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ABSTRACT 

The current space context heightens the challenges of 

catalogue build-up and maintenance. The European 

Space Agency’s (ESA) funded project “Robust Orbit 

Determination for Space Debris”, led by GMV in 

collaboration with the University of Liverpool (UoL) and 

the University Carlos III de Madrid (UC3M), puts 

forward novel methodologies to tackle these issues. This 

paper focuses on the most relevant contributions of the 

project. The most promising pre-prototyped algorithms 

are embedded into “RODDAS”, a library for Robust 

Orbit Determination and Data Association using ESA’s 

GODOT as underlying astrodynamics engine and Stone 

Soup’s library as the foundation for the tracking and 

estimation algorithms. 

1 INTRODUCTION 

Catalogue build-up and maintenance are fundamental to 

Space Situational Awareness (SSA) services, ensuring 

updated databases of all observed space objects, 

including operational satellites or space debris, with their 

current and predicted orbit estimates. The accuracy and 

reliability of the catalogue is crucial for the provision of 

other SSA services such as conjunction assessment, 

fragmentation detections, re-entry predictions, and 

manoeuvre detection, all essential for the safety and 

sustainability of the space environment. 

Space democratisation and the rise of commercial 

activities, exacerbates this situation. Associating new 

observations with existing objects becomes ambiguous in 

overly congested regions, which can lead to poor track 

association performance. This strains the reliability of the 

subsequent processes of orbit determination and 

propagation. Poor catalogue estimation and prediction 

further deteriorate data association performance, 

aggravating data scarcity and ultimately impacting SSA 

services. Therefore, it is needed to analyse and develop 

robust and reliable methodologies for orbit determination 

and data association to address current and future 

challenges of the space environment sustainability.   

GMV in collaboration with UoL and UC3M explores 

novel approaches to mitigate this situation in ESA’s 

funded project “Robust Orbit Determination for Space 

Debris”. 

On the one hand, modern extensions to state-of-the-art 

batch least-squares estimation algorithms designed to 

improve robustness will be presented. These include the 

Huber penalty function for least-squares estimation to 

enhance convergence, time-dependent measurement 

weight to achieve smoother Lengths of Update Intervals 

(LUPI), and uncertainty quantification techniques for 

covariance realism improvement, including Stochastic 

Consider Parameters and alternative state representations 

for uncertainty assessment. 

On the other hand, the performance of less established 

algorithms (in the context of space object tracking) is 

evaluated. Namely, particle and sequential filters. 

Regarding sequential algorithms, we explore the family 

of methods that stems from the tuning the 

hyperparameters of the Iterated Posterior Linearization 

Filter (IPLF), going one step beyond EKF or sigma-point 

Kalman filters, and taking advantage of the knowledge of 

the value of the measurement and of statistical linear 

regression for an improved update. Furthermore, the 

benefit of introducing a smoother (IPLS), taking 

advantage of future known estimates to smooth updates 

in the past, is assessed. For particle filters, the standard 

Particle Filter (PF), Ensemble Kalman Filter (EnKF) and 
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Nested Particle Filter (NPF) are selected for analysis in 

the very same scenarios as the other algorithms detailed 

above.  

In the context of the multi-target data association 

problem, novel approaches making use of sequential 

filters together with Global Nearest Neighbour and Joint 

Probabilistic Data Association Filter associators are 

investigated. The performances are compared to those of 

the track-to-track association methods [21], which is an 

association algorithm specifically tailored for SSA 

operations. 

All these algorithms are tested in situations representing 

operational environments. 

2 METHODS 

This section details the methodologies that have been 

developed as part of the activity. Those applicable to state 

and parameter estimation are described in Section 2.1, 

while those concerning the data association problem are 

tackled in Section 2.2. 

2.1 Robust Orbit Determination 

Traditionally, the preferred approaches for state and 

parameter estimation (also referred to as Orbit 

Determination, OD) in space have been batch least 

squares and Kalman filters. Modern extensions to these 

are sought. Additionally, alternative methods popular in 

the tracking community, in the realm of sequential and 

particle filters, are surveyed and their applicability to the 

space domain is assessed. 

2.1.1 Modern extensions to batch least-squares 

Four different concepts are pre-prototyped, aiming to 

improve traditional batch least-squares methods 

performance in terms of uncertainty quantification, 

convergence capabilities, state representation to ensure 

Gaussianity for extended time intervals, and optimum 

Length of Update Interval (LUPI) through time-

dependent weighting of the measurements. 

2.1.1.1 Uncertainty quantification: Stochastic 
Consider Parameters 

Complex representations of a space object’s orbital state, 

beyond mean and second moment, are nowadays still not 

a feasible approach for SSA activities. Therefore, a 

significant effort shall be placed into Uncertainty 

Quantification, which reduces to Covariance Realism in 

the usual context where only up to the second moment of 

the state Probability Density Function (PDF) is retained. 

In LEO, the most significant uncertainty source comes 

from the difficulty of modelling and predicting Solar 

activity and the interaction between the space object and 

Earth’s atmosphere [1, 2, 3]. Typical strategies to deal 

with its aleatoric behaviour, such as stochastic models 

that result in complex data processing systems and simple 

Monte Carlo methods with poor computational 

performance, deem unsuitable for catalogue maintenance 

activities. Additionally, classical methods such as 

Consider Parameter theory fail to capture the stochastic 

nature of atmospheric density uncertainty as it introduces 

a single fixed variance to model it. 

Consequently, the Stochastic Consider Parameter (SCP) 

theory is proposed, allowing to introduce stochastic time-

correlated errors to model the uncertainty in the problem. 

To that end, the latter is modelled as an auto-regressive 

function of order 1 AR(1), governed by an unknown 

noise power and correlation time scale, such that each 

realization of the stochastic noise is defined as an 

uncertain consider parameter. Then, the contribution of 

each stochastic parameter into the estimated covariance 

is mapped by exploiting the properties of the variational 

equations. 

As is the case in Consider Parameter theory, realistic 

values for the governing parameters of the stochastic 

model, in this case noise power and correlation time 

scale, are not known. Therefore, this methodology is 

complemented with covariance determination techniques 

[4, 5], based on the observed distribution of the 

Mahalanobis distance of the orbital differences (between 

predicted and estimated orbits) and Empirical 

Distribution Function (EDF) metrics such as the Cramer-

von-Mises (CvM) and the Kolmogorov-Smirnov (KS) 

distances to determine optimum noise power and 

correlation time scales that ensure covariance realism. 

For a batch estimation process where 𝑛𝑦 parameters are 

being estimated, consider parameter theory allows to 

include any unaccounted uncertainty (𝑛𝑐 consider 

parameters) into the estimated covariance: 

𝐏𝒄 = 𝐏𝒏 + 𝐊𝐂𝐊
𝑻 ∈ ℝ𝒏𝒚×𝒏𝒚 ,  (1) 

where 𝐏𝒏 is the so-called noise-only covariance coming 

from batch estimation, and 𝐊, 𝐂 are defined as: 

𝐊 = 𝐏𝒏(𝐇𝒚
𝑻𝐖𝐇𝒄) ∈ ℝ

𝒏𝒚×𝒏𝒄 , (2) 

𝐂 = (
𝜎1
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛𝑐

2
), (3) 

where 𝐇𝑦 ∈ ℝ
𝑛𝑚×𝑛𝑦, with 𝑛𝑚 being the number of 

measurements, represents the partials of the 

measurements with respect to the estimated state, 𝑾 

weights according to the expected accuracy of the 

measurements and 𝐇𝑐 ∈ ℝ
𝑛𝑚×𝑛𝑐 represents the partials of 

the measurements with respect to the consider 

parameters. Thus, the 𝑖𝑡ℎ row of matrix 𝐻𝑐  can be 

constructed as the product of the partial of the 

measurement with respect to the state at measurement 

epoch, times the partial of the state with respect to the 

consider parameter, which is the so-called sensitivity 



 

matrix of the consider parameter, obtained through the 

variational parameters. 

𝐇𝐜𝐢 =
𝛛𝐡𝐢(𝒕𝒊)

𝛛𝐜
=
𝛛𝐡𝐢(𝒕𝒊)

𝛛𝐱(𝒕𝒊)
⋅
𝛛𝐱(𝒕𝒊)

𝛛𝐜
∈ ℝ𝟏×𝒏𝒄 (4) 

 

Figure 2-1. Multiple constant consider parameters 

If we split a single fixed parameter into multiple 

parameters through the estimation arc, which while 

representing the same physical variable are allowed to 

have different value, as illustrated in Figure 2-1, it can be 

shown from the properties of the variational equations 

that the partial derivatives of the state with respect to such 

parameters can be derived from the partials of a single 

global parameter 𝑝𝑐: 

∂𝐱(𝑡)

∂𝑝𝑖

=

{
 
 

 
 
∂𝐱(𝑡)

∂𝑝𝑐
−

∂𝐱(𝑡)

∂𝐱(𝑡𝑝𝑖)

∂𝐱(𝑡𝑝𝑖)

∂𝑝𝑐
𝑡𝑝𝑖 < 𝑡 <= 𝑡𝑝𝑖+1

∂𝐱(𝑡)

∂𝐱(𝑡𝑝𝑖+1)
(
∂𝐱(𝑡𝑝𝑖+1)

∂𝑝𝑖
) 𝑡 > 𝑡𝑝𝑖+1

0 𝑡 <= 𝑡𝑝𝑖

 

 

(5) 

where the contribution of each parameter depends on the 

time-interval of application of the parameter (active from 

𝑡𝑝𝑖 to 𝑡𝑝𝑖+1). 

Atmospheric uncertainty is then modelled by considering 

stochastic atmospheric density of the form of 

𝜌(𝑡) = 𝜌‾(𝑡) + 𝑝(𝑡) (6) 

where the perturbing noise 𝑝(𝑡) added to the mean 

atmospheric density is a zero-mean correlated noise 

sequence, an auto-regressive function with time 

correlation of order 1 AR(1): 

𝒑(𝒕𝒏) = 𝒂(𝒏)𝒑(𝒕𝒏−𝟏) + 𝒖(𝒏), (7) 

with 

𝒂(𝒏) =
𝒓𝟎(𝒕𝒏)

𝒓𝟎(𝒕𝒏−𝟏)
𝒆−𝜶(𝒕𝒏−𝒕𝒏−𝟏),  (8) 

𝒖(𝒏) ∼ 𝐍 (𝟎, 𝝈𝒖
𝟐(𝒏)),  (9) 

𝜎𝑢
2(𝑛) = 𝑟0(𝑡𝑛) [1 −

𝑟0(𝑡𝑛)

𝑟0(𝑡𝑛−1)
𝑒−2𝛼(𝑡𝑛−𝑡𝑛−1)] , and (10) 

𝑝(𝑡0) = 𝑢(0) ∼ N(0, 𝑟0(𝑡0)) (11) 

Accordingly, the noise at each step is related to the 

previous noise via a factor 𝑎(𝑛), and a Gaussian 

contribution 𝑢(𝑛). The correlation strength is controlled 

by 𝛼 = 1/𝜏𝛼. The variance of the Gaussian term is 

inversely proportional to the correlation. Thus, constant 

power noise (𝑟0(𝑡𝑛) = 𝑟0(𝑡𝑛−1)) is achieved when the 

correlation time scale tends to infinity, hence being 

reduced to a constant noise model. On the contrary, a 

purely Gaussian noise is obtained when the correlation 

time scale tends to zero. 

Therefore, the proposed approach is to divide a global 

parameter into multiple parameters, applied sequentially 

and correlated in time according to the stochastic model 

defined. We define 𝑢(𝑛) of Eq. (7) as the stochastic 

consider parameters, such that: 

𝒑 = 𝑨𝒖,  (12) 

where: 

𝒑 = (

𝑝0
⋮
𝑝𝑛
) ; 𝒖 = (

𝑢0
⋮
𝑢𝑛
) ;          𝑨 = (

1 ⋯ 0
⋮ ⋱ ⋮
𝑏𝑖𝑗 ⋯ 1

) ∈ ℝ𝑁×𝑁, 

with a total of 𝑁 = 𝑛 + 1 consider parameters for each 

of the 𝑛 time steps in the noise sequence. Finally, 𝑏𝑖𝑗 =

∏ 𝑎𝑖
𝑗+1 (𝑛); ∀ 𝑖 > 𝑗 where 𝑖 and 𝑗 represent the row and 

column of the matrix, respectively. Each value of vector 

𝑢 corresponds to a sample of 𝒖~(0, 𝜎𝑢
2), thus being a 

suitable choice of consider parameter vector. 

Thus, the sensitivity of each consider parameter in Eq. (4) 

can be formulated as follows: 

𝛛𝐱(𝒕)

𝛛𝐜
=
𝛛𝐱(𝒕)

𝛛𝒖
=
𝛛𝐱(𝒕)

𝛛𝒑

𝛛𝒑

𝛛𝒖
=
𝛛𝐱(𝒕)

𝛛𝒑
𝐀 (13) 

such that for the case of multiple parameters, Eq. (4) 

reduces to: 

𝛛𝐱(𝒕𝒊)

𝛛𝐜
= [

𝛛𝐱(𝒕𝒊)

𝛛𝒑𝒊
, ⋯ ,

𝛛𝐱(𝒕𝒊)

𝛛𝒑𝒏𝒄
] ⋅ 𝐀 ∈ ℝ𝒏𝒙×𝒏𝒄 (14) 

and the covariance with SCP formulation takes the terms 

𝑪 and 𝑯𝒄 of the form: 

𝑪 == (

𝑟0 ⋯ ⋯ 0

⋮ 𝜎𝑢
2 ⋮

⋮ ⋱ ⋮
0 ⋯ ⋯ 𝜎𝑢

2

) ,∈ ℝ𝑛+1×𝑛+1 (15) 

𝐇𝐶𝐴(𝑚𝑖 , 𝑡𝑚) =
∂𝐡𝐢(𝑡𝑚)

∂𝐱(𝑡𝑚)
⋅
∂𝐱(𝑡𝑚)

∂𝐩
⋅ 𝑨 (16) 

2.1.1.2 QtW reference frame 
The methodology presented in the previous section aims 

at improving the realism of the state distribution of our 

space object, which is eventually represented by a mean 

state and a covariance. To delay the state’s distribution 

departure from Gaussianity for long propagation arcs due 



 

to the highly non-linear dynamics of the space 

environment, especially in low altitude orbits, the QtW 

reference frame to represent the object’s state is proposed 

[6]. 

It consists of a non-linear local orbital, time-dependent 

transformation based on the QSW local orbital frame, 

with “Q” pointing towards the centre of the Earth, and 

“W” following the orbital’s angular momentum. It is 

centred in the space object of interest, and applied, in this 

case, to a given sample of the space object’s distribution, 

such that: 

1. The object’s state is frozen at a given epoch of 

interest 𝑡0, and the QW plane defined 

2. A sample drawn from the object’s distribution is 

propagated from 𝑡0 until it crosses the QW 

plane. The crossing epoch is named 𝑡𝑐 
3. The QtW coordinates of the sample are then 

defined by its coordinates in the QW plane at the 

crossing epoch and the propagation time needed 

to reach this plane 𝑡𝑐 − 𝑡0 

Thus, the coordinates of a given sample can be expressed 

as: 

𝒅(𝑡, 𝒙(𝑡), 𝒙𝒓(𝑡))|QtW

= (

𝒒 ⋅ (𝒙(𝑡𝑐) − 𝒙𝒓(𝑡))
𝑡𝑐 − 𝑡

𝒘 ⋅ (𝒙(𝑡𝑐) − 𝒙𝒓(𝑡))

) 
(17) 

where 𝒙𝒓 and 𝒙 are the object and sample states, and 𝒒,𝒘 

define the QW local frame. The crossing time 𝑡𝑐 can be 

determined solving (𝒙(𝑡𝑐) − 𝒙𝒓(𝑡)) ⋅ 𝒔 = 𝟎, from the 

knowledge of the normal vector 𝒔. 

Then, to project the covariance onto the QtW frame, 

under the consideration that, even in an inertial reference 

this is being computed assuming linear theory, one might 

assume: 

• Linearity in the relative position between the 

reference point and the QtW sample, i.e. Δ𝒙 ≈
𝒙(𝑡) − 𝒙𝒓(𝑡). 

• Linearity in the time difference between 

analysis and crossing epoch. If Δ𝑡 = 𝑡𝑐 − 𝑡 ≈ 0, 

then the State Transition Matrix (STM) is close 

to unity 𝚽(𝑡, 𝑡𝑐)|xyz ≈ 𝑰. 

Accordingly, the Jacobian for the position of a 

sample in QtW can be expressed 

as:𝑱(𝒅(𝑡))|xyz→QtW =
𝒅(𝑡,𝒙,𝒙𝒓+Δ𝒙)|QtW−𝒅(𝑡,𝒙𝒄,𝒙𝒓)|QtW

Δ𝒙
=

1

Δ𝒙
(

𝒒 ⋅ Δ𝒙

Δ𝑡(𝒙𝒓 + Δ𝒙) − Δ𝑡(𝒙𝒓)
𝒘 ⋅ Δ𝒙

) 

(18) 

Under the linear assumption 𝒙(𝑡𝑐) = 𝒙𝒓(𝑡) + 𝒗𝒓(𝑡)Δ𝑡, and 

using the crossing plane equation: 

𝑱(𝒅(𝑡))|xyz→QtW == (

𝒒
−𝒔

𝒗𝒓(𝑡) ⋅ 𝒔
𝒘

) (19) 

which allows to rotate the covariance of the samples as a 

function only of the reference state. Thus, combining the 

QtW transformation with a linear propagation of the 

covariance, we can evaluate it in such a frame through 

the following expression: 

𝑷(𝑡)|QtW
= 𝑱(𝑡)|xyz→QtW × 𝑷(𝑡)|XYZ × 𝑱(𝑡)|

𝑇
xyz→QtW 

= 𝑱(𝑡)|xyz→QtW 

× (𝚽(𝑡, 𝑡0)|xyz𝑷(𝑡0)|XYZ𝚽(𝑡, 𝑡0)|xyz)

× 𝑱(𝑡)|𝑇xyz→QtW  

(20) 

2.1.1.3 Huber penalty parameters 
The classical approach to solve the batch least-squares 

problem comes from applying Newton’s method to the 

second order Taylor expansion of the loss function 

minimising residuals 𝝆 (Gauss-Newton’s method): 

𝐽(𝒙0) = 𝝆
𝑇𝝆 = (𝒛 − 𝒛̂)𝑇(𝒛 − 𝒛̂) (21) 

where the estimated measurement 𝒛̂ = 𝒉(𝒙𝟎) is built 

from the estimated state 𝒙 and the measurement model 

𝒉() mapping the estimated state 𝒙𝟎. In this way, the 

solution for 𝒙𝟎 is iterated according to [7]: 

(𝑯𝑇𝑯)𝚫𝒙0 = 𝑯
𝑇𝚫𝒛 (22) 

𝑯 is the Jacobian of the measurement model, where 

second-order information terms are neglected. 

This iterative scheme is locally q-linearly convergent if 

second-order terms are small relative to the first order 

contribution, which is reasonable if residuals are small. 

Nonetheless, if the latter is not the case, the method may 

not be locally convergent or can take long steps even if 

in the correct direction. Additionally, the classical least-

squares solution is optimal under the assumption of 

Gaussian noise, which is not the expected case for 

measurement noise or model errors. 

To improve convergence and robustness of the iteration,  

the expression for the loss function can be reformulated 

using Wilson’s Huber penalty parameters [8]: 

𝐽(𝒙0) = 𝜙(𝒛 − 𝒛̂) + 𝜆𝜓(𝒙 − 𝒙𝑟𝑒𝑓) (23) 

𝜙 is a robust penalty function for the residuals, 𝜓 is a 

penalty function for the estimate update and 𝜆 is the trust-

region weight. This way, the loss function transforms into 

a balance between maximum likelihood of a solution 

fitting the data (𝒛 − 𝒛̂) and ensuring that linearisation of 

the dynamics and observation models remain a valid 

approximation 𝒙 − 𝒙𝑟𝑒𝑓 . 



 

By selecting 𝜙 and 𝜓 to be convex, the system can be 

solved by subsequent linearisation after each iteration 

around the current solution 𝒙𝑟𝑒𝑓 = 𝒙𝑘 for iteration k+1. 

The residual penalty function takes the following form: 

𝜙(𝜌𝑖) = {
𝜌𝑖
2 𝑖𝑓 |𝜌𝑖| ≤ 𝑀

𝑀(2|𝜌𝑖| − 𝑀) 𝑖𝑓 |𝜌𝑖| > 𝑀
 (24) 

where 𝑀 (defined as the Huber penalty parameter) is a 

threshold on the size of the residuals, chosen beyond 

which Gaussian noise no longer holds, and the 

measurement is heavily penalized. Selecting 𝜓 as a 

Euclidean norm penalty, taking care to map the value to 

the expected value of the measurement residuals for 

consistent consideration in the cost function, one 

produces: 

𝜓(𝒙 − 𝒙𝑟𝑒𝑓) = ‖(𝑯
𝑇𝑯)1/2(𝒙 − 𝒙𝑟𝑒𝑓)‖

2
 (25) 

For a given iteration, constructing a set 𝐴 with the 

measurements below the non-linear threshold, M, and 𝐵 

with those above it  

𝐽(Δ𝒙𝟎) =  𝝆𝐴𝝆𝐴
𝑇 + ∑ 𝑀(2|𝜌𝑖| − 𝑀)

𝜌𝑖∈𝐵

+ 𝜆‖𝑳 Δ𝒙0‖
2 

(26) 

where 𝑳 = 𝑯𝑻𝑯. 

Equating the gradient of the loss function to zero, the 

solution can be iterated according to: 

(𝑯𝐴
𝑇𝑯𝐴 +  𝑀𝑯̂𝐵

𝑇𝑯̂𝐵 + 𝜆 𝑳
𝑇𝑳)𝚫𝒙0

= (𝑯𝐴
𝑇  +  𝑯̂𝐵

𝑇)𝚫𝒛 (27) 

The problem is then a-dimensionalised by additionally 

weighting with the expected noise of the measurements 

𝜌𝑖/𝜎𝑖. 

Concerning the threshold 𝑀, it is proposed to use a fixed 

value. The trust region weight λ is inherited from the 

Levenverg-Marquardt (LM) method [9], a precursor to 

Wilson’s Huber parameters. The rationale for computing 

𝜆 follows the rationale of [8]: 

• Evaluate predicted improvement: 𝛿̂ =
∑ 𝜙ℎ𝑢𝑏(𝜌𝑖,𝑘−1)𝑖 − ∑ 𝜙ℎ𝑢𝑏(𝑧𝑖 − ℎ𝑖,𝑘−1(𝒙𝑘))𝑖  

• Evaluate observed improvement: 𝛿 =
∑ 𝜙ℎ𝑢𝑏(𝜌𝑖,𝑘−1)𝑖 − ∑ 𝜙ℎ𝑢𝑏(𝜌𝑖,𝑘)𝑖  

• If 𝛿 ≥ 𝛼𝛿̂, then 𝜆 = 𝜆/𝛽𝑠𝑢𝑐𝑐 , else 𝜆 = 𝜆/𝛽𝑓𝑎𝑖𝑙 . 

where values for the factors 𝛼, 𝛽 are to be derived in 

benchmarking. 

2.1.1.4 Time-dependent measurements weight 
In batch least-squares method, when selecting an orbit 

determination interval, or length of update interval 

(LUPI), one shall balance the number of measurements 

considered with the ability of the dynamical models to 

hold valid for extended time intervals. 

To determine the optimum LUPI, it is proposed to adopt 

a time-dependent measurement weight function. It is 

designed to have unitary value at the epoch of the last 

measurement 𝑡0, and decay exponentially going 

backwards following a certain time scale 𝑤𝑖(𝑡𝑚) =

𝑒−
1

𝜏
(𝑡0−𝑡𝑚) . This becomes the control variable, 

interchangeable with the LUPI itself as its value will 

determine the moment in time in which measurements 

will have a null contribution. The value of this parameter 

is determined as follows. First, covariance matrices from 

Orbit Determination processes are assumed to be realistic 

after application of Covariance Determination 

methodologies such as the SCP described in Section 

2.1.1.1.  Then, the time scale is selected such that it 

minimises the predicted covariance of the state, while 

remaining realistic. The weighting matrix for orbit 

determination, containing expected noise levels for each 

measurement is modified acordingly: 

𝑾∗(𝒕𝒎) = (

𝜎𝑖
−2𝑤𝑖(𝑡𝑚𝑖

) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝑁

−2𝑤𝑖(𝑡𝑚𝑁
)

) (28) 

This affects directly the noise only covariance 𝐏𝑛 =

(𝐇𝑦
𝑇𝐖∗𝐇𝑦)

−1
 and impacts covariance realism through the 

SCP methodology. 

2.1.2 Modern sequential filters 

The modern sequential filters described in this section are 

implemented making use of the Stone Soup’s [10] open-

source tracking software library, developed by several 

institutions in the Five Eyes nations, led by DSTL and 

including UoL, contributor to this work. 

The dynamic and measurement models considered are 

non-linear function with additive Gaussian noise: 

𝑝( 𝑥𝑘 ∣∣ 𝑥𝑘−1 ) = 𝒩(𝑥𝑘; 𝑓𝑘−1(𝑥𝑘−1), 𝑄𝑘−1) (29) 

𝑝( 𝑧𝑘 ∣∣ 𝑥𝑘 ) = 𝒩(𝑧𝑘; ℎ𝑘(𝑥𝑘), 𝑅𝑘) (30) 

where 𝑓𝑘−1 and ℎ𝑘 are representing the dynamics and 

measurement functions and 𝑄𝑘−1 and 𝑅𝑘 are the 

covariance matrices of the dynamics and measurement 

noise respectively. 

Additionally, it is considered that the predicted and 

filtered densities are Gaussian, such that: 

𝑝(𝑥𝑘|𝑧1:𝑘) = 𝑁(𝑥𝑘 , 𝑥𝑘|𝑘 , 𝑃𝑘|𝑘) (31) 

𝑝(𝑥𝑘|𝑧1:𝑘−1) = 𝑁(𝑥𝑘 , 𝑥𝑘|𝑘−1, 𝑃𝑘|𝑘−1) (32) 

where 𝑥𝑘|𝑘  is the mean and 𝑃𝑘|𝑘 is the covariance matrix. 

Depending on the filter, the prediction step from 𝑘 − 1 to 

𝑘 and subsequent update of the estimate is performed 

differently. Several filters are explored in the activity. 

A first explored candidate is the Iterated Extended 

Kalman Filter (IEKF) [10, 12]. Differently to EKF and 



 

sigma-point Kalman filters, it takes advantage of the 

knowledge of the measurement 𝒛𝑘 for the update of the 

posterior distribution, meaning that in non-linear settings 

it will be inaccurate relative to the measurement noise 

covariance [13]. These methods, at each update step, 

approximate the non-linear measurement function 

𝒉𝑘(𝑥) ≈ 𝑯𝒌
+𝒙 + 𝒃𝑘

+ + 𝒆𝑘 where 𝒆𝑘 is a zero-mean 

independent Gaussian noise with covariance matrix 𝛀𝑘
+. 

This choice of 𝒉() is the only for which the updated 

density is exactly Gaussian. 

However, the IEKF sets the term 𝛀𝑘
+ to zero, which is not 

necessary. Derivation of optimal values for 𝑯𝒌
+, 𝒃𝑘

+, 𝛀𝐤
+ is 

the foundation of the Iterated Posterior Linearisation 

Filter (IPLF), which performs statistical linear regression 

(SLR) with respect to the best available approximation of 

the posterior (predicted), iterating on it, to achieve a 

better approximation of it. SLR approximates as linear a 

non-linear function (measurement model) in the area 

indicated by a probability density (predicted posterior). 

The prediction step of the IPLF is analogous to that of the 

Unscented Kalman Filter and Cubature Kalman Filter 

[10], while the update is based on iterated SLR with 

respect to the best available approximation of the 

posterior distribution. 

Alongside the IPLF, the Iterated Posterior Linearisation 

Smoother (IPLS) [10, 14, 15], adds additional 

linearisation of the dynamics and measurement functions 

in past updates. It makes use of the RTS smoother, a 

closed-form forward backward recursion to calculate the 

smoothed densities at each time step with linear (affine) 

Gaussian measurement and dynamic models. A standard 

sigma-point RTS smoother is implemented, in which 

initial values for the smoothed mean and covariance are 

achieved by applying a forward sigma-point filter, and 

the proceeding to the backwards smoother. 

2.1.3 Particle filters 

The particle filters investigated in this activity for 

application to the space environment are grouped into 

state tracking and joint parameter estimation and state 

tracking schemes. 

Firstly, a standard particle filter with clipping, in which: 

• Resampling steps are taken whenever the 

effective sample size (ESS) is below a threshold 

[16]. 

• The importance weights are clipped, making the 

𝑁𝑐 largest weights out of the 𝑁 weights equal to 

the 𝑁𝑐 weight [17]. 

Secondly, a 2-timescale particle filter, in which the model 

parameters are not constant. The evolution of this 

parameters however is slow with respect to state 

variables. Hence, two timescales are introduced. 

Thirdly, an Ensemble Kalman Filter (EnKF) [18], in 

which particle weights are updated using a Monte Carlo 

estimate of the Kalman gain and can be used for both 

state and parameter tracking. 

Ultimately, a Nested Particle Filter (NPF) [19, 20] which 

tackles the recursive computation of the posterior 

distribution of the parameters. The idea behind it is to 

approximate sampling by a jittering procedure that 

introduces a controlled perturbation to the (parameter) 

particles. Then, the likelihood 𝑝(𝒛𝒌|𝛉̅𝑘
𝑖 , 𝒛1:𝑘−1) is 

approximated by taking one time step of a standard 

particle filter with clipping conditional on the jittered 

parameter sample. 

2.2 Robust Data Association 

2.2.1 Multi-target Data Association 

The Stone Soup’s software library is again used as the 

foundation for the development of multi-target data 

association algorithms applied to the space environment. 

Considering the notion that there are 𝑁𝑘 targets at the 𝑘 

time epoch, with state 𝑋𝑘 = [𝑥𝑘
1…𝑥𝑘

𝑁𝑘] and 𝐴𝑘 =

[𝑎𝑘
1 …𝑎𝑘

𝑁𝑘] are the data association hypotheses for each 

target. 

Several algorithms are investigated to find the value 𝐴𝑘 

which maximises 𝑝(𝑍𝑘, 𝐴𝑘|𝑍1:𝑘−1), where again 𝑍𝑘 

refers to observation 𝑘. 

To that end, the Global Nearest Neighbour (GNN) 

defines a cost matrix 𝐶, of dimensions 𝑁𝑘 ×𝑀𝑘 + 1, 

where 𝑀𝑘 is the number of measurements in 𝑍𝑘, with 

value 𝐶𝑖,𝑗 = log (𝑝(𝑍𝑘, 𝑎𝑘
𝑖 = 𝑗|𝑍1:𝑘−1)). The association 

that maximises the joint probability is then identified 

using the standard auction iterative algorithm, which 

scales linearly with the number of targets. Once the 

optimal value for 𝐴𝑘 is identified, the single-target 

associations that comprise the joint association are 

assumed to have a probability of unity and all others a 

probability of zero. 

The Joint Probabilistic Data Association Filter (JPDA), 

on the other hand, considers an (exponentially large) sum 

over the allowed joint associations, and does so through 

an implementation of the Efficient Hypothesis 

Management (EHM) algorithm. EHM assumes access to 

the same matrix of benefits 𝐶 and employs two non-

iterative processes: firstly the EHM net is constructed, 

being a data structure describing the exponentially large 

number of terms in the sum with substantially sub-

exponential computation cost and memory requirements; 

then, it capitalises on this data structure to compute a 

revised 𝐶 which is used in the ongoing operation of the 

multi-target tracking algorithm. 

The first process involves several steps. Firstly, it 

assumes access to the set of measurement hypotheses that 

each target can be associated to, to then recurse through 



 

the targets in reverse order to identify the set of remaining 

measurement hypothesis which targets after the 𝑖𝑡ℎ target 

can associate with. 

Secondly, the net is built layer-by-layer. A layer per 

target with a non-zero number of nodes. Each node is 

associated with a set of measurement hypotheses that are 

relevant to targets that have yet to be considered. 

Targets are considered in turn. For each target, each node 

in the layer is considered for each non-zero measurement 

hypothesis and for the non-detection measurement 

hypothesis. For each such association, the set of 

measurements that have been used and are relevant to the 

targets that are yet to be considered, is computed. If no 

node exists, it is created and an arc added between the 

node 𝑖𝑡ℎ and (𝑖 − 1)𝑡ℎ, annotated with the association. 

Multiple arcs can then exist between a pair of nodes, and 

the resulting data structure captures all the information 

that would have existed had one enumerated the 

exponentially large number of joint data association 

hypotheses. The performance of the algorithm is clearly 

impacted by the ordering of the targets. 

The second process comprising EHM involves 

calculating the marginal probabilities that can be passed 

back to the single-target tracking components. For each 

target, this requires EHM to calculate a sum over all 

constituent joint association hypotheses. 

3 RESULTS 

Several benchmarking scenarios are derived to assess the 

performance of the aforementioned methodologies. 

GMV’s SST Sensor Data Simulator (Ssdsim) is used 

for the simulation of object populations and observation 

data. GMV’s SST Orbit Determination and Sensor 

Calibration Software (Sstod) is used to generate 

reference weighted batch least-squares solutions. 

ESA’s GODOT software library is used as 

astrodynamics engine for the necessary orbit propagation 

activities around which the algorithms are implemented. 

Several scenarios are simulated. For state estimation, 

these include nominal OD scenarios, scenarios which 

include miscorrelated observations, others with data 

scarcity, with high noise distribution and others with 

initial state derived from an Initial Orbit Determination 

(IOD) algorithm. These are simulated both in Loe Earth 

Orbit (LEO) and Geostationary Orbit (GEO) regimes. 

For data association, nominal scenarios in LEO and GEO 

for 20 objects and with data for 7 and 20 days are 

simulated together with a fragmentation case in LEO, a 

cluster of 6 objects in GEO, and a case with nearby 

objects in GEO. 

Firstly, however, results for the pre-prototypes 

concerning modern extension to batch least-square 

methods will be presented. 

3.1 Modern batch least-squares methods 

3.1.1 Uncertainty quantification: Stochastic 

Consider Parameters 

To assess the performance of the SCP pre-prototype, 3 

months of data of an object in Sentinel-1 orbit is used to 

generate a total of 40 different estimated orbits, every 2/3 

days depending on data availability. The estimates are 

propagated from estimation epoch 𝑡0 (last measurement) 

to +4 and +7 days after, in which an uncorrelated 

(without any data reuse in common) orbit estimate is also 

produced. With these two orbits (predicted and 

estimated), the CvM EDF test metric, assessing the 

distribution of the Mahalanobis distances between the 

orbits, according to the predicted covariance, is evaluated 

and displayed in Figure 3-1. 

 

Figure 3-1. Mahalanobis distance distribution of orbital 

differences between predicted and estimated orbits 

between 𝑡0 + 4 to 𝑡0 + 7, after SCP update for 

covariance realism. 

The observed close match between the observed and the 

theoretical 3 DoF 𝜒2 distribution is confirmed with a 

CvM EDF Fit metric of 0.03. The estimated SCP are in 

line with the noise introduced in the simulated data, 

reaching a drag model error power noise of 13.1%, with 

a correlation time scale of ~0.5 days. The presence of the 

black line (without correction) highlights the importance 

of accounting for model errors in the estimation of the 

covariance. 

Additionally, classical covariance containment analysis 

reveals a 97.14% containment, very much in line with the 

theoretical containment for a 3 DoF Gaussian (97.1%). 

Sample containment, in green, is illustrated in Figure 3-2. 



 

 

Figure 3-2. 3𝜎 covariance containment of the optimised 

Mahalanobis distance at various analysis epochs in 

TNW 

3.1.2 QtW reference frame 

Three different objects, at 300, 500 and 800km of altitude 

are chosen to assess the performance of the QtW frame. 

For each, the state and drag coefficient are Monte Carlo 

sampled (the latter with a 20% standard deviation). High 

fidelity dynamics are used to propagate each sample. 

At the final epoch, the reconstructed covariance matrices 

in inertial (GCRF), TNW and QtW frames are evaluated, 

together with the state’s particle distribution. 

 

Figure 3-3. MC samples dispersion in GCRF frame 

after 3 days of propagation. Low altitude object. 

 

Figure 3-4. MC samples dispersion in TNW frame after 

3 days of propagation. Low altitude object. 

 

For the lowest altitude object, samples in GCRF and 

TNW frame, together with the reconstructed covariance 

after 3 days of propagation are illustrated in Figure 3-3 

and Figure 3-4 respectively: 

Instead, in QtW frame, along-track dispersion is 

translated into time dispersion, allowing to retain a 

Gaussian representation of the state’s distribution after 

the same interval of propagation, as illustrated in Figure 

3-5. 

 

Figure 3-5. MC samples dispersion in QtW frame after 

3 days of propagation. Low altitude object. 

For higher altitude orbits, the benefit of resorting to the 

QtW representation is delayed, as the impact of drag in 

the dynamics is reduced. While for the 800 km the onset 

of non-linearities does not happen in typical propagation 

intervals, the QtW maintains Gaussianity after 5 days of 

propagation, while this is not the case for GCRF and 

TNW projections. 

It is also observed, as anticipated in [6], that the accuracy 

of the projection to QtW, relies on the validity of Eq. (19) 

for its Jacobian, which holds as long as linearity in the 

QtW is maintained. This effect is illustrated in Figure 

3-6, which represents the QtW samples and reconstructed 

covariance of a low altitude space object with large initial 

uncertainty after 3 days of propagation, together with a 

linearly propagated initial covariance projected by means 

of the Jacobian of the QtW transformation. 

It is seen that while the samples maintain Gaussianity in 

QtW (which do not in TNW or GCRF), the covariance 

transformation to QtW does not perfectly fit the 

reconstructed Monte Carlo covariance, showcasing the 

limits of the underlying assumptions for the computation 

of the Jacobian. 



 

 

Figure 3-6. QtW samples after 3 days of propagation. 

The solid ellipsoids represent the Monte-Carlo 

reconstructed covariance. Dashed ellipsoids represent 

the linearly propagated initial covariance rotated with 

the Jacobian of the QtW transformation. 

3.1.3 Huber penalty parameters 

The results in this section aim to verify the convergence 

and robustness properties of the Huber penalty 

parameters pre-prototype alongside with the 

determination of suitable values for the Huber parameter 

𝑀 and of the trust region parameter 𝜆. As initial values 

for these parameters, 𝑀 is set to start from 5.0, 

considering that for a weighted non-linear least squares 

problem, in an ideal case with knowledge of the true 

trajectory, the measurement’s residuals would display as 

a Gaussian distribution with standard deviation equal to 

the expected sigma of the measurements. For a normal 

distribution, 99.73% would fall within the 3𝜎 boundary, 

which in weighted terms translates to a value of 3.0. To 

account for possible model errors, it is initially set to 5.0. 

For the trust region parameter 𝜆, a rule of thumb is to 

select an initial value of 𝜆 ∈ [0, 0.01] [9], with runs 

considering fixed and adaptive evolution of such 

parameter. 

In reasonably good orbit determination conditions, the 

Huber penalty function does not show any clear 

improvement with respect to solutions obtained with 

Gauss-Newton (GN) and Levenberg-Marquardt (LM), as 

illustrated in Figure 3-7. 

However, for an unfavourable orbit determination 

situation, in which the initial guess has been perturbed by 

0.5º in true anomaly, Figure 3-8 shows that GN does not 

converge, and LM is taking 20 iterations. With little to no 

damping (𝜆 equal to the lowest considered values of 0 

and 0.0001), the Huber penalty function does not 

converge either. For a fixed 𝜆 of 0.01 it does converge, 

while it does not for its adaptive counterpart. In both 

cases, the weighted RMS (WRMS) of the measurement 

residuals is diverging. 

The best performance is obtained with a value of 0.001, 

in which both fixed and adaptive converge after 10 

iterations. 

 

Figure 3-7. GN, LM and Huber penalty parameters 

comparison in terms of WRMS, together with adaptive 𝜆 

evolution for a LEO nominal OD case. 

 

Figure 3-8. GN, LM and Huber penalty parameters 

comparison in terms of WRMS, together with adaptive 𝜆 

evolution for a LEO unfavourable, perturbed initial 

guess OD case. 

Additionally, if one considers high noise measurements 

for a radar case in LEO: 100 metres in range, 1 m/s in 

range-rate and 2º for angular measurements, the results in 

Figure 3-9 are obtained. Both GN and LM show 

excellent convergence behaviour after only 3 iterations. 

For the Huber penalty function, a value of 𝜆 = 0.1 is not 

a suitable choice, with delayed convergence. For smaller 

values, the adaptive scheme continuously shrinks the 

trust region, but even by doing so, it displays a slower 

rate of convergence than GN and LM. 



 

 

Figure 3-9. GN, LM and Huber penalty parameters 

comparison in terms of WRMS, together with adaptive 𝜆 

evolution for a LEO high noise case. 

3.1.4 Time-dependent measurements weight 

The idea behind the assessment of the time-dependent 

measurements weight pre-prototype is to determine 

which correlation scale can provide the best benefits for 

OD in combination with realism of the output 

covariances. 

To that end, a dynamical model, including stochastic 

noise perturbations is sought such that the RMS of the 

orbital differences between the simulated and estimated 

orbits are of the same order of magnitude as the 

measurement’s accuracy. This is achieved by selecting a 

dynamical model for the simulated orbit that is different 

to the OD dynamical model, as is the case in a real 

scenario. Then, a parametric analysis is carried out for 

different scales of the time dependent weight for a total 

of 300 runs: 

• Routine OD determination and propagation 

processes are run, each for different time-

dependent measurement correlation time scale. 

• SCP is applied to produce realistic covariances. 

• Covariance realism metrics and covariance size 

of the realistic covariances are assessed to 

determine the optimum weight scale that allows 

to minimise the covariance size while still being 

realistic. 

This is performed for a space object at 600 km altitude, 

with an applied stochastic density noise with a 40% 

power and correlation of 1 day, and dynamical models set 

up as illustrated in Table 3-1. 

 

 

 

 

 

Table 3-1. Dynamical model differences between 

simulated and estimated orbits for the time-dependent 

measurements weight correlation time scale 

experiments 

Dynamics Simulated orbit OD model 

Geopotential 128x128 64x64 

Third bodies Sun&Moon Sun&Moon 

J2&Moon interaction YES NO 

Solid Tides YES YES 

Ocean tides YES NO 

Drag constant area Constant area Constant area 

SRP constant Area Constant area Constant area 

ATMO model NRLMSISE-00 NRLMSISE-00 

 

Table 3-2 and Table 3-3 show the results of the stochastic 

density noise parameters estimation and covariance sizes 

for different measurement weights correlation scale. 

Values of CvM lower than 1.16 indicate that the tested 

distribution matches the 𝜒2 distribution with a 0.01 

confidence level or larger. A similar indicator of the level 

of realism if the covariance containment, which must be 

compared against the expected containment of a 

multivariate distribution of the same Degrees of Freedom 

(DoF). In this case, position covariance was analysed, 

thus aiming for a theoretical containment of 97.1% for a 

3σ level. 

Table 3-2. Covariance realism analysis for parametric 

analysis of time-dependent measurements weight 

𝝉𝒎𝒆𝒂𝒔 

(days) 

Analysis 

epochs 

𝝈𝒂𝒕𝒎 

(%) 

𝝉𝒂𝒕𝒎 

(days) 

CvM 

metric 

1 t0+2-6 24,63 0,53 0,4 

2 t0+2-6 32,4 1,06 0,59 

3 t0+2-6 34,3 1,86 0,89 

5 t0+2-6 36,2 1,35 0,96 

8 t0+2-6 37,55 1,12 1,06 

 

Overall, the Covariance Determination methodology 

using Stochastic Consider Parameters can estimate 

density noise parameters that achieve realism, as 

confirmed with all CvM metrics being lower than 1.16, 

and containment levels similar to the expected theoretical 

behaviour even under such perturbed simulations. 

 

 



 

Table 3-3. Covariance containment and size analysis for 

parametric analysis of time-dependent measurements 

weight 

𝝉𝒎𝒆𝒂𝒔 (days) 
containment 𝟑𝝈 

(%) 

Covariance trace 

(m) 

1 94,19 1228 

2 95,44 1204 

3 93,93 1580 

5 93,36 1760 

8 93,12 1869 

 

However, the accuracy of the estimated parameters 

(𝜎𝑎𝑡𝑚, 𝜏𝑎𝑡𝑚) is affected by the choice of 𝜏𝑚𝑒𝑎𝑠. For very 

low measurement weight scales, the assigned 

measurement weight is below 0.1 for measurements 

before 2.5 days of the estimation epoch. This leads to 

very few measurements being considered in the batch 

estimation, and a degradation of the estimation accuracy. 

Thus, the nominal covariance is larger than the accuracy 

of the measurements, and the Covariance Determination 

methodology converges to density noise parameters that 

are below the introduced perturbations. On the contrary, 

larger weight scales for the measurements allow for a 

better estimation of the density noise parameters.  

Nonetheless, it is seen that as the time scale increases, too 

many measurements are considered in the batch 

estimation. This leads to a lack of accuracy in the 

estimation, since the dynamics at 600 km are not well 

captured with too long measurements arc. 

All these factors affect directly the size of the 

covariances, while still being realistic due to the 

Covariance Determination methodology. It is seen how 

the minimum covariance size is achieved for a 

measurement weight scale of 2 days. With this 

correlation scale, the applied measurement weight is less 

than 0.1 for measurements that are 4.75 days before the 

estimation, which is consistent with the fixed LUPI of 

around 5-6 days that is applied operationally. 

3.2 Modern Sequential filters and Particle 

filters 

Solutions for the UKF, IPLF and IPLS sequential filters 

are displayed to only some of the scenarios described in 

the preamble of Section 3. Regarding particle filters, 

solutions for the ENKF with (B) and without parameter 

estimation are shown. Other particle filters are discarded 

due to computational performance. Sstod’s batch least-

squares reference solution is also included. Additionally, 

some of the batch solutions have some of the proposed 

modern extensions applied.  

Table 3-4: Nominal OD in LEO with data of several 

radars, 90 days, 2 objects 

RMS vs reference Covariance realism 

Modern Batch least-squares 

Object 1:  
152.94 m 
Object 2:  
12.43 m 
Object 1 (Huber): 99.13 
m 
Object 2 (Huber): 12.08 
m 

Using SCP. 
 
Object 1: 

- CvM: 0.11 

- 3𝜎 containment: 95,69 % 
Object 2: 

- CvM: 0.03 

- 3𝜎 containment: 97,14 % 

Modern Sequential filters 

Object 1 (UKF): 
 74.87 m 
Object 2 (UKF):  
58.13 m 
Object 1 (IPLF):  
71.54 m 
Object 2 (IPLF):  
57.92 m 
Object 1 (IPLS):  
17.05 m 
Object 2 (IPLS):  
8.19 m 

Object 1 (UKF): 

- CvM: 0.304 

- 3𝜎 containment: 43.18 % 
Object 2 (UKF): 

- CvM: 0.188 

- 3𝜎 containment: 74.41 % 
Object 1 (IPLF): 

- CvM: 0.326 

- 3𝜎 containment: 20.45 % 
Object 2 (IPLF): 

- CvM: 0.195 

- 3𝜎 containment: 76.74 % 
Object 1 (IPLS): 

- CvM: 0.356 

- 3𝜎 containment: 0.0 % 
Object 2 (IPLS): 

- CvM: 0.25 

- 3𝜎 containment: 65.11 % 

Particle filters 

Object 1 (ENKF): 
25.31 m 
Object 2 (ENKF): 
66.74 m 
Object 1 (ENKF(B)): 
36.45 m 
Object 2 (ENKF(B)): 
33.33 m 
  

Object 1 (ENKF): 

- CvM: 0.05 

- 3𝜎 containment: 96 % 
Object 2 (ENKF): 

- CvM: 0.26 

- 3𝜎 containment: 100 % 
Object 1 (ENKF(B)): 

- CvM: 0.01 

- 3𝜎 containment: 100 % 
Object 2 (ENKF(B)): 

- CvM: 0.01 

- 3𝜎 containment: 100 % 

 

For two LEO objects, at 400 (Object 1) and 800 (Object 

2) km of altitude, Table 3-4 displays the RMS of orbital 

differences and the covariance realism analysis. The 

batch solution processes the complete 90 days interval in 

batches of 4 and 7 days, with a sliding window of 1 and 

2 days. For the lowest altitude object, the batch solution 

displays a large RMS, subject to higher dynamics non-

linearities, and with a data rejection percentage that 

reaches 50% for some of the ODs, and a mean value of 

12%, whereas no measurements are rejected by the 

sequential and particle filters. This is not the case for the 



 

higher altitude object, where the classical batch solution 

improves UKF, IPLF and particle filters. RMS is slightly 

improved by the Huber pre-prototype. 

For sequential filters, prominent deviations occur with 

the UKF after long periods without observations, which 

the IPLF does not exhibit due to its iterative operation. 

While application of the smoother by the IPLS does 

improve noticeably the RMS, it affects negatively 

covariance containment, where the UKF and IPLF 

already perform modestly. Particle filters and application 

of the SCP pre-prototype do show good containment and 

realism. 

Both sequential and particle filters performance are 

known to be extremely sensitive to process noise 

definition. A simple parametric study in Table 3-5 

confirms this. While the RMS is somehow stable, CvM 

first improves to then degrade, and containment suddenly 

drops to zero as smaller values of the process noise are 

explored. 

Table 3-5: IPLS sensitivity to process noise 

Process noise σ 

[m2s-3] 

RMSE 

[m] 

CvM Containment 

5e-09 8.05 0.308 1.00 

5e-10 7.53 0.270 1.00 

5e-11 6.57 0.151 1.00 

5e-12 4.73 0.349 0.05 

5e-13 3.48 0.357 0.00 

 

For an object in GEO, for measurement data for 90 days, 

Table 3-6 shows its performance in terms of RMS vs 

reference orbit and measurement residuals. The batch 

solution processes the dataset in intervals of 20 days with 

a sliding window of 2 days. No measurements are 

rejected at all. Residuals are aligned with the expected 

noise from the sensor. UKF and IPLF performances are 

aligned with the batch solution, while the IPLS reduces 

RMS by one order of magnitude, despite maintaining 

similar residual performance. 

Particle filters display a slightly poorer performance 

when parameters are not being estimated, while when 

parameters are being estimated in EnKF(B), the 

algorithm fails to attain parameter stability. 

 

 

 

 

 

 

Table 3-6: Nominal OD in GEO with data of a telescope 

network, 90 days, 1 object 

RMS vs 
reference 

Measurements residuals (mean, RMS) 

Modern Batch least-squares 

Classical: 
95.93 m 
Huber: 
95.93 m 
  

Classical: 

- Right ascension: 0.0, 0.155 mdeg 

- Declination: 0.0, 0.140 mdeg 
Huber: 

- Right ascension: 0.0, 0.155 mdeg 

- Declination: 0.0, 0.140 mdeg 

Modern Sequential filters 

UKF: 162.3 
m 
IPLF: 162.3 
m 
IPLS: 23.41 
m  

UKF: 

- Right Ascension: -0.0 mdeg, 0.14 mdeg 

- Declination: 0.0 mm/s, 0.14 mm/s 
IPLF: 

- Right Ascension: -0.0 mdeg, 0.14 mdeg 

- Declination: 0.0 mm/s, 0.14 mm/s 
IPLS: 

- Right Ascension: 0.0 mdeg, 0.14 mdeg 

- Declination: -0.0 mm/s, 0.14 mm/s 

Particle filters 

ENKF 
292.01 m 
ENKF(B): 
885.57 m 
  

ENKF: 

- Right ascension: 0.065 mdeg, 0.156 mdeg 

- Declination: -0.010 mdeg, 0.132 mdeg  
ENKF(B): 

- Right ascension: 0.322 mdeg, 0.563 mdeg 

- Declination: -0.094 mdeg, 0.177 mdeg 

 

Table 3-7 shows the performance when an OD for a LEO 

object is initialised by a solution coming from an Initial 

Orbit Determination (IOD) method. Not all solutions are 

displayed for residuals as they display a very similar 

behaviour for each type of algorithm. Batch methods 

display improved performance over sequential and 

particle filters. Furthermore, a radius of convergence 

analysis is performed for this case, in which the initial 

guess is incrementally perturbed until the algorithm fails 

to converge. Batch methods are able to deal with 

solutions that fall up to 11 km, extended to 18 km with 

the Huber penalty pre-prototype. However, accuracy of 

the estimate quickly degrades beyond 8 and 5 km of 

perturbation respectively (i.e. quicker for the Huber 

methodology). Sequential filters can no longer converge 

after a 4 km perturbation, with RMS also exhibiting a 

degrading performance. Particle filters also fail to show 

a stable behaviour, which would dissipate the initial 

error, following a trend similar to the particle filters. The 

typical frequency of data in this domain may prove to be 

too low. 

 

 

 



 

Table 3-7: OD in LEO with data, with the initial state 

from an IOD 

RMS vs 
reference 

Measurements residuals (mean, RMS) 

Modern Batch least-squares 

Classical: 
12.81 m 
Huber: 
13.59 m 
  

Classical: 

- Azimuth: -38.502, 1097.078 mdeg 

- Elevation: 11.144, 162.751 mdeg 

- Range: -0.564, 12.234 m 

- Range-rate: -363.568, 4662.013 mm/s 

Modern Sequential filters 

UKF: 42.73 
m 
IPLF: 42.73 
m 
IPLS: 35.12 
m  

IPLS: 

- Azimuth: -64.89, 1839.66 mdeg 

- Elevation: -0.3, 221.91 mdeg 

- One-way Range: -0.28, 11.97 m 

- One-way Range-rate: -164.78, 5229.08 
mm/s 

Particle filters 

ENKF 
91.14m 
ENKF(B): 
120.84 m 
  

ENKF(B): 

- Azimuth: -544.45 mdeg, 2073.18 mdeg 

- Elevation: -83.39 mdeg, 264.22 mdeg 

- Range: 12.83 m, 29.39 m 

- Range-rate: 1686.39 mm/s, 9322.90 mm/s 

 

The ability of the algorithm to deal with miscorrelated 

data is illustrated in Table 3-8. The dataset includes a 

20% of observations of a close-by object, with a 

difference of 0.5º in inclination. On average, the batch 

solutions reject 8% of the measurements, whereas 

sequential filters reject 12.24% throughout the complete 

dataset processing. Particle filters fail to converge under 

these simulation conditions. 

Table 3-8: OD in LEO with radar data, including 

miscorrelated observations, 15 days 

RMS vs reference Data Rejection % 

Modern Batch least-squares 

137.64 m  8.21 % 

Modern Sequential filters 

UKF: 31.31 m 
IPLF: 26.54 m 
IPLS: 14.24 m  

UKF: 12.24 % 
IPLF/s: 12.24 % 
 

3.3 Robust Data Association 

Results for three different scenarios will be presented: 

real measurements during 1 week for 20 objects in LEO 

from 2 radars, simulation of 20 objects from 4 survey 

telescopes in GEO for 1 month, and simulated 

measurements for 2 near-by objects (500 metres along-

track separation) over the course of a week. 

For reference, the same cases are analysed by means of 

the track-to-track algorithm implemented in Sstod. 

Table 3-9 below reports some statistics regarding the 

number of tracks which have been validated (i.e., 

promoted by the algorithm and associated to an object) 

and the non-validated ones, along with the number of 

detected and missed objects. Only 37% of the tracks were 

correctly associated, while 80% of the objects detected. 

These are relatively low values due to the challenge that 

real data usually poses. Additionally, the radars 

providing the data have a high expected noise sigma. 

Table 3-9: Track and object statistics for data 

association in LEO with real data for 20 objects, track-

to-track algorithm 

Total tracks 194 Total objects 20 

Validated tracks 88 Detected objects 16 

Non-validated 

tracks 

106 Missed objects 4 

The algorithm makes use of a Figure of Merit (FoM) as 

the driver for association scoring and promotion. This 

value depends on the quality of a orbit determination 

process (goodness of fit) performed with the tracks in a 

given association hypothesis, The distribution of the 

Figure of Merit (FoM) of associations with 4 or more 

tracks distributed in terms of the estimated perigee is 

shown in Figure 3-10. True positives for objects between 

7000 and 7200 km of perigee have a FoM 0.1, whereas 

false positives range around a value of 1.0. This indicates 

that a better sensor characterisation in terms of expected 

noise sigma could lower the number of false positives 

since the FoM would increase. 

 

Figure 3-10. Distribution of the FoM according to 

perigee altitude. LEO, 20 objects, real data 

 



 

In terms of multi-target trackers, the datasets have been 

approached by the GNN and JPDA trackers. These 

algorithms require a prior for the objects that are to be 

tracked, which is not the usual case in the space 

environment. Simple track initiator methods were tested, 

to no avail. Future phases of the project will complement 

with suitable IOD algorithms. Thus, initiated tracks 

eventually break down. 

For the first of the GEO cases, with simulated data for 20 

objects, the track-to-track algorithm correctly associates 

92.4% of the tracks and detects all 20 objects, with 

improved performance in a better characterised 

environment and sensors with smaller expected noise 

sigma. GNN and JPDA are in this case supplied with 

priors for the tracked objects. GNN generates a total of 

42 trajectories on the 20 targets, all of which contain 

measurements from exclusively one target, and no targets 

are missed. Out of the 20 objects, only 2 targets are 

continuously followed by a single estimated trajectory, 

whereas the other objects generate between 2-3 

trajectories, due to the inability to associate new 

detections to existing trajectories. On the contrary, while 

due to the working principles of the JPDA algorithm, 

values for the suggested metrics cannot be produced, it 

generates near-perfect association results: 22 trajectories 

for 20 targets, without missing any target, and generating 

a single trajectory per target except for two, which were 

however properly terminated eventually. JPDA’s 

superior performance to GNN is illustrated in Figure 

3-11, evaluating the GOSPA penalisation metric [22]. 

Inspection reveals that aside from localisation errors, 

there are significant “missed” and “false” target 

contributions. 

 

Figure 3-11. GOSPA metric for DA in GEO with multi-

target trackers for clearly distinct objects 

Finally, a case of two objects in close conjunction in 

GEO, separated by 500 metres in along-track. In this 

case, the track-to-track algorithm fails. Out of 18 tracks, 

16 are validated, however these are only part of the false 

positive associations, and no object is detected. Data 

scarcity (only 1 track per object per sensor per night). On 

the other hand, both GNN and JPDA generate exactly 

two trajectories, with nearly identical performance. 

 

4 CONCLUSIONS 

Batch methods have proven again to be adequate to deal 

with state estimation in the space environment. Modern 

extensions have been investigated and deemed 

promising. The Huber penalty function is not costly 

compared to the classic approach and is seen to increase 

robustness in the case of measurement outliers. Still, it is 

recommended to implement an outlier rejection 

mechanism alongside it. The time-weighted 

measurement function benefits the estimates (state and 

covariance) by introducing more measurements into the 

analysis interval even if with lowered weight, while it is 

challenging to determine the best time scale in a general 

manner. The SCP pre-prototype is seen to be able to 

estimate the system’s uncertainty and correct accordingly 

the estimated and predicted covariance. Finally, the QtW 

transformation proves to be a successful approach to 

maintain Gaussianity for extended time intervals of 

propagation, which offers a promising performance 

coupled to the SCP. 

In terms of modern sequential filters, they have proved 

solid performance in the benchmarking scenarios. While 

the IPLF offers little improvement over the UKF, the 

IPLS does provide significant enhancements, but at the 

cost of re-processing the data. In terms of state and 

covariance realism, the process noise is seen to play a key 

role, as is well known, and is typically not easy to assess. 

The particle filters investigated in the activity have been 

reduced to EnKF with and without parameter estimation, 

where others such as the standard particle filter are 

discarded due to performance limitations. As for 

sequential filters, these have been found sensitive to the 

intensity of the process noise. The EnKF with no 

dynamical parameters estimation has been seen to 

perform better, showcasing a more stable behaviour. In 

general, the particle filters are seen to suffer from model 

and data mismatch. 

In terms of data association, the track-to-track algorithm 

in GMV’s Sstod software has proved effective. It has 

demonstrated good precision, sensitivity and accuracy, 

except for a close conjunction case in GEO. The GNN 

and JPDA sequential multi-target trackers have also 

shown a promising performance, while they should be 

accompanied by suitable trajectory initiator methods, as 

they rely on a prior. Additionally, proper trajectory 

termination techniques need also to be incorporated. 

JPDA has proven superior to GNN and both have dealt 

successfully with the close conjunction GEO case. 

The IPLF and IPLS filters for state estimation and JPDA 

algorithm for multi-target tracking are selected for 

implementation in a prototype library, RODDAS. 
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