
TRAJECTORY-INFORMED ADAPTIVE MULTI-FIDELITY PROPAGATION IN
CISLUNAR SPACE

Cedric Petion, Benjamin L. Reifler, and Brandon A. Jones

The University of Texas at Austin, 2617 Wichita St, Austin, TX 78712, USA
Email: {cpetion, benjamin.reifler, brandon.jones}@utexas.edu

ABSTRACT

As the number of missions to cislunar space increases,
the population of space objects in this region is expected
to grow, making efficient uncertainty propagation essen-
tial for space situational awareness (SSA). This is com-
plicated by the cislunar domain’s vastness, chaotic dy-
namical environment, and limited availability of mea-
surements. This paper presents an adaptive multi-fidelity
uncertainty propagation method that dynamically adjusts
the included perturbing forces based on position in cislu-
nar space, minimizing computation time while maintain-
ing a prescribed modeling accuracy. The proposed adap-
tive method is then integrated into a multi-target track-
ing framework to reduce the computational cost of track
prediction without sacrificing accuracy, which is impor-
tant for managing the growing number of objects in cis-
lunar space. The effectiveness of the approach is demon-
strated in simulated test cases relevant to upcoming cislu-
nar missions and SSA applications, resulting in a signifi-
cant reduction in computational cost compared to a non-
adaptive approach while achieving equivalent or superior
accuracy.

Keywords: Space situational awareness; cislunar; multi-
fidelity; uncertainty propagation; multi-target tracking.

1. INTRODUCTION

The cislunar regime is increasingly receiving attention
from governmental and commercial entities, with the
growing number of planned missions expected to signif-
icantly increase the number of anthropogenic space ob-
jects (ASOs) in the region. This proliferation of ASOs,
along with cislunar space’s size and illumination con-
ditions that contribute to sparse measurements and the
chaotic multi-body dynamics that complicate uncertainty
propagation, presents a need for advances in cislunar
space situational awareness (SSA) [1, 2, 3, 4].

An essential capability within cislunar SSA is the abil-
ity to track a large number of ASOs, which may include
both operational spacecraft and space debris. Multi-

target tracking (MTT) algorithms provide a framework
to achieve this, but incur a computational cost for the
prediction step proportional to the cost of propagating a
single object’s state probability density function (PDF)
times the number of hypothesized tracks. Thus, to main-
tain computational tractability, efficient orbit uncertainty
propagation methods must be employed. This paper
presents an adaptive method for multi-fidelity orbit prop-
agation in cislunar space. The proposed method is ap-
plied to an ensemble Gaussian mixture filter (EnGMF),
a particle-based filter that is robust to sparse measure-
ments [5, 6, 7]. The EnGMF is used in a generalized
labeled multi-Bernoulli filter (GLMBF), which is a multi-
ple hypothesis multi-target filter based on labeled random
finite sets (RFSs) [8, 9, 10].

Multi-fidelity methods were first proposed for orbit un-
certainty propagation by [11]. This approach propagates
a particle-based representation of a state space PDF us-
ing a fast-to-compute but possibly inaccurate low-fidelity
model, and then identifies a small subset of “important”
samples to be repropagated with an accurate yet compu-
tationally expensive high-fidelity model. These low- and
high-fidelity particles are then used in a stochastic collo-
cation procedure to produce an approximate high-fidelity
solution (designated the multi-fidelity solution) for each
point in the full particle ensemble. The multi-fidelity so-
lution will then have accuracy close to that of the high-
fidelity model but runtime close to the low-fidelity model.

The accuracy and runtime of the multi-fidelity solution
are contingent on the low- and high-fidelity models that
are selected. For cislunar applications, the optimal model
pair varies throughout cislunar space as the relative con-
tributions of Earth gravity, Lunar gravity, and perturbing
forces change throughout different domains. Thus, when
propagating a PDF through cislunar space with the multi-
fidelity method, the optimal model pair may change over
time and space and may not be known a priori.

Our solution is an adaptive approach to model selection
that varies the perturbations included in the high-fidelity
model as a function of position in cislunar space. We
pose the issue as an optimization problem, with the ob-
jective being to minimize runtime subject to an upper
bound on the expected error in acceleration magnitude.
The solution is obtained using a precomputed library of
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recommended gravity field terms from [12]. This work
advances previous research from [13] that used a limited
set of three models: one pair of models near the Earth,
one near the Moon, and one in all other regimes, as well
as the work of [14] that examined non-adaptive cislunar
multi-fidelity propagation.

Background on the multi-fidelity method, the EnGMF,
and the GLMBF are provided in Sections 2.1, 2.2, and
2.3, respectively. The adaptive multi-fidelity model se-
lection method is outlined in Section 3. Lastly, numerical
results for simulated test cases are presented in Section 4,
which assesses the propagation accuracy, tracking accu-
racy, and runtime for cislunar SSA scenarios.

2. BACKGROUND

2.1. Multi-Fidelity Orbit Uncertainty Propagation

The multi-fidelity method employed in this paper was
first proposed in [15] and later extended to orbit uncer-
tainty propagation by [11]. The approach used in this
paper is bi-fidelity, with a low-fidelity model that is in-
tended to be fast to evaluate but may possess relatively
poor accuracy, and a high-fidelity model with greater ac-
curacy at the expense of increased computation time.

Reference [11] suggests using a general perturbations
propagator for the low-fidelity model to provide ana-
lytic or semi-analytic solutions that are rapid to com-
pute. However, in cislunar space, where the gravities
of the Earth and the Moon are of similar magnitudes,
general perturbations methods, which typically assume
small third-body perturbations (if any at all), often fail
to provide sufficiently accurate solutions. Therefore, in
this work, the low-fidelity model is a special perturba-
tions propagator that numerically integrates the differ-
ential equations for a limited, and thus relatively fast to
evaluate, force model. The high-fidelity model is also a
special perturbations propagator, but with a force model
containing substantially more perturbations that are rel-
atively slow to compute. See Section 3 for an in-depth
discussion on the model selection.

Conceptually, the multi-fidelity method works by using a
low-fidelity dynamics model to propagate a set of parti-
cles (such as Monte Carlo samples or sigma points), and
then repropagates a limited subset that are dynamically
important with a high-fidelity dynamics model and uses
these “important” samples to adjust the low-fidelity sam-
ples via stochastic collocation.

The remainder of this section provides an abbreviated ex-
planation of the multi-fidelity method in an orbit propa-
gation context. For a complete derivation and discussion,
see [15] and [11]. Begin by letting ξ ∈ Rd be a ran-
dom input vector. In this work, it corresponds to a Monte
Carlo sample at the initial time and may also be concate-
nated with a process noise acceleration vector. Let the

propagated low-fidelity and high-fidelity samples be de-
noted by xL(ξ) and xH(ξ), respectively. Then, for the
set of random inputs Ξ = {ξi}mi=1, define the snapshot
matrix of low-fidelity samples

XL(Ξ) =
[
xL(ξ1) . . . xL(ξm)

]
∈ Rn×m, (1)

and the subspace

XL(Ξ) = span(XL(Ξ)). (2)

We desire a multi-fidelity approximation provided by a
stochastic collocation surrogate

xH(ξ) ≈ x̂H(ξ) =

r∑
l=1

cl(ξ)x
H(ξ̄l), (3)

where cl are expansion coefficients, ξ̄l are the important
samples, and r is the rank of the surrogate with r ≪ m.

The important samples are identified iteratively, with
each iteration’s important sample being the point that
maximizes the distance to the subspace of previously
identified important samples. Thus, the kth important
sample is

ξ̄k = argmax
ξ∈Ξ

dist(xL(ξ),XL(Ξk−1)), (4)

where
dist(x,X) ≡ inf

y∈X
∥x− y∥ , (5)

and
Ξk = Ξk−1 ∪ {ξ̄k}. (6)

The maximum number of important samples is limited
to the rank of the surrogate, with r ≤ n. Since orbit
state vectors typically have dimension n = 6, [11] sug-
gests augmenting x(ξ) with the state trajectory at mul-
tiple points in time to increase the rank, thus permit-
ting surrogates with more important samples, which was
found to improve the accuracy of the multi-fidelity solu-
tion.

To solve the discrete optimization problem in Eq. 4, [15]
suggests a greedy approach via the pivoted Cholesky de-
composition to produce an approximate solution given by[

XL
]⊺

XL = A⊺LL⊺A, (7)

where
[
XL

]⊺
XL is the Gramian matrix of low-fidelity

samples, L is lower triangular, and A is a pivot matrix.

The expansion coefficients are solved such that the basis
of low-fidelity important samples may be used to approx-
imately reconstruct the snapshot matrix. The expansion
coefficients cl must then satisfy

xL(ξ) ≈ x̂L(ξ) =

r∑
l=1

cl(ξ)x
L(ξ̄l), (8)
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which parallels Eq. 3. Reference [11] proposes an iter-
ative approach to determine r by incrementing it until
the reconstructed snapshot matrix produced by Eq. 8 is
within some user-specified tolerance of the original snap-
shot matrix from Eq. 1.

Expressing Eq. 8 in matrix form and combining it with
Eq. 7, we obtain

LL⊺c = X(Ξ̄)⊺X(Ξ), (9)

where Ξ̄ = {ξ̄i}rl=1 and c is a matrix of the coefficients,
cl. The coefficients c, which may be solved using for-
ward / backward substitution, may then be used in Eq. 3
to obtain the multi-fidelity solution.

2.2. The Ensemble Gaussian Mixture Filter

The EnGMF enables accurate but efficient nonlinear es-
timation. The filter parameterizes the estimated state
PDF as a set of particles and uses kernel density esti-
mation (KDE) to avoid particle depletion, allowing it to
function with fewer particles than a particle filter (PF)
[5, 6]. The EnGMF is initialized by drawing N random
samples from the initial PDF. The PDF is predicted by
propagating each particle forward in time. To update the
PDF, we first convert the particles to a Gaussian mixture
model (GMM) via KDE using Silverman’s rule [16, 6]:
Each particle becomes the mean of a GMM component
with weight N−1 and covariance

BS =

(
4

N (d+ 2)

) 2
d+4

P , (10)

where P is the particles’ sample covariance. The GMM is
then updated using an appropriate GMM-based filter and
N new particles are sampled from the updated GMM.
The KDE GMM is also used to extract the estimated
mean and covariance, as opposed to using the sample
mean and covariance directly.

In this paper, the GMM update is performed using the
square root unscented Kalman filter (SR-UKF) update
[17] to enable accurate nonlinear updates with fewer par-
ticles. This is intended to reduce the cost of prediction
and high-fidelity correction, but does increase the compu-
tational cost of the measurement update per particle. The
EnGMF generally performs better for orbit determination
when its particles’ states are parameterized by equinoctial
orbital elements, due to improved linearity when apply-
ing Silverman’s rule [18, 6]. However, because equinoc-
tial elements are designed to represent two-body orbits,
here we instead use Cartesian coordinates.

2.3. The Generalized Labeled Multi-Bernoulli Filter

The GLMBF is a labeled RFS-based multi-target filter.
An RFS may be thought of as a set of random vectors

whose cardinality is also a random variable. Random fi-
nite sets enable Bayesian estimation of the states of un-
known numbers of objects. The GLMBF is a closed-form
solution to the Bayes multi-target filter recursion [8, 9].
This paper uses the joint predict–update formulation of
the GLMBF [10]. This description of the GLMBF omits
the parts of the filter that deal with the addition of new
objects to the tracked population (spontaneous birth and
spawning models), because the simulations in this paper
do not use those capabilities.

2.3.1. Notation

In this section, lowercase letters denote vectors, capi-
tal letters denote sets, blackboard bold letters represent
spaces, and calligraphic letters denote sets of sets. Bold
symbols indicate the use of label-augmented vectors. For
variables that change over time, the subscript k to indi-
cate time is not written and the subscript k + 1 to indi-
cate the following timestep is abbreviated to a subscript
plus sign. The multi-object exponential is defined as
fX =

∏
x∈X f(x), the Kronecker delta is defined as

δY [X] =

{
1 , X = Y ,

0 , otherwise,
(11)

the indicator function is defined as

1Y (X) =

{
1 , X ⊆ Y ,

0 , otherwise,
(12)

and 1Y (x) = 1Y
(
{x}

)
. The function F denotes the set

of all finite subsets of a space. A label-augmented RFS
is defined on X × L, where X is the state space and L is
a discrete label space. This means that each element in
a realization of a labeled RFS is of the form x = (x, l),
where x is the state and l is the label. In this work, object
labels are of the form l = (i, k, j), where i is the index of
the sensor that first detected the object, k is the timestep
at which the object’s initial track was created, and j is
the object’s unique index out of all objects first detected
by sensor i at time k. A labled RFS realization may not
contain duplicate labels, and this is enforced using the
distinct label indicator

∆(X) = δ|X|

[∣∣lab(X)
∣∣] , (13)

where lab(x, l) = l denotes the projection of the label-
augmented state space X×L onto its discrete label space
L and lab(X) =

{
lab(x1) , . . . , lab(xn)

}
.

2.3.2. Random Finite Set PDFs

The PDF for a δ-generalized labeled multi-Bernoulli
(GLMB) RFS may be parameterized by components
(I, h) ∈ F(L) × H, where H is a discrete space, and
associated weights w(I, h). For MTT, each component
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typically represents a data association hypothesis, with I
being a set of objects that may exist, h being their com-
bined measurement association history, and w(I, h) being
the estimated probability that the hypothesis is true. A
δ-GLMB RFS density is of the form

π(X)

= ∆(X)
∑

(I, h)∈F(L)×H

w(I, h)δI
[
lab(X)

] (
p(h)

)X

,

(14)

where p(h)(·, l) is an object’s state-space PDF given as-
sociation history h and label l.

2.3.3. Joint Predict–Update Recursion

Given the initial filtering density in Eq. 14 at timestep k,
the predicted and updated density at timestep k + 1 is
given by

π+(X+)

∝ ∆(X+)
∑

I, h, I+, θ+

w(I,h)w
(I,h,I+,θ+)
+ (Z+)

× δI+
[
lab(X+)

]
×
(
p
(h, θ+)
+ (· | Z+)

)X+

, (15)

where I ∈ F(L), h ∈ H, I+ ∈ F(L+), and θ+ ∈ Θ+,
where L+ = L ∪ B+, B+ is the space of object labels
that could be born at this time, and Θ+ is the set of
maps θ+ : L+ →

{
0 : |Z+|

}
assigning measurements in

the current measurement set Z+ to object labels, where
θ+(l) = 0 implies that label l is not assigned a measure-
ment. Additionally,

w
(I, h, I+, θ+)
+ (Z+)

=
(
rB,+

)B+∩I+ (
1− rB,+

)B+−I+
(
p̄
(h)
S

)I∩I+

×
(
1− p̄

(h)
S

)I−I+
(
ψ̄
(h, θ+(·))
+ (· | Z+)

)I+

,

(16)

p
(h, θ+)
+ (x+, l | Z+) =

p̄
(h)
+ (x+, l)ψ

(θ+(l))
+ (x+, l | Z+)

ψ̄
(h, θ+(l))
+ (l | Z+)

,

(17)

p̄
(h)
+ (x+, l)

= 1B+
(l) pB,+(x+, l)

+ 1L(l)

〈
pS(·, l) fS,+(x+ | ·, l) , p(h)(·, l)

〉
p̄
(h)
S (l)

,

(18)

p̄
(h)
S (l) =

〈
p(h)(·, l) , pS(·, l)

〉
, (19)

ψ̄
(h, j)
+ (l | Z+) =

〈
p̄
(h)
+ (·, l) , ψ(j)

+ (·, l | Z+)
〉
, (20)

ψ
(j)
+ (x+, l | Z+)

= δ0[j]
(
1− pD(x+, l)

)
+

(
1− δ0[j]

) pD(x+, l) g
(
z+,j

∣∣ x+, l)
κ
(
z+,j

) , (21)

where rB,+(l) is the probability that object l is born,
pB,+(·, l) is the single-target PDF for the newborn object,
pS is the probability of survival from one step to the next,
pD is the probability of detection, fS,+(x+ | ·, l) is the
surviving object transition density, g is the measurement
likelihood, and κ is the expected clutter intensity.

The number of possible hypotheses grows exponentially
over time. To maintain computational tractability, the set
of new hypotheses (I, h, I+, θ+) in Eq. 15 resulting from
prior hypothesis (I, h) is truncated using a ranked as-
signment algorithm and the cost matrix shown in Eq. 22,
where c(l, j) = − log

(
η(I, h)(l, j)

)
and

η(I, h)(l, j) =
1− r

(l)
B,+ , j < 0 ∧ l ∈ B+ ,

r
(l)
B,+ψ̃

(h, j)
+ (l | Z+) , j ≥ 0 ∧ l ∈ B+ ,

1− p̄
(h)
S (l) , j < 0 ∧ l ∈ I ,

p̄
(h)
S (l) ψ̃

(h, j)
+ (l | Z+) , j ≥ 0 ∧ l ∈ I .

(23)

If an object is assigned to the left block of the cost matrix,
it does not exist, if it is assigned to the center block, it ex-
ists but was not detected at time k+1, and if it is assigned
to the right block, it exists and produced measurement
z+,j . The classic approach to solve this ranked assign-
ment problem is to use Murty’s algorithm [19, 8, 9], but
for large cost matrices, a Gibbs sampler-based approach
is more efficient [10].

3. ADAPTIVE MULTI-FIDELITY MODEL SE-
LECTION

The accuracy and computational efficiency of the multi-
fidelity solution depend on the choice of low- and high-
fidelity models. We seek the optimal model pair that min-
imizes computation time while satisfying a user-defined
requirement for accuracy in the multi-fidelity solution.
Accordingly, the low- and high-fidelity force models
must incorporate sufficient perturbing forces to maintain
the desired accuracy while avoiding extraneous pertur-
bations that would unnecessarily increase computational
cost. Thus, for cislunar applications, the optimal model
pair will vary throughout cislunar space as the relative
contributions of Earth gravity, Lunar gravity, and perturb-
ing forces change as a function of position.

For the filtering applications considered in this work,
we would ideally define the accuracy requirement as an
upper limit on the PDF divergence between the multi-
fidelity and a full-fidelity solution in the prediction step
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c(l1,−1) · · · ∞ c(l1, 0) · · · ∞ c(l1, 1) · · · c

(
l1,

∣∣∣Z(i)
+

∣∣∣)
...

. . .
...

...
. . .

...
...

. . .
...

∞ · · · c(lM ,−1) ∞ · · · c(lM , 0) c(lM , 1) · · · c

(
lM ,

∣∣∣Z(i)
+

∣∣∣)
 (22)

of the filter, as proposed by [13]. Formulated as an opti-
mization problem, this becomes

min
(fL, fH)∈F×F

tR
(
fL, fH

)
subject to D

(
p, p̂

(
fL, fH

))
< εD,

(24)

where fL and fH are the low- and high-fidelity models,
respectively, that solve the optimization problem and be-
long to a set of force models F = {f1, f2, . . . } that vary
in which perturbing forces are included. We seek a map

m : X → F × F such that (fL, fH) = m(x̂), (25)

where x̂ is the mean state estimate at some time tk. Also,
tR(f

L, fH) is the runtime of selecting and evaluating the
model pair (fL, fH), D(·, ·) is a PDF divergence met-
ric, p is the state-space PDF predicted from time tk to
tk+1 using a full-fidelity model, p̂(fL, fH) is the PDF
predicted using the multi-fidelity algorithm with fL and
fH , and εD is a user-defined value.

As posed, this optimization problem is intractable to
compute online because evaluating D(p, p̂(fL, fH)) re-
quires both a full-fidelity solution for p, which is pro-
hibitively expensive to compute, and the multi-fidelity so-
lution p̂

(
fL, fH

)
, which is itself the unknown quantity

we seek as the end result, making its direct computation
in the optimization problem impractical. We therefore
reformulate the optimization problem to have an accu-
racy requirement that the expected error in acceleration
magnitude remain below some threshold. Since evaluat-
ing the acceleration at a particular state x̂ in the space X
does not require the numerical solution to the differential
equations of the force models, this makes the problem
formulation tractable. Furthermore, accurate propagation
will yield convergence in a mean square sense, which is
stronger than convergence in density.

Additionally, we will simplify the optimization prob-
lem by considering only one low-fidelity model over the
space X (over the entire cislunar domain). This not
only eliminates a decision variable, but also allows us
to use the trajectory from the low-fidelity propagation to
inform the model choice for the high-fidelity propaga-
tion. This is possible within the multi-fidelity framework
since the low-fidelity propagation is always done before
the high-fidelity propagation, meaning the high-fidelity
model does not yet need to be determined when the low-
fidelity propagation is performed. Moreover, a truncated
force model that is constant across cislunar space may

still account for the dominant forces, and as demonstrated
by the numerical simulations in Section 4, yields suffi-
cient multi-fidelity accuracy and runtime, making it jus-
tified from a dynamical and computational standpoint.

The reformulated optimization problem is then

min
fH∈F

tR
(
fL, fH

)
subject to aerror < εa,

(26)

where aerror is the expected error in acceleration mag-
nitude and εa is a user-defined value. The high-fidelity
force model that solves this optimization problem is the
one that includes only the minimal set of perturbations
necessary to satisfy the accuracy requirement for a given
region of cislunar space, as incorporating additional per-
turbations generally increases runtime. Since the high-
fidelity model is selected as a function of position in cis-
lunar space, only perturbations that vary spatially need to
be adjusted – specifically, the non-spherical gravitational
perturbations of the Earth and Moon. As a space object
approaches one of these bodies, its non-spherical gravity
terms become more significant and should be included in
the model. Conversely, as the object moves farther away,
those terms diminish in influence and can be truncated.

Among orbital perturbations, non-spherical gravity is the
primary contributor to computational cost, as evaluating
high-degree spherical harmonic expansions at each inte-
gration step is computationally expensive. In contrast,
perturbations such as cannonball solar radiation pres-
sure (SRP) and the Sun’s point-mass gravity remain rela-
tively constant across cislunar space and impose negligi-
ble computational overhead compared to spherical har-
monic evaluations. Therefore, these perturbations are
kept constant in both the low- and high-fidelity models.
Additionally, Earth atmospheric drag is not considered,
as trajectories that encounter significant atmospheric ef-
fects are better suited to an Earth-centric multi-fidelity
framework rather than a cislunar one.

Since non-spherical gravity is the only perturbation that
varies in the high-fidelity model, we focus on determin-
ing the appropriate spherical harmonic expansion degree
and order as a function of position in space and accept-
able acceleration error. The solution is obtained sepa-
rately for each celestial body’s gravity using a lookup ta-
ble from [12], which provides the appropriate expansion
degree and order for a given altitude to a celestial body
and user-defined acceleration noise, thereby defining the
mapping in Eq. 25.

DISTRIBUTION A: Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL-2025-1167.



For a spherical harmonic expansion of degree and order
L, [12] defines the total acceleration error as

E[∥∇UT,L∥2] = E[∥∇UO,L∥2] + E[∥∇UC,L∥2], (27)

where E[∥∇UO,L∥2] the omission error, E[∥∇UC,L∥2] is
the commission error, and U is the gravitational poten-
tial. The omission error represents the expected acceler-
ation error due to truncation of spherical harmonic terms
beyond degree and order L, while the commission error
accounts for the expected acceleration error due to pub-
lished uncertainties in the included spherical harmonic
terms up to and including degree and order L. The mean
omission and commission errors are computed by aver-
aging the squared acceleration errors in Cartesian coordi-
nates for the celestial body in question.

The x-, y-, and z-components of error are assumed to be
Gaussian distributed, meaning the squared error in Eq. 27
follows a chi-squared distribution. Reference [12] then
computes the upper bound of a 99.7% confidence inter-
val for all expansion degrees to produce the lookup table.
Our adaptive high-fidelity model selection method uses
the low-fidelity trajectory to determine the space object’s
altitude relative to the Earth or Moon. It then queries the
appropriate lookup table to select the expansion degree
and order to use in the high-fidelity model for the current
position in cislunar space.

A limitation of the present implementation is that it con-
siders non-spherical gravity from only one celestial body
at a time – either the Earth or Moon. If the space ob-
ject is within a predefined radius of the Moon, only the
Moon’s non-spherical gravity is included; otherwise, the
Earth’s is used. Incorporating non-spherical gravity from
both bodies simultaneously is an area for future work and
could be implemented by querying both lookup tables,
provided that the propagator used can accommodate non-
spherical gravity from multiple bodies.

In regions of cislunar space far from either body, the rec-
ommended expansion degree and order for both the Earth
and Moon may approach zero. When this occurs, the
low- and high-fidelity models become sufficiently sim-
ilar that no multi-fidelity correction is needed. There-
fore, at a specified threshold for the high-fidelity model’s
expansion degree, our implementation performs only a
low-fidelity propagation and skips the multi-fidelity pro-
cedure.

To summarize the sequence of steps for the adaptive
multi-fidelity method:

1. A low-fidelity propagation of all particles is per-
formed from the initial time to the final time.

2. The altitude and corresponding gravity expansion
degree and order are computed at discrete intervals
along the low-fidelity trajectories.

3. The high-fidelity propagation is then performed,
with the gravity expansion changing at each interval
used in the previous step.

4. The multi-fidelity solution is obtained at the final
time.

To obtain the time steps and associated state vectors used
in the multi-fidelity algorithm’s snapshot matrix (Eq. 1),
we propagate the particles backward in timeN time steps
rather than store their histories to reduce memory foot-
print, as was done in [13]. This is beneficial in the con-
text of MTT since storing the time histories for multi-
ple different tracks can become overly memory intensive.
For applications where speed is desired over memory, the
time histories could instead be stored from the initial for-
ward propagation, rather than doing the backward propa-
gation.

Lastly, the number of time steps serves as a user-defined
tuning parameter. Since the rank of the snapshot matrix
limits the number of important samples that can be identi-
fied, increasing the number of time steps generally raises
the matrix rank, enabling the identification of more im-
portant samples and enhancing the accuracy of the multi-
fidelity solution. However, this comes at the cost of
increased computation, as additional important samples
must be propagated, and the improvement in accuracy
exhibits diminishing returns. Eventually, the state vec-
tors introduced from additional time steps lack sufficient
linear independence to increase the rank of the snapshot
matrix. In general, longer propagation times warrant the
use of more time steps.

4. NUMERIC SIMULATIONS

4.1. Test Case Descriptions

This section provides the test case scenarios and parame-
ters that are used for assessing the adaptive multi-fidelity
model selection method in the next two subsections. Four
scenarios from [13] are used: a distant retrograde or-
bit (DRO), a near-rectilinear halo orbit (NRHO), a lu-
nar transfer orbit (LTO), and a low Lunar flyby. Orbits
such as these are likely to be used in upcoming cislu-
nar missions, and are therefore relevant to cislunar SSA.
Furthermore, these orbits span large swaths of cislunar
space, making them challenging test cases for the adap-
tive method.

In the tracking results presented in Section 4.3, each of
the four scenarios includes a cluster of five ASOs. The
ASOs in each cluster all have the same initial state PDF,
with the means provided in Tab. 1 and diagonal covari-
ances of 10−8I6 in normalized units (LU2, LU2/TU2) in
the rotating barycentric frame. Fig. 1 depicts the nominal
trajectory for each of the four scenarios, computed from
a deterministic propagation of the mean for ten days –
the length of the scenario. The nominal trajectory of the
Lunar flyby scenario has a close approach with the Moon
of 133 km, assuming a spherical Moon. However, due to
random realizations of the initial conditions, the closest
approaches in the test cases will vary.
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Table 1. Initial means for each scenario in normalized
units (LU, LU/TU), expressed in the rotating barycentric
frame.

Scenario Mean
x y z ẋ ẏ ż

DRO 0.806 0.000 0.000 0.000 0.519 0.000
NRHO 1.022 0.000 -0.182 0.000 -0.103 0.000
LTO -0.112 0.000 0.000 2.194 -3.440 0.000

Flyby 0.949 -0.019 0.304 -0.006 0.064 0.003

Figure 1. Nominal trajectories for each cluster in the ro-
tating barycentric frame.

As mentioned in Section 3, the current implementation
considers non-spherical gravity for only one body at a
time. The radius in which to use non-spherical Lunar
gravity is defined as the distance along the Earth-Moon
vector at which the total (omission plus commission) er-
ror from each body is equal. This distance was found
to be 91,264 km. When the space object is within this ra-
dius, the Moon’s non-spherical gravity is used; otherwise,
the Earth’s is used.

The acceleration noise limit from Eq. 26 is set to εa =
10−15 km/s2 for all simulations. This value was found
to provide a suitable balance between increased compu-
tation time from additional spherical harmonic gravity
terms and accuracy in propagated states.

To evaluate the adaptive multi-fidelity method, three non-
adaptive multi-fidelity baselines are considered, each us-
ing a constant gravity expansion for the high-fidelity
model throughout the entire propagation: 30×30, 60×60,
and 90×90. In a non-adaptive approach, an operator
tasked with propagating uncertainty or tracking space ob-
jects may not have prior knowledge of the specific re-
gions of cislunar space through which the objects will
pass, and therefore would have to select the gravity ex-
pansion heuristically. These three non-adaptive methods
are chosen to represent the range of possible gravity ex-
pansions that might be used in the absence of such prior

knowledge and fall within the set of gravity expansions
used by the adaptive method in Sec 4.2 and 4.3. All other
aspects of the force models in the non-adaptive method
are identical to the force models in the adaptive method.

The low-fidelity, high-fidelity, and “truth” propagators all
use a 4th other accurate Runge-Kutta integrator with a
5th order error estimate and adaptive step size [20]. The
low-fidelity model uses Earth and Moon point-mass grav-
ity and the “truth” model uses 120×120 gravity for both
bodies. The degree and order for the adaptive method
never exceeds that of the truth. The Earth and Moon
use the EGM2008 [21] and LP165P [22] gravity fields,
respectively, as well as the IAU2006 coordinate sys-
tem reduction [23]. Models of all fidelity have cannon-
ball SRP and Sun point-mass gravity. Additional force
model parameters may be found in Tab. 2. The posi-
tions of celestial bodies are determined by the JPL DE430
ephemerides [24].

Table 2. Force model and satellite parameters.

Parameter Value

Satellite mass 500 kg

Satellite SRP area 1 m2

Reflectivity coefficient 1.5

Epoch time 2455200.5 UTC

Runtime tests are generated on a Dell Precision Tower
3430 desktop computer running Red Hat Enterprise
Linux 8.10 and the Linux 4.18.0 kernel with a 3.2 GHz
Intel Core i7-8700 processor and 16 GB of random-
access memory. The propagation software is written in
C and all other software (tracker and adaptive model se-
lection) is written in C++ and compiled with the GCC
8.5.0 compiler.

4.2. Results: Multi-Fidelity Propagation

This section evaluates the performance of the adaptive
multi-fidelity method solely in the context of propaga-
tion, without incorporating it into a tracking framework.
Analyzing the propagation in isolation is informative
due to its broad applicability to uncertainty propagation.
Here, a particle ensemble is propagated using a Monte
Carlo approach, though the multi-fidelity method can also
be applied to Gaussian mixture propagation via the un-
scented transform [11]. Additionally, this analysis can be
viewed as the prediction step of a filtering process. The
integration of the method into a full filtering and tracking
framework is presented in the subsequent section.

Process noise is excluded from the propagation in
this section to isolate the accuracy of the adaptive
multi-fidelity method from the confounding effects that
stochastic processes may introduce. The degree and order
of the spherical harmonic gravity expansion is updated in
1 h time increments and the multi-fidelity snapshot matrix
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is constructed using seven time steps in 1 h increments at
the end of the propagation. All test cases use 1000 low-
fidelity samples with the number of high-fidelity impor-
tant samples being the determined value of r (see Eq. 8).

Runtime and accuracy statistics may be found in Tab. 3
and 4, respectively. Each set of results reflects the av-
erage of 50 Monte Carlo simulations, with each sim-
ulation having a different set of random initial states
sampled from the distribution described for each test
case in Section 4.1. For each Monte Carlo simulation,
the same set of initial states is used for all propagation
methods (low-fidelity, high-fidelity, non-adaptive multi-
fidelity, and adaptive multi-fidelity). The root-mean-
square error (RMSE) is computed for each propagation
method using the “truth” defined in Section 4.1. In Tab. 3
and 4, the low-fidelity results reflect using only the low-
fidelity model to propagate the entire particle ensem-
ble. Likewise, the high-fidelity results reflect using only
the high-fidelity model to propagate all particles, with
the results presented for all three (30×30, 60×60, and
90×90) non-adaptive high-fidelity models described in
Section 4.1. The non-adaptive multi-fidelity results re-
flect using those three non-adaptive high-fidelity models
in the multi-fidelity framework. The non-adaptive and
adaptive multi-fidelity runtime and accuracy results are
plotted in Fig. 2 and 3, respectively. Additionally, the
highest gravity degree and order used by the adaptive
method for each scenario may be found in Tab 5.

Table 3. Runtime (sec) for all test cases. LF, HF, and MF
are shorthand for low-fidelity, high-fidelity, and multi-
fidelity, respectively.

Method Scenario
DRO NRHO LTO Flyby

LF 1.280 2.170 2.168 1.814
30×30 HF 19.09 27.49 62.90 27.64
60×60 HF 42.92 86.66 128.2 74.48
90×90 HF 82.19 185.3 239.1 150.6
30×30 MF 2.264 3.792 6.052 3.220
60×60 MF 3.290 6.260 8.496 5.218
90×90 MF 4.920 10.44 12.55 8.385
Adaptive MF 1.804 2.834 4.711 3.016

Table 4. RMSE (km) for all test cases.

Method Scenario
DRO NRHO LTO Flyby

LF 0.4824 202.5 299.3 42.72
30×30 HF 0 4.144·10−3 2.000·10−10 0.8186
60×60 HF 0 6.640·10−5 0 0.1833
90×90 HF 0 1.490·10−5 0 5.517·10−3

30×30 MF 4.156·10−4 0.1127 1.497 0.8212
60×60 MF 4.156·10−4 0.1129 1.497 0.1838
90×90 MF 4.156·10−4 0.1129 1.497 2.704·10−2

Adaptive MF 4.126·10−4 0.1104 1.473 2.850·10−2

Figure 2. Runtime of non-adaptive and adaptive multi-
fidelity methods for all test cases.

Figure 3. RMSE of non-adaptive and adaptive multi-
fidelity methods for all test cases. Note the logarithmic
scaling of the vertical axis.

The multi-fidelity algorithm achieves a multiple-order-
of-magnitude improvement in the RMSE compared to the
low-fidelity solution across all test cases, yielding kilo-
meter to sub-kilometer accuracy, depending on the sce-
nario. Additionally, the use of multi-fidelity propaga-
tion significantly reduces runtime relative to high-fidelity
propagation, demonstrating an approximately tenfold
speedup across test cases. The difference between high-
and multi-fidelity runtime is amplified as the degree and
order of the gravity expansion used in the high-fidelity
model increase. The RMSE also generally decreases with
more terms in the gravity expansion, though Tab. 4 in-
dicates diminishing returns. Notably, for the DRO and
LTO test cases, the high-fidelity propagation reaches zero
RMSE relative to the truth model. This arises because
these test cases remain at high altitudes, where, beyond a
certain degree and order expansion, non-spherical gravi-
tational accelerations fall below machine precision. This
highlights a benefit of the adaptive method: by dynami-
cally adjusting the gravity expansion based on an accel-
eration error threshold, it prevents the inclusion of unnec-
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Table 5. Maximum spherical harmonic gravity degree
and order used by the adaptive propagation method for
each test case.

Scenario DRO NRHO LTO Flyby

Max deg/ord 3 39 20 91

essary terms, thereby reducing computational cost.

As shown in Tab. 3 and 4, and Fig. 2 and 3, the adap-
tive multi-fidelity method consistently achieves equal or
superior accuracy compared to the non-adaptive multi-
fidelity approach while maintaining a lower runtime.
This is most evident in the flyby test case, where the non-
adaptive method continues to improve in RMSE with in-
creasing gravity expansion order but at the cost of greater
runtime. In contrast, the adaptive method achieves the
accuracy of the non-adaptive approach (from the 90×90
case) while maintaining a significantly faster runtime.
This may be attributed to the flyby case having the largest
altitude variation of all test cases. At perilune, a large
gravity expansion is necessary to maintain accuracy, but
at higher altitudes during the remainder of the trajectory,
these additional terms become extraneous. This indi-
cates that the adaptive method is most beneficial for cases
where the distance to the Earth or Moon varies signifi-
cantly over the trajectory. Similar behavior may also be
observed in the NRHO test case.

Fig. 4 depicts the nominal NRHO trajectory colored by
the degree and order of the spherical harmonic gravity
expansion. As expected, the degree and order increase
closer to the Moon, reaching a maximum at perilune as
the higher order terms gain significance. This effect is
further demonstrated in Fig. 5, which plots the degree and
order as a function of time and exhibits a sharp peak at
perilune.

4.3. Results: Multi-Target Tracking

This section presents Monte Carlo analyses of the multi-
target filter’s performance in five simulated cislunar
tracking scenarios. Each scenario involves tracking one
or more clusters of space using the GLMBF with each
of the following propagation methods: low-fidelity prop-
agation with no correction, non-adaptive multi-fidelity
propagation, and adaptive multi-fidelity propagation. In
four of these scenarios, a single cluster of five objects
have their initial states sampled from one of the Gaussian
PDFs described in the previous subsection, correspond-
ing to the DRO, NRHO, LTO, and flyby trajectories. In
the other scenario, all four clusters are tracked simultane-
ously, for a total population of 20 objects on a diverse set
of cislunar trajectories. This is repeated 20 times and the
average results are presented in this subsection.

The low-fidelity, truth, and adaptive multi-fidelity prop-
agators are the same as in the previous subsection,
but when using the adaptive multi-fidelity method, the

Figure 4. NRHO trajectory colored by spherical har-
monic gravity degree and order. Note that the Moon is
not shown to scale.

EnGMF skips the multi-fidelity correction when the max-
imum recommended gravity model resolution has stayed
less than 5×5 since the last correction. The non-adaptive
multi-fidelity propagator in this subsection uses a 10×10
gravity field model for both bodies. The EnGMF uses
200 particles to parameterize each track.

These simulations use a single optical sensor located at
the L1 Earth–Moon Lagrange point to obtain measure-
ments of right ascension and declination and their respec-
tive rates. Sensor parameters from [13] are used, with the
angle and angle-rate measurements possessing Gaussian
distributed errors with a mean of zero and standard de-
viation of 0.1 arcsec for the angles and 0.001 arcsec/s for
the angle-rates. The measurement errors are assumed to
be uncorrelated. The sensor generates measurements ev-
ery 12 h after the start of the simulation, with probability
of detection PD = 0.95. The simulated sensor does not
generate clutter returns and the multi-target filter assumes
a constant clutter intensity of κ = 10−9.

The multi-target filter assumes a survival probability near
one for all objects, discards hypotheses with weights be-
low 10−3, and employs Murty’s algorithm to cap the num-
ber of hypotheses at 50. This limit is distributed among
prior GLMB components in proportion to the square root
of their respective weights. The filter timestep is 1 h. The
snapshot matrix is again constructed using the last seven
timesteps at the time of multi-fidelity correction. Addi-
tionally, the EnGMF assumes a process noise covariance
Q = σ2

aI3, where the acceleration standard deviation is
σa = 10−12 km/s2.

Fig. 6 shows the GLMBF’s tracking error using each
method in the scenario with all 20 objects. The er-
ror is defined here as the optimal subpattern assignment
(OSPA) multi-object distance between the GLMBF’s es-
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Figure 5. Spherical harmonic gravity degree and order
of the NRHO trajectory as a function of time.

timate of the states of the objects and their true states [25].
The OSPA metric used here is based on the Euclidean
distance in Cartesian position space and has order 2 and
cutoff 100 km. As the figure shows, all three methods
initially perform well, but the low-fidelity-only method
begins to diverge around four days into the simulation.
This is primarily due to difficulty in maintaining custody
of the objects in the NRHO and flyby clusters, as shown
in Fig. 7 and 8, due to the strong effect of non-spherical
gravity at the time of closest approach to the Moon. On
the other hand, both the non-adaptive and adaptive meth-
ods have almost the same tracking error over the course
of the simulation.

Figure 6. Plot of tracking error over time for the scenario
with all twenty objects. Markers coincide with measure-
ment updates.

The increase in the two adaptive methods’ errors from
t = 8 d to the end of the simulation is driven by diffi-
culty tracking the DRO cluster due to poor observability.
This can be mitigated by changing the sensor’s location
or adding another sensor. This is demonstrated in Figs. 9
and 10, which show tracking error for the DRO case with
the sensor located at L1 and at the Moon, respectively.

Tab. 6 shows the average tracking error for each sce-
nario and propagation method. These results show that
adaptive multi-fidelity propagation yields a tracking ac-

Figure 7. Plot of tracking error over time for the scenario
with five objects on NRHOs. Markers coincide with mea-
surement updates.

Figure 8. Plot of tracking error over time for the scenario
with five objects on close flyby trajectories. Markers co-
incide with measurement updates.

Figure 9. Plot of tracking error over time for the scenario
with five objects on DROs and the sensor at L1. Markers
coincide with measurement updates.
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Figure 10. Plot of tracking error over time for the alter-
nate scenario with five objects on DROs and the sensor
located at the Moon. Markers coincide with measurement
updates.

curacy similar to the non-adaptive multi-fidelity propaga-
tion in all five scenarios. As shown in Tab. 7, the adaptive
method is able to achieve this level of accuracy while re-
ducing total computation time by 34–62% compared to
the non-adaptive method.

Table 6. Average OSPA tracking error (km) for each prop-
agation method and scenario.

Method All Clusters DRO NRHO LTO Flyby

LF 31.82 23.32 37.14 15.23 28.71
10×10 MF 21.15 24.70 7.78 10.85 13.61
Adaptive MF 19.88 24.15 7.76 10.82 13.19

Table 7. Average total runtime cost (sec) of multi-target
filter for each propagation method and scenario.

Method All Clusters DRO NRHO LTO Flyby

LF 28.51 7.70 10.40 15.98 8.94
10×10 MF 72.83 22.24 30.82 49.15 25.04
Adaptive MF 47.03 8.56 23.14 31.44 16.61

To explain these differences in filtering time, Fig. 11
shows the time cost of each filter step for each method
in the scenario with all 20 objects. As expected, the cost
spikes on measurement updates due to the GLMBF joint
prediction and update and the multi-fidelity correction
(when using one of the multi-fidelity methods). These
spikes are always relatively high for the non-adaptive
method because it is always performing a correction for
every track. On the other hand, the adaptive method
sometimes produces runtimes similar to those of the low-
fidelity method because it is frequently able to use a lower
degree and order expansion or even skip the correction
entirely for many of its tracks. In this case, the adap-
tive method is only more expensive than the non-adaptive
method at t = 4.5 d, where it takes a fraction of a second
longer. This is around the time of the flyby cluster’s clos-
est approach to the Moon and demonstrates how the adap-
tive method is able to recognize that a higher degree and
order expansion is required for those objects at this time.
The other significant spikes in the adaptive method’s run-

time correspond to other clusters’ closest approaches to
either the Earth (for the LTO) or the Moon.

Figure 11. Plot of computational cost of each filter step
for the scenario with all twenty objects. Markers coincide
with measurement updates.

5. CONCLUSION

This paper developed an adaptive method for multi-
fidelity uncertainty propagation in cislunar space by pos-
ing the issue as an optimization problem to minimize run-
time subject to an upper bound on the expected accelera-
tion error. The solution was obtained by varying the per-
turbations included in the high-fidelity model as a func-
tion of position via a precomputed library of acceleration
errors for differing gravity expansion degrees and orders.
This permits rapid and accurate uncertainty propagation
of space objects in the cislunar domain. The effectiveness
of the method for uncertainty propagation was demon-
strated via Monte Carlo analysis. For ASO tracking,
the propagator is integrated in a combined EnGMF and
GLMBF multiple-hypothesis, multi-target filter. In simu-
lated test cases, the adaptive approach yields a significant
reduction in runtime when compared to a non-adaptive
approach while maintaining equivalent or superior accu-
racy. Furthermore, the test scenarios demonstrated the
method’s applicability to orbits relevant to upcoming cis-
lunar missions and SSA, including a DRO, NRHO, LTO,
and low Lunar flyby. Future work may entail extend-
ing the adaptive method to incorporate nonspherical grav-
ity from both the Earth and Moon simultaneously or dy-
namically adjusting the time intervals at which the high-
fidelity model is updated, allowing for more rapid adap-
tation in regions with faster-varying dynamics.
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