC in input is 
classified to estimate the target’s attitude motion. In 
particular, the target’s is assessed to be spin-stabilized, and 
a spin rate of 10.1 °/s is found. This value is used as the 
reference angular velocity norm in the second PSO so that 
all the angular velocities computed by the algorithm have 
a norm of 10.1 °/s. 

Figure 2. Rocket body model 



Figure 3: Target's light curve 

Table 3. Sensor's characteristics 

Longitude Latitude Altitude Dusk
Angle 

Mask 
Angle SNR

-16.93 ° 32.74° 1818 m 4° 10° 20 

Concerning the analysis with the two PSO-based 
algorithms, in both cases the inertia weight is modified at 
each iteration by a multiplication with a damping 
coefficient equal to 0.97 in both the PSO-based techniques. 
This is done to impose a larger value to the inertia weight 
with respect to most PSO applications. As a result, this 
causes an accentuation on a first exploration phase by the 
particles in order to avoid local minima due to the 
ambiguity nature of the phenomenon. 

The entire simulation has been run using MATLAB 
R2024b on a personal computer equipped with an 11th Gen 
Intel Core i9-11900 processor, operating at 2.5 GHz, and 
32 GB of RAM. 

The first PSO analysis is conducted with 𝑛𝑛𝑝𝑝1 = 10000 
particles, an inertia weight 𝑤𝑤 = 1 and with both 𝑘𝑘1and 𝑘𝑘2 
equal to 0.8. The number of iterations has been fixed to 50. 
The particles’ velocities are initialized with random 3x1 
vectors having a norm of 5 °. The results are finally filtered 
with a threshold of 10−4 on the cost, giving a total of 677 
solutions with a processing time of 25 minutes.  

The best quaternion found is 𝑞𝑞 =
[−0.436,−0.059,−0.604, 0.663]𝑇𝑇 which is put in input in 
the second PSO algorithm initialized with 𝑛𝑛𝑝𝑝2 = 1000, an 
inertia weight 𝑤𝑤 = 1 and with both 𝑘𝑘1and 𝑘𝑘2 equal to 0.8. 
The best angular velocity found is equal to 𝜔𝜔 =
[−9.45,−2.82,−2.19]𝑇𝑇 °/𝑠𝑠 in a total processing time of 3 
minutes and in a total of 30 iterations. 

The solutions found by the first PSO and the best angular 
velocity found by the second PSO are given in input to the 
UKF which is set with the values listed in Tab. 4 where 𝜈𝜈𝑄𝑄, 
𝑣𝑣𝑅𝑅, 𝜈𝜈𝑃𝑃𝑥𝑥0  multiply a 6x6, 1x1, 6x6 identity matrices to 
initialize 𝑄𝑄,𝑅𝑅, and 𝑃𝑃𝑥𝑥0. The frequency of the filter is set to 

1 Hz and its analysis lasts 50 minutes. 

Table 4. UKF settings 

𝜶𝜶 𝜷𝜷 𝜿𝜿 𝝂𝝂𝑸𝑸 𝒗𝒗𝑹𝑹 𝝂𝝂𝑷𝑷𝒙𝒙𝟎𝟎
0.01 2 0 10−3 0.3 10−6

Although exhibiting a very low initial error giving the 
threshold on the solutions provided by the first PSO, the 
results of the UKF show large errors either for the visual 
apparent magnitude estimation, with a mean error of 3.4, 
or for the attitude history prediction, with a mean error of 
67° on the Yaw component, 83° on the Pitch component 
and 101° on the Roll component. The motivation under 
such large mean errors is linked to the ambiguous nature of 
the phenomenon which leads to multiple valid initial 
attitudes even if they are far from the truth since they 
exhibit the same visual apparent magnitude. On the other 
hand, not all the results need to be discarded since the filter 
has proven its capability to estimate the attitude history of 
the target with certain initial attitudes. Indeed, Fig. 4 
depicts the estimated visual apparent magnitude of the best 
solution found by the UKF (with an initial quaternion equal 
to q = [−0.874,−0.123,−0.389,0.264]𝑇𝑇) with respect to 
the true visual apparent magnitude. It can be seen that the 
filter’s accurately follows the behavior of the signal as it is 
further demonstrated with Fig. 5 in which the absolute error 
and the absolute percentage error are represented. In 
particular, the mean error is equal to 0.09 while the median 
error is 0.04. 

Figure 4. True and estimated visual apparent magnitude 

Figure 5. Absolute and absolute percentage error on the 
visual apparent magnitude 

In this case, the low errors on the estimation of the visual 
apparent magnitude also reflect in an accurate estimation 



on the attitude history. As a matter of fact, Fig. 6-8 show 
the estimated Yaw, Pitch and Roll components of the Euler 
angles’ history with respect to the true values. The 
difference between the estimated and true values can be 
better appreciated in Fig. 9-11 in which the absolute errors 
are depicted. It can be noticed that the errors on the three 
angles are stable during the whole signal’s window 
portraying a mean error of 2.1 °, 0.6° and 4.9° on the Yaw, 
Pitch and Roll angles, respectively. 

Figure 6. Estimated and true Yaw angle history 

Figure 7. Estimated and true Pitch angle history 

Figure 8. Estimated and true Roll angle history 

Figure 9. Absolute error on the Yaw angle 

Figure 10. Absolute error on the Pitch angle 



Figure 11. Absolute error on the Roll angle 

5 CONCLUSIONS 

By combining the Particle Swarm Optimization and the 
Unscented Kalman Filter, this work offers a novel method 
for the estimation of the attitude of Resident Space Objects 
using light curves. The implementation of the PSO has 
proved the theoretical advantages of its integration with the 
UKF providing accurate initial guesses significantly 
improving the UKF initialization. However, a lot of 
solutions provided by the first PSO algorithm are discarded 
due to the ambiguity of the problem to solve. The simple 
geometry of the test case may have accentuated such effect. 
Thus, to improve this situation, a more complex geometry 
model may be implemented. Furthermore, the UKF can be 
modified into its multiplicative variant to be able to 
manage directly quaternions instead of Euler angles. In 
addition, the tuning of the UKF can be refined via the use 
of another PSO-based approach to find the best values to 
set the filter. Finally, the LC simulator may be validated in 
order to test the pipeline in real scenarios.  
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