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ABSTRACT

As space activity grows exponentially, the orbital envi-
ronment is becoming increasingly congested with active
satellites, inactive spacecraft, and debris of varied sizes
and shapes. It has become evident that, in addition to
precise monitoring of the debris population, active space
debris removal is essential to ensure long-term access to
Earth’s orbits, requiring detailed knowledge of each ob-
ject’s orbit, shape, and rotational state. Despite the sig-
nificant efforts by space surveillance networks to moni-
tor and track a growing number of objects, the available
data often consists only of positional information, leaving
critical gaps in understanding the physical and rotational
characteristics of defunct satellites and space debris. To
bridge this knowledge gap, we are leveraging data from
the VST/OmegaCAM archive, a unique dataset of over
400,000 high-precision observations spanning 12 years.
While VST was designed for deep-sky surveys, space de-
bris cross its field of view, leaving detectable traces in the
images. The instrument’s exceptional sensitivity allows
us to detect objects as small as 5 cm in low-Earth orbit
(LEO) and 30 cm in geostationary orbit (GEO). Process-
ing this extensive archive requires advanced image analy-
sis, for which we have developed a novel streak-detection
method that combines a convolutional neural network
with a Hough transform layer. We present our training
dataset, algorithm design, and streak-detection workflow
and discuss the detections realised with our algorithm on
a set of OmegaCAM images. We discuss the performance
of the algorithm in terms of completeness, sensitivity and
precision. After detection, each streak is correlated with
the catalogue of known orbital objects, and photometric
reduction is applied to extract light curves, providing in-
sights into the object’s attitude and shape. The intensity
profile of a streak is retrieved by placing a series of rect-
angular apertures along the streak and measuring the flux
received from the target in each aperture. The retrieved
flux is calibrated against photometric reference stars from
GAIA DR2 with magnitude conversion and error rejec-
tion processes. This approach yields high-precision abso-
lute magnitudes with errors of a few hundredths of a mag-
nitude, enabling detailed characterization of non-resolved
objects. Fourier analysis is applied to retrieve, when rel-
evant, rotation rates of objects, providing valuable infor-

mation about the operational status of the detected ob-
jects and potential retrieval possibilities. All data pro-
cessed through our detection and reduction pipeline will
be made available in an open-access data repository, of-
fering the community a valuable resource for further in-
vestigation into the orbital debris population. Beyond
supporting active debris removal efforts and enhancing
knowledge about individual debris objects, this work will
also enable deeper insights into key aspects such as the in-
creasing interference with astronomical observations and
a more accurate understanding of the size-frequency dis-
tribution of orbital debris.

Keywords: Space debris; Passive optical; Machine learn-
ing.

1. INTRODUCTION

Despite decades of space debris observations and signifi-
cant advances in recent years, there remains a significant
lack of understanding of many aspects of these objects, in
particular their evolution over time and their interactions
with the environment. This knowledge gap is a growing
challenge as the accumulation of space debris in Earth’s
orbit continues to escalate, threatening active satellites,
space missions and human safety. While considerable ef-
forts have been made to monitor these objects, much re-
mains unknown about their physical properties and long-
term behavior. Addressing these uncertainties is critical
to ensuring the sustainability of orbital activities and any
additional data that can be obtained is therefore invalu-
able.

One underexplored avenue for gathering such data lies
in wide-field astronomical surveys. These surveys, pri-
marily designed for astrophysical research, often capture
serendipitous observations of space debris as streaks in
their images. While these streaks are typically considered
nuisances by astronomers, they contain valuable infor-
mation about space debris. However, analyzing archival
astronomical data for space debris presents unique chal-
lenges: the debris signatures differ from targeted obser-
vations, and the volume of archival data spanning years
is immense.
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This study explores how to efficiently detect space de-
bris streaks in wide-field astronomical images and extract
valuable information from them. While targeted observa-
tions using dedicated instruments are highly effective and
have significantly advanced our understanding of space
debris, they are often costly, resource-intensive, and lim-
ited by acquisition time and observational constraints.
In contrast, our approach leverages existing open-source
data, such as that provided by the European Southern Ob-
servatory (ESO), to complement these efforts. Wide-field
telescopes offer unique advantages due to their high sen-
sitivity and resolution, enabling the extraction of critical
information not commonly found in conventional debris
catalogs. For instance, rotational status and rotation rates,
which are essential parameters for planning active debris
removal missions, can be derived from light curves ob-
tained through this approach.

Although this study focuses on data from the VLT Survey
Telescope (VST) and OmegaCAM imager, our broader
aim is to create a framework adaptable to other astro-
nomical surveys. This approach not only enhances SSA
efforts but also demonstrates the potential for repurpos-
ing existing data to address critical challenges in space
sustainability.

Traditional methods for detecting streaks in astronomi-
cal images include techniques such as the Hough trans-
form and matched filtering. The Hough transform is par-
ticularly effective for identifying linear features, espe-
cially when preprocessing steps like background subtrac-
tion and edge detection are employed to isolate streaks
from stars and other artifacts. Matched filtering, which
aligns predefined streak templates with image data, has
also been utilized to detect faint trails with high sensitiv-
ity [6][14].

More recently, machine learning and deep learning ap-
proaches have gained traction due to their ability to han-
dle large datasets and complex patterns. Convolutional
Neural Networks (CNNs) and architectures like U-Net
have been widely applied, often outperforming traditional
methods in terms of accuracy and robustness. For ex-
ample, Liu et al. [12] demonstrated the potential of
machine learning to identify satellite streaks in wide-
field astronomical images, leveraging pre-trained mod-
els fine-tuned on domain-specific datasets to enhance de-
tection sensitivity. Similarly, Jeffries and Acuña [8] de-
veloped a machine learning framework that integrates
feature extraction and classification techniques to detect
faint streaks while minimizing false positives. Addition-
ally, ASTA (Automated Satellite Tracking for Astron-
omy) [16] combines deep learning with computer vision
techniques for effective satellite trail detection.

Despite significant progress, challenges remain in reduc-
ing false positives, improving sensitivity to faint streaks,
and processing the increasing volume of astronomical
data efficiently. The integration of traditional algorithms
with modern AI techniques offers a promising path for-
ward in addressing these issues.

The remainder of this paper is organized as follows: Sec-
tion 2 details the methods employed in this study, in-
cluding the detection algorithm, dataset selection, artifi-
cial streak generation, and subsequent steps such as pho-
tometric reduction, astrometric calibration, and orbit fit-
ting. The same section introduces the performance met-
rics used to evaluate the proposed approach, including
precision, recall, and F1-score. Section 3 presents the
results of the study, covering the learning rate search, per-
formance outcomes, and photometric reduction findings.
Finally, Section 4 provides a discussion of the implica-
tions of the results

2. METHODS

2.1. Detection algorithm

The algorithm developed for detecting satellite and space
debris traces is a machine learning model based on the
HT-LCNN (Hough Transform Lookup-based Convolu-
tional Neural Network), a convolutional neural network
architecture incorporating a trainable Hough transform
prior block introduced by Lin et al [11]. The integra-
tion of the Hough transform module into the model is
particularly valuable, as it equips the network with an in-
herent understanding of the geometric shapes to detect.
The Hough transform, a well-established technique for
detecting lines in images, has been extensively applied
in the detection of satellite streaks, making it particularly
relevant to this application.

Lin et al.’s original HT-LCNN algorithm was trained and
evaluated using the Wireframe [7] and York Urban [2]
datasets, which were designed for edge detection in ar-
chitectural and interior imagery. The model was initially
intended for tasks such as automatic orientation in smart
devices. To adapt this approach for detecting satellite and
space debris traces, modifications were made to handle
astronomical images saved in the 16-bit FITS format, as
opposed to the more common 8-bit format used in gen-
eral machine learning applications. This adjustment was
necessary because astronomical images typically contain
higher bit-depth information to preserve subtle details
critical for analysis.

2.2. Dataset selection

The preparation of a robust and diverse dataset was a crit-
ical step in training and validating our machine learning
algorithm for detecting satellite and space debris traces.
OmegaCAM [9], mounted on the VLT Survey Telescope
(VST), was chosen for several compelling reasons.

• Open Access and Extensive Archive: OmegaCAM
provides public access to its data, with archives
spanning over a decade (since 2011), enabling the
study of space debris evolution over time.



• High Sensitivity: Its exceptional sensitivity, en-
hanced by VST’s 2.6-meter primary mirror, allows
the detection of faint debris traces that might other-
wise be missed.

• High Resolution: The high resolution of Omega-
CAM, with its 16k×16k pixel array and a pixel
scale of 0.21 arcseconds per pixel, facilitates accu-
rate light curve reconstruction, crucial for character-
izing debris properties.

• Wide Field of View: Covering one square degree per
image, OmegaCAM captures a large number of de-
bris traces in a single exposure, enhancing statistical
reliability. A sample image can be seen in Figure 1.

Images were selected from the OmegaCAM archive
spanning its entire operational timeline. Due to the one-
year proprietary period at the time of selection, images
from 2023 and later were excluded. To ensure versatility,
images from all available filters were included, allow-
ing the algorithm to detect streaks on raw images with-
out requiring photometric adjustments despite filter dif-
ferences. A random selection of 375 images ensured di-
versity in backgrounds, moon illumination levels, streak
types, star density, and artifacts.

Given the large size of OmegaCAM mosaics (32 CCDs
per image) and their high pixel count, subcrops measur-
ing 512×512 pixels were extracted from individual CCD
frames. This approach preserved fine details while en-
abling the algorithm to differentiate streaks from back-
ground artifacts more effectively.

Streaks in the selected images were manually annotated
using Label Studio [17]. Due to the limited number of
original streaks detected in the dataset (352 streaks across
12,000 CCD frames), artificial streaks were generated to
augment the dataset, enabling better characterization of
the algorithm’s performance. While this ratio may seem
low, it is important to note that the population of satel-
lites and space debris has increased drastically in recent
years. Consequently, fewer streaks were present in the
earlier years of the telescope’s operation, and we expect
a higher density of streaks in more recent archival data.
The process for creating synthetic streaks is detailed in
the next section.

The preprocessing workflow involved several steps:

1. Opening original FITS images

2. Removing prescan and overscan regions

3. Adding artificial streaks

4. Cropping images into 512×512 pixel subframes

5. Saving images as 16-bit PNG files

The decision to save images as PNG files rather than us-
ing FITS directly was driven by computational efficiency.

Figure 1: OmegaCAM detector layout.

PyTorch is optimized for standard image formats like
PNG, whereas FITS files resulted in slower data loading.
Ensuring 16-bit depth preserved all critical information
for optimization without data loss.

Of the 375 images selected, 305 were allocated for train-
ing the algorithm, corresponding to a total of 312,320 in-
dividual PNG images. The remaining images were di-
vided equally between the validation and test sets, with
35 images each, resulting in 35,840 PNG images per set.
While the test set is not utilized in the current study, it
will be employed in a subsequent phase of the analysis.

2.3. Artificial streaks generation

To ensure that the algorithm generalizes effectively
across the OmegaCAM archive, it is crucial that the ar-
tificially generated streaks closely resemble real streaks
observed in the images. To achieve this, we developed
a streak generator that simulates realistic debris streaks
through a multi-step process.

1. Generation of a Space Debris Population: A syn-
thetic population of space debris was created based
on orbital parameters and physical characteristics.
This step ensures that the simulated streaks repre-
sent a diverse range of debris types.

2. Computation of Signal-to-Noise Ratio (SNR): For
each debris streak, the signal-to-noise ratio (SNR)
was calculated based on its brightness relative to the
background noise in the image. This step ensures
that the simulated streaks match the visibility condi-
tions of real streaks, accounting for factors such as
atmospheric conditions and image filter properties.



3. Drawing of Streaks on Original Images: Using the
computed parameters, streaks were drawn directly
onto the original images while preserving their
background characteristics. The streaks were care-
fully rendered to mimic the appearance of real debris
traces, including variations in brightness, length,
and orientation.

Population generation To create a realistic yet flexi-
ble population for artificial streak generation, space de-
bris objects were randomly selected from a predefined
pool of altitudes and sizes, as summarized in Table 1.
The pool was designed to include a higher proportion of
smaller debris located closer to Earth’s surface, reflect-
ing the characteristics of the actual space debris popula-
tion. However, instead of replicating the current known
distribution of satellites and debris, we opted for this ho-
mogeneous pool to better evaluate the algorithm’s perfor-
mance across a wide range of scenarios. Once the debris
objects were selected, each was assigned a correspond-
ing streak. This involved generating random lines with
varying lengths and orientations to simulate the motion of
space debris across the detector. To align with real-world
observations, where most streaks extend across the en-
tire detector, 80% of the simulated streaks were designed
to span the full width or height of the detector, while
20% were generated with one endpoint located within the
detector’s boundaries. This distribution ensures that the
artificial streaks closely resemble those observed in ac-
tual OmegaCAM images while providing sufficient vari-
ety for robust algorithm training and validation.

SNR computation The sky background brightness for
each image was first measured using a sigma-clipping ap-
proach to exclude bright sources and focus on the true
background. The steps were as follows:

1. A sigma-clipping algorithm was applied to the im-
age to compute a threshold for detecting sources, ef-
fectively isolating regions of interest.

2. Sources were detected using the computed thresh-
old, and a segmentation image was created to iden-
tify their locations.

3. Detected sources were masked using circular foot-
prints to exclude them from the background calcula-
tion.

4. Sigma-clipped statistics (mean, median, and stan-
dard deviation) were computed for the unmasked
pixels, with the mean value used as the sky back-
ground brightness.

The signal from each space debris object was then calcu-
lated by assuming the debris to be spherical with a diame-
ter taken from the predefined population and Lambertian
scattering of light. The apparent brightness of the object
was determined with the following formula.

Table 1: List of sizes and altitudes used to generate an
artificial space debris population.

Size [m] Altitude [km]
0.01 300
0.02 350
0.03 400
0.04 450
0.05 500
0.06 550
0.07 600
0.08 650
0.09 700
0.1 750

0.15 800
0.2 850

0.25 900
0.3 950
0.4 1000
0.5 1100
0.6 1200
0.7 1300
0.8 1400
1 1500

1.5 2000
2 3000

4000
5000

10000
20000
35786
36100



msat = M⊙ − 2.5 · log10(A · ρ · ϕ(h))
+ 5 · log10(h) +Aν · χ(z) (1)

M⊙ is the Sun’s magnitude used as reference, A the cross
sectional area of the object, ρ the object’s albedo for
which a value of 0.175 is assumed [13], h the altitude
of the object, ϕ(h) the phase function, computed as

ϕ(h) =
1− cos(α)

2
(2)

with

cos (α) =
R⊕ + h√

((R⊕ + h)2 + h2)
(3)

and R⊕ the radius of the Earth. Aν is the extinction in
the specific filter band [3] and χ(z) the optical pathlength
along a line of sight in units of air masses as a function of
the zenith angle z.

χ(z) =
1√

1− 0.96 · sin (z)2
(4)

From the apparent magnitude msat, the flux of the space
debris object was computed relative to a reference star
with a magnitude of 20 and its corresponding flux value
provided by ESO for each filter [4].

Fsat = F⋆ · 10−0.4·(msat−m⋆) (5)

The total flux contribution of the space debris was then
obtained by multiplying this flux by the exposure time of
the streak. To account for seeing effects, the signal within
the seeing aperture was calculated as

naper =
nsat · 2 · rFWHM

lstreak + 2 · rFWHM
(6)

with nsat the total flux contribution from the space de-
bris, rFWHM the radius corresponding to the full width
at half maximum (FWHM) of the point spread function
and lstreak the length of the streak. The SNR is finally
computed as

SNR =
naper√

(naper + nsky · p+ p · σ2
R)

(7)

with nsky the sky background flux, σR the readout noise
of the imager and p the area factor defined as

p = 2 · r2FWHM (8)

Before drawing streaks on images, any streaks with an
SNR ≤ 2 were discarded. Such streaks are not visible to
the naked eye and would not provide sufficient informa-
tion for light curve analysis or meaningful training data
for our algorithm. This ensures that only realistic and de-
tectable streaks are included in our dataset.

Streak generation To accurately simulate the appear-
ance of satellite streaks in astronomical images, it is es-
sential to account for both the movement of the object
and the atmospheric conditions that affect how the streak
appears. The movement of the satellite or space debris
creates the linear shape of the trace, while atmospheric ef-
fects such as scintillation and seeing influence its bright-
ness and sharpness. Over long exposures, such as those
in the OmegaCAM archive, seeing typically dominates
for fixed objects, causing blurring. However, for fast-
moving satellites or debris crossing the field of view, scin-
tillation effects become locally significant, introducing
rapid intensity fluctuations along the streak. Addition-
ally, while the rotation of objects can create dashed or
varying-intensity streaks, this effect was not modeled in
the current study.

To incorporate these effects, we used Langevin dynam-
ics—a stochastic framework that models systems influ-
enced by both deterministic forces and random noise.
Langevin dynamics is well-suited for modeling scintilla-
tion because it captures the random fluctuations caused
by atmospheric turbulence while allowing for a stable
equilibrium around a central position. Specifically, we
modeled scintillation as a random walk within a potential
well. Since seeing effects can be modeled using a Moffat
profile, we used this profile as the harmonic potential in
our Langevin dynamics framework.

The Langevin equation in one dimension is given by

dx

dt
= −∂V (x)

∂x
+ η(t) (9)

where V (x) is the potential function and η(t) is a stochas-
tic noise term with properties

⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = 2Dδ(t− t′) (10)

where D is the diffusion coefficient. For a Moffat pro-
file, the potential is derived from its probability density
function

f(x;α, β) =
β − 1

πα2

(
1 +

x2

α2

)−β

(11)



leading to the potential

V (x) = D ln

(
1 +

x2

α2

)
(12)

In two dimensions, this generalizes to

dx⃗

dt
= −∇V (x⃗) + η⃗(t) (13)

where

V (x⃗) = D ln

(
1 +

x2 + y2

α2

)
(14)

and

∇V (x⃗) = D · 2x⃗

α2
(
1 + x2+y2

α2

) (15)

By combining these equations with the computed SNR,
we simulated realistic streaks that include scintillation-
induced intensity variations and seeing-induced blurring.

The parameters α (scale parameter) and β (shape param-
eter) of the Moffat distribution can be derived from the
seeing as

α =
FWHM

2 ·
√
2(1/β) − 1

(16)

and a standard value of β = 2.5 was chosen for our model
[18].

Since we could not identify a direct correlation between
the diffusion coefficient D in the Langevin dynamics
model and the physical parameters of atmospheric scin-
tillation, we performed a fitting procedure using multi-
ple simulated images. These images were generated with
varying diffusion coefficients, and the wobbling of the
streaks observed in each image was measured. Assuming
that the objects are on circular orbits, we derived their ve-
locities and, using known values of telescope resolution,
aperture, and local windspeed, calculated their altitudes.
The orbital velocity v can be derived from the measured
wobble w and the scintillation timescale τ [14]

v =
w

τ
(17)

with

τ =
Dt

vw
(18)

Dt is the telescope aperture and vw the windspeed. The
object’s altitude can then be computed as

h = 3

√
µ⊕

(v · θ)2
−R⊕ (19)

with θ the telescope resolution and µ⊕ the standard grav-
itational parameter of the Earth.

After slight adjustments to the altitude-diffusion coeffi-
cient pairs through visual inspection, we derived the fol-
lowing relationship between the altitude h of an object on
a circular orbit and its diffusion coefficient D

D = 12 · log (h)− 65 (20)

Note: h is in [km] in Equation (20).

Figure 2 shows the final rendering of an artificial streak
on an image.

(a) Artificial streak (b) Original streak

Figure 2: Comparison of an artificial and original streak
for objects at similar altitudes.

2.4. Photometric reduction

To analyze the detected space objects, we are imple-
menting an image processing pipeline that extracts astro-
mentric and photometric measurements. While the as-
trometry is used to correlate the detections with known
satellites, photometric lightcurves are extracted from the
streaks to allow characterizing the tumbling states of the
observed objects.

Detection refinement The output of the neural network
is a bitmap that encodes for each pixel how likely it is
to be contained within a streak. Extracting the actual
start and end points of a detected streak from this bitmap
sometimes results in these points not matching precisely
to the actual observed streak. Thus, to enable precise
astrometric measurements of the start and end points,
the detections need to be aligned with the observation.
Therefore, a cut-out of the detection is generated and ro-
tated such that the streak is horizontally aligned. Then the



streak is segmented into equally sized sections that are
horizontally median combined to obtain cross-sectional
profiles along the streak. These profiles are fitted to a
Moffat distribution. The center of each fitted Moffat pro-
file then corresponds to the center of the streak at the
corresponding location. These centers are then fit to a
straight line. To align the detected streak with the ob-
served one, the cutout is then rotated according to the
slope of the line so that it is horizontally aligned. This
procedure is repeated until the slope of the fitted Moffat
profile centers approaches zero. Finally, the adjusted end
points are transformed back to the original image.

Astrometric calibration The raw images acquired
with OmegaCAM already contain an astrometric solu-
tion. According to the OmegaCAM, this solution, how-
ever, corresponds to a rough estimate and should be re-
fined to allow precise astrometric measurements. We use
a local instance of Astrometry.net 1 to plate-solve the raw
images and improve the astrometric solution. This im-
proved solution is then used to obtain precise coordinates
of the end-points for the detected streaks.

Object correlation Before the streaks can be further
analyzed, they are correlated with all known objects that
are contained in the space-track catalog 2. Therefore, the
two-line elements (TLEs) at epochs closest to the obser-
vation time of the images are propagated to the obser-
vation time to identify objects that crossed the detector
throughout the observation. The identified candidates
are then projected onto the image and assigned to the
detected streaks. Due to inaccuracies in the TLEs, the
projected positions do not precisely match the observed
streaks. Therefore, thresholds in distance between obser-
vation and projection and the difference in position angle
are used for the assignment.

Orbit fitting To align the orbit with the observation,
the TLEs of the assigned objects are fit to the observed
streak using the batch least squares orbit determination
from the Orekit orbital dynamics library [1]. This pro-
cess requires knowledge on the precise time-stamps for
the end-points of the streaks. For detections that have
start or/and end-point on the image, the time-stamps can
be obtained from the start and/or end of exposure. To
account for the OmegaCAM two-blade shutter, a pixel-
dependent correction of the start and end of the exposure
is implemented.

For streaks that cross the entire detector, the precise start
and end time of the observation are unknown. In this
case, the times that correspond to the minimum angu-
lar separations between the entry and exit points and the
assigned TLE are computed and used as the initial time
stamp for orbit fitting. Then, an interval of a few seconds

1https://astrometry.net/
2https://www.space-track.org/

around this initial observation time is defined and the or-
bit that has the minimum Mahalanobis distance [19] be-
tween the fitted orbit and the TLE is searched within this
interval, and time stamps for the entry and exit points of
the streaks are computed from this solution.

Lightcurve extraction Once the precise coordinates
and corresponding observation times for the endpoints
are determined, the lightcurves can be extracted from the
streaks. Therefore, a series of rectangular apertures is
placed along the streak, and the flux inside the apertures
is measured. To obtain magnitudes for relative photome-
try with field stars, the corresponding exposure time (the
time the object spent in the aperture) is computed from
the fitted orbit.

The seeing effect introduces disturbance that results in
the streaks deviating from a straight line. Because dur-
ing most observations, the seeing is heavily over-sampled
(OmegaCAM pixel size is 0.21 arcsec and the seeing
FWHM for 50% of the observation time is larger than
0.8 arcsec), the excursions of the streak from a straight
line can reach several pixels. In order to avoid clipping
(the aperture only partly covers the streak) or excessively
large apertures (to make sure the streak is entirely con-
tained in each aperture), the apertures are centered on
the streak. Therefore, a similar process as for the streak
alignment is used: A cutout image of the streak is ro-
tated to horizontally align the streak, and the streak is
segmented into equally sized sections that are horizon-
tally median combined to obtain cross-sectional profiles
along the streak. Moffat distributions are fitted to the me-
dian combined cross-sectional profiles, and the centers of
the Moffat fits define the center for the measurement aper-
ture to obtain the flux. The size of the quadratic apertures
is set to 2 times the average FWHM of the Moffat fits.
To avoid measurement errors introduced by the rotation
of the image, the centers of the apertures are transformed
back to the original image before the fluxes are measured
with photutils [10].

2.5. Performance metrics

In order to evaluate the results of the machine learning al-
gorithm on the validation set, several metrics commonly
adopted in the field are used and presented below.

Precision Precision is an indication of how many cases
detected as positive are actually true positives. It tells us
how good the algorithm is at making correct predictions
when something is detected, and is calculated as follows.

Precision =
TP

TP + FP
(21)

https://astrometry.net/
https://www.space-track.org/


Recall Recall gives an indication of how many positive
detections, whether true or false, have been made by the
model. It indicates the ability of the model to make posi-
tive detections. The formulation is as follows.

Recall =
TP

TP + FN
(22)

F1-score The F1 score is the harmonic mean of preci-
sion and recall, offering a balanced measure of a model’s
performance by equally weighting both metrics. It is es-
pecially useful in situations where achieving perfect pre-
cision and recall is unrealistic. By combining these two
metrics, the F1 score provides a comprehensive evalu-
ation of a model’s ability to make accurate predictions
while effectively managing trade-offs between false pos-
itives and false negatives.

F1 = 2 · Precision ·Recall

Precision+Recall
(23)

3. RESULTS

3.1. Learning rate search

Before training the final algorithm, we conducted a learn-
ing rate search to determine the optimal learning rate for
our current configuration and dataset. To achieve this,
we trained the model for one epoch using different learn-
ing rates and analyzed the training and validation losses.
While training for only one epoch was sufficient due to
the large size of our dataset, the batch size was limited to
8 because of memory constraints. As a result, the training
loss curves were smoothed using an exponential moving
average to better visualize trends, as the small batch size
introduced noise into the loss curves.

From the results, it was evident that a learning rate of
1×10−2 was too high, as the training loss curve lacked a
steep descent at the beginning, showed instability with
visible peaks, and remained at a high loss throughout.
The corresponding validation loss was also highly unsta-
ble. On the other end of the spectrum, a learning rate
of 1 × 10−5 achieved better training loss but exhibited a
similarly insufficiently steep descent at the start of train-
ing. Among intermediate values, 1× 10−3 and 1× 10−4

showed promising results. However, 1× 10−4 was iden-
tified as the most appropriate learning rate as it achieved
a lower training loss, slightly better validation loss, and
greater stability compared to 1 × 10−3. Based on this
analysis, we selected 1 × 10−4 as the final learning rate
for training the algorithm. A graph of the smoothed train-
ing and validation losses for all tested learning rates is
shown in Figure 3.

(a) Training loss

(b) Validation loss

Figure 3: Learning rate analysis.

3.2. Performance results

The algorithm was ultimately trained using the Adam op-
timizer with an initial learning rate of 1 × 10−4. To
address potential convergence issues, we employed the
AMSGrad variant of Adam and applied L2 regularization
with a factor of 2 × 10−5. The training process spanned
4 epochs, which was feasible due to the large size of
the dataset, and the learning rate was adjusted every 2
epochs. The training and validation losses throughout the
training process are shown in Figure 4.

The evaluation of the model on the validation set pro-
duced the results shown in Table 2. Additionally, Fig-
ures 5 to 7 illustrate a selection of examples of correct
detections made using our trained model, showcasing its
performance on the validation data.

The performance results of our algorithm are highly
promising, demonstrating its capability to effectively de-
tect the majority of streaks across diverse conditions.
While there is room for improvement in recall and preci-
sion, the achieved metrics are impressive given the wide
variety of backgrounds, filters, shapes, and brightness
levels of the streaks. Notably, the precision, recall, and
F1 score are all consistently high and balanced, indicating
the robustness of the algorithm without any significant
bias toward over-detection or under-detection. A quick
visual analysis revealed that most false positives are at-
tributable to image artifacts, while most false negatives
occur with extremely faint streaks or those located near
image edges or crossing bright stars with pronounced
diffraction spikes that confuse the model. Importantly, no
difference was observed in the detection performance be-



(a) Training loss

(b) Validation loss

Figure 4: Training and validation loss.

Table 2: Performance of the trained model on the valida-
tion dataset

Precision Recall F1-score
96.4 96.5 96.4

tween real and artificial streaks, highlighting the strong
generalization capacity of the algorithm. These find-
ings underscore the reliability and adaptability of our ap-
proach in challenging scenarios.

3.3. Photometric reduction results

We tested the reduction pipeline using the results of a pre-
vious version of the detection algorithm. Of the 3630
detected streaks in this dataset that corresponded to one
month of VST observations in r-band, 1182 could be cor-
related with cataloged objects. These were processed
by the photometric reduction pipeline to extract their
lightcurves.

Figure 8 shows an example of poorly detected end points
and how alignment is improved after detection refine-
ment. This streak was detected with a previous version of
the network and we expect that with the current version
the precision of the detected end points is much higher.
However, this example shows that even in extreme cases,
we are able to exactly align the detection with the ob-
served streak.

(a) Original image

(b) Detection heatmap

(c) Detected lines

Figure 5: Detection in an image with two streaks. The
end of one of the streaks is within the image boundaries.

Figure 9 shows how the incorporation of the Mahalanobis
distance into the orbit fitting improves the determined
orbit. For this example, we used a streak that crossed
several tiles of the detector but was already in the field
of view when the exposure started. The blue line corre-
sponds to the projected orbit on the image and indicates
where the object would be according to its latest TLE.
The offset between the observed streak and the TLE pro-
jection corresponds to several tens of arcseconds across-
and along-track. We then used the entry and exit points
of the tiles that were crossed throughout the exposure to
see how much closer the fitted orbit reproduces the ac-



(a) Original image

(b) Detection heatmap

(c) Detected lines

Figure 6: Detection of a slow object.

tual start of the streak (without using the start point and
start of exposure for orbit fitting). First, the initial time
stamps that correspond to the minimum angular separa-
tion between the entry and exit points and the projected
space-track TLE were used to fit the orbit to the observa-
tion. The red dashed line in panel (a) of figure 9 corre-
sponds to the projection of the resulting orbit. While the
across-track error is completely compensated, the along-
track error remains and the fitted orbit fails to reproduce
the actual start of the streak (green cross). The lower
panel of figure 9 shows the orbit with the minimum Ma-
halanobis distance to the space-track TLE in an interval
of a few seconds of the initial time stamps. The along-

(a) Original image

(b) Detection heatmap

(c) Detected lines

Figure 7: Detection of an object with low SNR (SNR
3.8). The background has visible filter fringe patterns.

track is significantly decreased, and the fitted TLE is able
to reproduce the start of the observed streak within a less
than two arcseconds. This test demonstrates that our pro-
cedure to fit orbits of streaks that cross the whole detector
produces very accurate orbits.

Satellites and space debris in LEO can cross the detector
in as little as 1 second, which means that for such ob-
jects only very short lightcurves are obtained, and many
of them have small SNRs because of their high angular
velocities. Still, robust brightness measurements were ex-
tracted, and an indication of rotation is visible for some



(a) Initial detection of a streak’s end points.

(b) Improved alignment of the detection after postprocessing.

Figure 8: Detection alignment.

(a) Start point of the observed streak (green x), space-track
(blue) TLE and initial fit (red).

(b) Space-track (blue) TLE and orbit with the smallest Maha-
lanobis distance to the space-track TLE (red).

Figure 9: Results of orbit fitting using the Malananobis
distance.

of the observed objects in LEO. Satellites in higher orbits
cross the image much more slowly. For satellites in GEO,
lightcurves of several minutes were captured. Figure 10a
shows how the measurement apertures are centered on
the streak. The parameters of the Moffat profiles (except
for the amplitude) are expected to be similar throughout
the streak, and the center only slightly changes from one
aperture to another. Apertures that are contaminated by
cosmics, background stars, or other image artifacts result
in outliers in the distribution of Moffat parameters and
thus can easily be detected to exclude them from further
processing. The raw lightcurve in instrumental magni-
tude extracted from this streak is shown in Figure 10b.
Refinement of lightcurves into higher-order data prod-
ucts, such as rotation periods or phase curves, is currently
done manually [5] but will be incorporated into the pro-
cessing pipeline. An example of a period determination
of a GEO satellite that was found in 11 images in the pre-
liminary detection network results dataset was presented
in a previous work [15].

4. DISCUSSION

The results of this study are highly promising, demon-
strating that our method is effective in detecting satel-
lite and space debris traces in wide-field images, with
good performance scores. However, further analysis is
needed to better understand the limitations of the algo-
rithm, particularly in terms of undetected streaks. In-

(a) Measurement apertures.

(b) Lightcurve.

Figure 10: Placement of the measurement apertures along
a streak (a). Each aperture is centered on the peak of the
Moffat profile fitted to the data. Apertures contaminated
by field stars are automatically detected as outliers in dis-
tribution of the Moffat parameters and removed. Raw
lightcurve extracted from the streak (b).

vestigating factors such as limiting signal-to-noise ratio
(SNR) and refining the post-processing pipeline to min-
imize false positives could significantly enhance perfor-
mance. Additionally, the test set mentioned earlier, which
exclusively contains real streaks, will serve as a definitive
evaluation of the algorithm’s effectiveness on raw data
without artificial streaks. With these final adjustments in
place, the next exciting phase will involve applying the al-
gorithm to archival data to identify previously undetected
space debris. Preliminary findings from this study, along
with similar work by others, suggest that many objects
not listed in existing catalogs can be identified, offer-
ing new opportunities for the field of Space Situational
Awareness (SSA). Beyond discovering new debris, this
approach also holds potential for studying the historical
evolution of debris populations by analyzing past obser-
vations, providing valuable insights into long-term trends
and dynamics in Earth’s orbital environment.

In addition to detecting streaks, we show that we are able
to obtain precise astrometric and photometric measure-
ments from these detections. Incorporating the Maha-
lanobis distance in the orbit-fitting process allows us to
fit accurate orbits even when the streak crosses the entire
field of view. This capability is crucial for tracking faint
and fast-moving objects. However, in the current imple-
mentation, the mean anomaly is not accounted for when
calculating the Mahalanobis distance. To further improve
our orbit-fitting procedure and enhance its accuracy, we
plan to incorporate the mean anomaly into future itera-



tions of our method.

As mentioned previously, analysis of the preliminary re-
sults indicates that many detections cannot be identi-
fied with any known objects. Most of these detections
are relatively faint streaks that cross the entire detec-
tor, and we expect them to be caused by untracked de-
bris in low Earth orbit (LEO). These detections con-
tain very important information on this poorly observed
population. However, without an orbit that we can as-
sociate with these streaks, no further analysis—such as
brightness measurements—is possible because the expo-
sure times (the duration objects spend on the images) are
unknown. To address this limitation, we have started
exploring how atmospheric seeing effects could be uti-
lized to estimate the angular velocity of objects causing
these streaks. By assuming circular orbits, this angu-
lar velocity could provide an estimate of an object’s al-
titude. To achieve this, we used observing condition data
(e.g., seeing FWHM, temperature, wind speed, and at-
mospheric coherence time), combined with streaks from
identified objects (for which we know angular velocities)
and synthetic streaks, to train machine learning architec-
tures such as convolutional neural networks (CNNs) and
transformers. Although both algorithms performed well
on synthetic data, their performance on real data was lim-
ited. We concluded that this shortfall was likely due to
insufficient training data for capturing how streak appear-
ances depend on observing conditions. As more real de-
tections become available, we plan to repeat these exper-
iments with an expanded dataset.

To ensure that our findings contribute meaningfully to on-
going research efforts in SSA and related fields, we are
planning to publish all detections and light curves in a
dedicated repository called Orbital Debris Lightcurve In-
ventory (ODLI). This database and its web interface are
currently under development and will be finalized once
the detection algorithm reaches its final version. Further-
more, we are collaborating with the IAU Centre for the
Protection of the Dark and Quiet Sky from Satellite Con-
stellation Interference (CPS) to define interfaces between
our tools and their data repositories. This collaboration
will ensure that our results can be seamlessly integrated
into other databases and made accessible to a broader sci-
entific community.
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