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ABSTRACT

In-orbit explosions are currently the primary source of
fragmentation events in space and significantly contribute
to collision risk. Accurately modelling the frequency of
these events is therefore critical for reliable long-term
space environment predictions. This study presents a
novel approach for modelling explosion events in ESA’s
long-term simulation tool, DELTA, using survival analy-
sis of historical data. We distinguish between payloads
and rocket bodies, demonstrating that each group fol-
lows a distinct survival distribution. A five-knot cubic
spline is fitted to the cumulative hazard functions, pro-
viding a framework for generating synthetic explosion
times. This method is implemented into a new DELTA
module named EEM, which we demonstrate produces
explosions that are successfully coupled to launch traffic
and scale accordingly. Our results also show that the new
model more accurately predicts explosion events between
1980 and 2020 compared to the previous implementation,
though some under prediction remains.

Keywords: Modelling, Explosions, Fragmentations,
DELTA.

1. INTRODUCTION

Over the past decade, significant efforts have focused on
passivation measures and end-of-mission disposal tech-
niques to reduce in-orbit fragmentation. However, acci-
dental explosions currently remain the largest contribu-
tor to debris-generating fragmentation events. In the last
decade, explosions due to leftover propellant alone ac-
count for a third of all breakup events [1]. The third
largest recorded fragmentation event was due to over
pressurisation of the HAPS vehicle propellant tank, pro-
ducing a record 754 pieces of tracked debris, 64 of which
remain in orbit.

In the latest long-term predictions [2], the number of col-
lision fragments overtake the number of explosion frag-
ments within a decade. However, explosion fragments are

a key driver for increased collision risk, thus, accurately
modelling the frequency and characteristics of these ex-
plosions is essential for predicting the evolution of the
debris environment over the coming centuries.

In ESA’s long term environment simulation tool, DELTA,
explosions are currently modelled with the Breakup
Event Module (BEM). The explosion events are pre-
dicted per object class, creating the Object Class Data
file, which is derived from historical breakup analysis.
This file contains event and object parameters for explo-
sions, along with annual event rates for different object
types, and is processed into an array of explosion events.
To account for variations in explosion rates over time, an
annual factor may be applied to scale the explosion num-
ber.

In each Monte Carlo (MC) run, the number of explosions
at each timestep for a given object class is determined
by randomly sampling from a Poisson distribution. This
distribution is defined by the object class’s explosion rate,
the corresponding year’s scaling factor, and the timestep
size. The explosion event properties are determined from
the historical explosion event array, then appended to an
event array for the simulation. Once all the object classes
and timesteps have been processed for the MC run, the
event array is ordered in chronological order. This event
file is then executed during the simulation.

There are several significant issues that have been identi-
fied with this approach.

a) Firstly, explosion events are not correlated with ob-
jects. Therefore, explosion fragments add mass into
the simulation that were not accounted for in the
launch traffic. While this additional mass is not ex-
pected to be greatly statistically significant in com-
parison to the launch traffic, the second issue poses
a greater problem:

b) The explosion rate is not proportional to the launch
rate. When the explosion rate is constant, the ex-
plosion probability decreases with increasing launch
traffic.

c) Thirdly, the events occur in the exact same orbital
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regions as historical explosion events, which may
lead to build up and an overly conservative collision
probability in certain orbital regions.

A probabilistic model based on a time-dependent Poisson
distribution was recently developed for NASA’s LEG-
END simulator [3]. It showed significant improvement
in modelling the explosion rate with respect to historical
data, compared to the previously implemented constant
rate of explosion. The aim of this paper is to provide an
improved method to probabilistically model explosions,
that are object and launch dependent in DELTA.

2. DATA

ESA’s DISCOS (Database and Information System
Characterising Objects in Space) database contains the
breakup information of all recorded fragmentation events
in orbit. Events are discovered and confirmed when ad-
ditional objects are observed near the parent object us-
ing ground based optical or radar observations. The
recorded number of fragments associated with a breakup
event is highly dependent on the orbital regime due to
observability, and therefore we have not included frag-
mentation number in this analysis. In DELTA, explosion
fragments are modelled according to NASA’s standard
breakup model [4].

From DISCOS, we may extract all fragmentation events
related to an object type and exclude those associated
with the following tags: ASAT, Deliberate, Collision and
Small Impactor. The cause of events is not analysed in
this paper, or required for time-to-event analysis, and
therefore we include unknown and anomalous breakup
events in the data pool. The data is split into two cat-
egories, payloads and rocket bodies (or ‘stages’). We
make a key distinction between these objects, as they are
structurally different resulting in explosion events that are
likely driven by distinct mechanisms. As of March 2025,
there have been no reported explosions of constellations.
These would likely be treated differently in long term
propagation, as a design flaw that leads to an explosion
significantly increases the explosion risk of objects with
the same design within that constellation. For rocket bod-
ies, this leaves 209 events from 1961 to 2024. For pay-
loads, we observe 338 events.

There are two key timescales to consider when analysing
historical explosion rates: generational change and
spacecraft age.

2.1. Generational Change

Generational change refers to the evolution of explosion
behaviour as a function of launch year, capturing the
influence of technological advancements and hardware
trends at the time of launch. Predicting explosion prob-
ability based on launch epoch is similar to forecasting

(a) Rocket body explosions

(b) Payload explosions

Figure 1: Explosions by objects’ launch epoch, demon-
strating generational evolution of explosion probability.

future launch traffic trends. Currently, DELTA relies on
repeated historical launch data. While efforts have been
made to predict future launch trends [5, 6], the rapid surge
in launches over the past decade demonstrates the diffi-
culty of accurately forecasting such trends using histori-
cal data alone.

From Figure 1, we see the evolution of explosion prob-
ability as a function of an object’s launch epoch. The
explosion probability for launch year i is defined as:



Table 1: Mean average explosion probability per object
type by objects’ launch epoch

Object type Mean probability Std.
Rocket Body 0.0326 0.0274
Payload 0.0337 0.0349

pi =
nexplosions

nlaunches,i
(1)

Where nexplosions are the number of objects that ex-
ploded at any time, that were launched in year i. We
exclude launches of constellations for the payloads.

While there does appear to be a reduced explosion prob-
ability in recent years, the recent population has a higher
explosion probability than older generations (see subsec-
tion 2.2), and will likely still experience explosion events.
New technology will bring new challenges, and we do not
see a clear linear improvement with time. For this model
we therefore have chosen to not assume any generational
change with time.

We define the overall probability of explosion, p, as the
mean average explosion probability by launch epoch.
These averages are displayed in Table 1. Reference [3]
finds that the total explosion probability for a payload
is 0.044, and 0.019 for rocket bodies. The discrepancy
in the latter value is due to object filtering, where SOZ
spacecraft were analysed separately, and found to have a
0.57 explosion probability.

2.2. Days on Orbit

The second timescale we may consider is the object’s
time on orbit before explosion. This may address the
various causes of explosions, for example, early failures
due to crucial design flaws versus failures due to thermal
degradation over long time periods. We may naively ex-
pect a bathtub curve commonly associated with reliability
engineering [7], however, Figure 2 demonstrates that the
vast majority of explosions occur within the first year of
launch.

As of 2025, the longest time elapsed between an object
launch and explosion of known cause was 49 years. The
object responsible was a Titan Transtage 3C-17 rocket
body, and this was the second event for this object in
2018. The first occurred in 2014, which was believed to
be an outgassing event. This object has produced 100 re-
ported fragments, 53 of which are catalogued. While it is
clear from Figure 2 that events occurring greater than 30
years after their launch are rare, we are limited by a maxi-
mum observation period of 68 years. It is entirely feasible
that explosions may occur after longer timescales.

Figure 2: Object age before explosion for all object types

3. METHODOLOGY

3.1. Survival Analysis

Survival analysis is a statistical framework used to anal-
yse, model, and predict the time until a specific event oc-
curs. In this context, the event of interest is the explosion
of a rocket body, with time measured from launch.

The survival function, S(t), represents the probability
that an object remains intact at least until time t. It is
a smooth, monotonically decreasing function; as time
progresses, the likelihood of survival decreases. A
commonly used method for estimating S(t) from ob-
servational data is the Kaplan-Meier estimator, a non-
parametric approach that provides a discrete, stepwise ap-
proximation of the survival function. It is defined as:

Ŝ(t) =
∏

i:,ti≤t

(
1− di

ni

)
, (2)

where di is the number of deaths at time ti, and ni is the
number of subjects known to have survived until ti.

The hazard function describes the instantaneous risk of
an event occurring at a given timestep, given that it has
survived up until that time. It is related to the survival
function by:

h(t) = −∂ logS(t)

∂t
(3)

The cumulative hazard function is the accumulated haz-
ard over time, and is related to the survival function by:

H(t) =

∫ t

0

h(u)du , t > 0 (4)



A key challenge in survival analysis is dealing with cen-
sored data. Datasets often include subjects which are not
observed for the same duration or do not complete the full
observation period. This can occur when subjects leave
the study early (re-enters, collides or passivates) or are
observed for different lengths of time (due to different
launch dates). Right censoring is a common approach to
handle this, where subjects that are no longer observed
are assumed to have survived until a time greater than
their last observation time. However, this assumption in-
correctly assumes that given infinite time, these objects
will eventually explode. This does not reflect the reality
of a dynamic space environment, where objects may per-
form full passivation, re-enter, collide or are not capable
of exploding.

Another challenge is extrapolation of the survival func-
tion. DELTA simulations typically run for 200 years,
therefore capturing long term behaviour of exploding ob-
jects is required. As mentioned, if the survival func-
tion is projected beyond the observation period without
convergence, it unrealistically assumes that all objects
will eventually explode. However, avoiding extrapolation
may limit the maximum lifetime to the observed data, po-
tentially distorting the true lifetime by not accounting for
the possibility that objects could survive beyond our cur-
rent observation period.

To address these two challenges, a mixture, or ‘cure’
model can be used to model situations where a subset
of the population never experiences the event of interest.
A mixture model assumes that the population consists of
two groups: one group that is susceptible and another that
is immune to the event, where the probability of ‘explod-
ability’ is p. The survival function is then defined as:

Stotal(t) = (1− p) + pS0(t) (5)

The function S0(t) is defined using only the subset of
data that experienced the event. Right censoring is no
longer applicable for this dataset, and extrapolation of
S0(t) cannot result in a total explosion probability greater
than p. For our model, we define p as the mean average
probability of explosion by launch epoch per object type,
as described in subsection 2.1.

3.2. Model Selection

The aim of this paper is to generate synthetic survival
times for future launch traffic. By fitting a model to the
survival distribution, we may produce data that mimic the
patterns observed in the historical data. These functions
can be estimated using nonparametric methods such as
the Kaplan-Meier estimator, as shown in Figure 3, semi-
parametric approaches like the Cox proportional hazards
model, or parametric models such as an exponential or
Weibull distribution.

Unlike parametric models, which impose rigid assump-
tions about the underlying data distribution, splines pro-

vide a non-parametric approach that can more accurately
capture complex, non-linear patterns in survival data. It
offers greater flexibility for an evolving dataset that is not
expected to follow a specific distribution. They are de-
fined as piecewise polynomials, with a degree n, and are
joined together at locations called knots, k. Choosing the
location and number of knots is a key step in performing
spline regression. The degrees of freedom of the spline
is df = k + (n + 1) [8], where the greater the degree
of freedom, the more flexibility and curvature the spline
has. With no prior knowledge of the knot locations, one
simple approach is to place the knots at equally spaced
intervals along the dataset. However, this may miss in-
formation if data is not uniformly distributed. Another
approach which addresses this is to define knots based
on quantiles. This ensures that where there is more in-
formation, the knots are placed closer together, capturing
curvatures on smaller timescales.

The Akaike information criterion (AIC) is a method com-
monly used to compare how well different models fit a
dataset [9]. It is calculated using the maximum likelihood
estimate of the model L̂, and the number of independent
variables used v. The minimum AIC describes a model
that maximises the log likelihood using the least number
of parameters to avoid overfitting.

AIC(model) = −2ln(L̂) + 2v (6)

The lifelines python package provides an inbuilt AIC
comparison method to compare univariate parametric
models [10]. This was used to determine that a 5-knot,
cubic (n=3) spline provided the best fit to both the pay-
load and rocket body cumulative hazard curve. The cu-
mulative hazard function is fitted to the following spline
distribution.

H(t) = exp

ϕ0 + ϕ1log(t) +

N∑
j=2

ϕjvj log(t)

 (7)

Where vj are cubic basis functions at N given knots. For
a detailed definition on the spline function, see [11].

Figure 3 demonstrates the fit of the 5 knot cubic splines to
both the stage and payload survival functions, where the
5 knots are placed at equally spaced quantiles along the
data. This successfully captures the two step decrease of
the payload survival probability, and the smoother con-
tinuous decrease of the rocket body survival probability.

3.3. Synthetic Time Generation

To avoid being constrained by the maximum observed ex-
plosion time, we extrapolate the cumulative hazard distri-
bution beyond the observation period. In alignment with



(a) Rocket body survival function

(b) Payload survival function

Figure 3: Survival function of rocket bodies and pay-
loads, constructed using the subset of data where objects
experienced an explosion. A 5 knot cubic spline is re-
gression fitted to the data, and the Kaplan Meier discrete
estimate is plotted for comparison.

the cure mixture model, we assume that only a fraction,
p, of objects is capable of exploding. Consequently, after
the maximum observation time, we assume that the haz-
ard accrued at each time step is constant and equal to the
hazard value at the last time step. This results in a linearly
increasing cumulative hazard function and an exponen-
tially decreasing survival function S0(t). The survival
probability for the exploding population asymptotically
approaches zero, and the total survival function Stotal(t)
converges to (1− p).

Once the form of the cumulative hazard curve has been
determined, we can sample survival times directly from
this distribution. Since the cumulative hazard function,
H(t), is a monotonically increasing function, there is a

one-to-one mapping between the values of H and t. The
linearity of H(t) at high t values ensures greater numer-
ical stability in both extrapolation and interpolation than
sampling directly from the survival function, which de-
creases exponentially with t.

For a given object, we determine whether it will explode
using Bernoulli sampling based on the object type. This
probability may be scaled according to a user input an-
nual explosion scale factor α, which is nominally equal
to 1. We scale the odds, which is the ratio of the prob-
ability of success to failure, equal to p/(1 − p). This is
transformed back to probability, so that the probability
remains constrained between 1 and 0. At small prob-
abilities, the function scales the new probability almost
linearly.

pnew =
αp

αp+ 1− p
(8)

Then, if the object is deemed to explode, we sample a
uniform distribution U(0, 1), which represents a random
value of S(t). The time can then be found by inverting
the cumulative hazard distribution and solving for time.

t = H−1(ln(U)) (9)

We add this value to the object’s beginning of life to find
its explosion epoch.

4. IMPLEMENTATION

The implementation of this model is separated into three
parts, as illustrated in Figure 4

4.1. DISCOS4DELTA process

The DISCOS4DELTA program produces datapackages
for DELTA runs, including initial population files, launch
information of the last N years, and the Object Class Data
file for the previous explosion module.

We extend this program to include the survival analysis
and spline regression for this model. The probability of
explosion and cumulative hazard are derived per object
class (rocket body or payload) and saved to data files.
These files are added to the datapackage for the DELTA
run.

4.2. DELTA Preprocesses

The new pre-processesor is named the Explosion Event
Module (EEM). It parses the cumulative hazard CSVs,
probability datafiles, and input scale factor and allocates



Figure 4: New explosion module implementation workflow overview

these data to a globally accessible explosion data storage
module. This module contains subroutines that interpo-
late and extrapolate H(t), and generate explosion epochs
for an object, as described in subsection 3.3.

The EEM preprocessor then loops through the initial pop-
ulation and assigns explosion epochs to objects that are
deemed to explode based on the Bernoulli sampling. If
the explosion epoch is in the past, the explosion will not
be executed.

4.3. DELTA Core Processes

At each timestep, the launch plugin is executed. For
newly launched objects, explosion epochs are assigned
in the same way to the initial population before they are
added to the simulation.

The propagator plugin is also executed at each timestep:
updating each objects orbital properties, removing them
if they reenter. We adapt the propagator plugin to execute
explosions when the epoch is within the given timestep,
and the object has not passivated.

5. RESULTS

As the previous explosion module was not coupled to the
DELTA population, the explosion output files are limited
in their reported information. We intend to expand the

explosion output datafiles to include launch epoch and
object ID, but as of the writing of this report, this has
not yet been implemented. The results presented here are
therefore limited. With no launch epoch or object ID, we
cannot examine the time to event of the simulated explo-
sions, or split by object type. Only the overall environ-
ment effect may be analysed.

5.1. Historical Verification

To verify the new explosion module, a DELTA run was
executed to simulate the environment evolution from
1980 to 2020.

To set up a DELTA run simulating the future environ-
ment, a datapackage is usually created based on launch
traffic from year n to year m (m > n), where year m is
the simulation start year. The input population is created
from the environment in year m, and DELTA stochasti-
cally samples a launch traffic cycle of length (m−n), and
is repeated from year m onwards.

For historical verification, we instead use the input pop-
ulation from 1980 (year n), and create a launch traf-
fic cycle with a length equal to the simulation length,
from 1980 to 2020. The launch traffic is therefore still
stochastically sampled and will vary between MC runs,
but should reflect reality more closely than a predictive
launch traffic based on data prior to 1980.

This simulation was executed using both the old (BEM)
and new (EEM) modules, with 25 MC runs each. No post



mitigation measures were used. The aim is to see how ac-
curately the explosion modules predict the recorded num-
ber of explosions during this timeperiod. The results are
displayed in Figure 5.

The first thing to be noted is that the launch traffic was
not accurately predicted. To see the differences in ob-
served launch traffic compared to DELTA launch traffic,
see Figure A.1. Investigating this difference is not in the
scope of this paper, but to account for it, we have plot-
ted the number of explosions normalised by the number
of launches in that year. The recorded number of explo-
sions normalised by launch number from DISCOS is also
plotted.

We can see that the old explosion module under predicts
the explosion number by approximately a factor of 5, de-
spite sampling from explosions that occurred during the
1980 to 2020 timeframe. The new explosion module
makes a reasonable improvement on this, however, there
is still an under prediction. The higher standard devia-
tion compared to the old module indicates greater annual
variation, which is perhaps a more accurate reflection of
reality.

The lack of explosions in 1980 is a setup misalignment.
The simulation starts at 1980-11-01, and the initial pop-
ulation is from 1980-01-01. Many of the explosions as-
signed to the initial population will not have been able to
execute. This simulation will be rerun to correct this, and
the discrepancy will be further investigated.

Figure 5: Predicting the explosion traffic from 1980 to
2020 using the old and new explosion module.

The under prediction of the new EEM model may be at-
tributed to a number of factors. The explosion rate is
highly dependent on the launch traffic. The under predic-
tion of the launch traffic shown in Figure A.1 will explain
some of this discrepancy. Furthermore, objects that were
assigned to explode may naturally re-enter, de-orbit after
25 years at 0.1 success rate, or be involved in other frag-
mentation events. This could provide motivation to ad-
just the explosion probability p to ensure that the number
of explosion events executed is in line with the expected

rate.

5.2. 2024 Extrapolation

The second simulation ran was the environment extrapo-
lation case for ESA’s 2024 Environment Report [2], with
both the old and new model. Figure 6 shows the overall
environment effect of the new explosion model, including
explosion fragment number, collision fragment number
and overall object number.

The amplitude of the explosion fragments is higher, likely
because they are coupled to the amplitude of the launch
traffic.

There is a clear increase in explosion fragment number,
approximately by a factor of 2. However Figure A.2
demonstrates that the total number of explosion events is
much higher than this, producing approximately 6 times
more explosions total over 200 years. This difference
may be due to a number of reasons:

a) The explosions may occur at lower altitudes in the
new model, and therefore deorbit faster.

b) The explosions may produce fewer fragments on av-
erage, due to more explosions of smaller objects.

Both of these possibilities will be investigated.

The number of collision fragments does not appear to be
significantly different between models in Figure 6. How-
ever, we can see in Figure A.4 that the additional ex-
plosion fragments does marginally increase the collision
risk, as expected.

5.3. Scaling with launch traffic

To test how the explosion traffic scales with the launch
traffic, we compare the 2024 extrapolation in subsec-
tion 5.2 to two alternative future scenarios. The first is
no future launches, so the explosion traffic will be gen-
erated only from the initial population. The second is a
traffic ’surge’, where we assume the traffic scales up by
a factor of 2 over the next 200 years. It should be noted,
this is not the same scale factor as described in subsec-
tion 3.3, instead it is applied directly to the launch traffic
number. This scale factor has only been applied to pay-
loads and stages, not constellations. 25 MC runs of each
case were run.

The results are shown in Figure 7. The high spikes are
expected to smooth out with increased MC runs. As ex-
pected, the no future launch case has explosions that de-
crease with a shape and timescale that aligns with Fig-
ure 2. The traffic surge case shows an increase in explo-
sion number that is consistent with the increase in launch



Figure 6: ESA 2024 environment report extrapolation case with old and new explosion model

traffic. By plotting the ratio of the explosion number be-
tween the surge case and extrapolation case in Figure 8, it
is clear the explosion rate correctly scales with the launch
rate increasing from a factor of 1 to 2 over 200 years. Fig-
ure A.3 shows the cumulative explosion number.

Figure 7: Explosion number with varying launch traffic

Figure 8: Ratio of explosion number of surge case to
nominal 2024 extrapolation case with new explosion
model.



6. FUTURE DEVELOPMENTS

There are a number of future developments that are ex-
pected following the preliminary results presented in this
paper.

a) The explosion output files will be expanded to in-
clude information such as object ID and launch
epoch, to allow for time-to-event analysis. The frag-
mentation event analyser will also be updated.

b) The scaling factor α for the explosion probability
will be investigated to gauge its sensitivity

c) The historical verification case in subsection 5.1 will
be rerun with correctly aligned dates.

d) Compare the differences in mass, location and frag-
ment number of explosions between models

e) A scaling of the overall explosion probability p will
be investigated to attempt to capture the correct pro-
portion of explosion events before re-entry or colli-
sion.

7. CONCLUSION

This paper aimed to improve the explosion mod-
ule (BEM) in ESA’s long-term environment simulator
DELTA. Previously, the explosions were modelled by
sampling from historical explosion events. This added
unaccounted mass into the simulation, decreased the ex-
plosion probability as the launch traffic increased, and re-
stricted the orbital locations in which explosions could
occur.

We used survival analysis to incorporate a cure mixture
model, assuming that only a fraction, p, of the popula-
tion are capable of exploding. This value was estimated
by finding the mean average probability of explosion per
launch epoch for each object type.

A five knot cubic spline was regression fitted to the cu-
mulative hazard function of the survival data of rocket
bodies and payloads separately. We extrapolated these
functions, assuming the explosion hazard is constant be-
yond the last observed time. For the future launch traffic,
a survival time may be generated by sampling directly
from this function.

We produced a method in DELTA that successfully cou-
ples the explosion traffic to the launch traffic, and scales
accordingly. We found that the new explosion model pro-
vides a more realistic prediction of the historical explo-
sion traffic between 1980 and 2020 than the old model,
which under predicted by approximately a factor of 5.
The new model also under predicts explosions, as ob-
jects that were assigned explosions may re-enter, collide
or passivate before exploding.

Further implementations and investigations are necessary
to understand the differences between the models’ frag-
ment number production, orbital locations, and the model
scaling factors.
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A. ADDITIONAL PLOTS

Figure A.1: Cumulative number of launches of historical
verification case compared to reality

Figure A.2: Cumulative number of explosions in 2024
extrapolation case with new and old model

Figure A.3: Cumulative number of explosions in cases
with varying launch traffic.



Figure A.4: Cumulative number of collisions in 2024 extrapolation case with new and old explosion module.


	Introduction
	Data
	Generational Change
	Days on Orbit

	Methodology
	Survival Analysis
	Model Selection
	Synthetic Time Generation

	Implementation
	DISCOS4DELTA process
	DELTA Preprocesses
	DELTA Core Processes

	Results
	Historical Verification
	2024 Extrapolation
	Scaling with launch traffic

	Future Developments
	Conclusion
	Additional Plots

