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ABSTRACT

Cislunar space presents new challenges for Space Do-
main Awareness (SDA), requiring advanced uncertainty
characterization due to complex, non-Keplerian dynam-
ics. The Generalized Equinoctial Orbital Elements
(GEqOEs) have been explored as a viable alternative for
cislunar dynamical modeling and uncertainty propaga-
tion. In this paper, the Modified Generalized Equinoc-
tial Orbital Elements (M-GEqOEs) are introduced for im-
proving robustness in modeling spacecraft dynamics in
this regime. Example applications include trajectories
that transfer between the Earth and the Moon and fam-
ilies of periodic orbits that span a range of energy levels.
Uncertainty evolution is assessed and compared against
Cartesian techniques, with the generalized coordinates
showing improved accuracy and preserving Gaussian be-
havior for longer durations.

Keywords: Space Domain Awareness; cislunar astrody-
namics; orbital elements.

1. INTRODUCTION

With the recent interest in missions to the vicinity of the
Moon, cislunar space is poised to become the domain that
sustains humanity’s presence beyond the Earth. With this
renewed interest, Space Domain Awareness (SDA), that
has conventionally applied to the sub-geosynchronous or-
bit domain, will be necessary to support cooperative and
safe operations in cislunar space as well. In contrast to
SDA near the vicinity of the Earth, SDA in the broad vol-
ume of cislunar space presents unique challenges due to
its vast size and significant distance from the Earth. In
addition, the cislunar dynamical environment is charac-
terized by non-Keplerian motion resulting from the non-
negligible impact of lunar gravity perturbations. Thus,
a dynamical model that captures the influence of both
the Earth and the Moon, in addition to other perturbing
forces, is necessary to represent cislunar dynamics.

A necessary component of SDA is modeling the uncer-
tainty in the state of a spacecraft and its evolution over

time. Assumptions of Gaussianity on the initial and
downstream evolution of uncertainty in cislunar space
are typically restrictive and do not represent the true be-
havior. As such, alternative techniques are needed to
maintain the Gaussian assumption while preserving un-
certainty realism. These techniques are of particular in-
terest in order to obtain and maintain custody of both
known and unknown objects in cislunar space. The Al-
ternate Equinoctial Orbital Elements (AEOEs) have been
investigated for their preservation of Gaussianity of the
initial state uncertainty through propagation under Kep-
lerian motion [7]. The Generalized Equinoctial Orbital
Elements (GEqOEs) have been successfully leveraged
for the state and uncertainty propagation of near-Earth
orbits with third-body perturbations and oblateness ef-
fects [2, 6]. By leveraging the GEqOEs, improvement in
the preservation of uncertainty realism is demonstrated
near the Earth, highlighting their advantages over con-
ventional coordinate representations [9]. More recently,
Gupta and DeMars have applied the GEqOEs for captur-
ing three-body dynamical motion in cislunar space, with
better preservation of Gaussian behavior for uncertainty
propagated along various cislunar orbits [4, 5].

The goal of this investigation is to extend the applicabil-
ity of the GEqOEs to other cislunar trajectories of inter-
est, including families of periodic orbits that span a vari-
ety of energy levels and transfer trajectories that traverse
the Earth-Moon corridor. Modifications to the GEqOE
set are investigated for robust propagation of cislunar dy-
namics. As such, the Modified Generalized Equinoctial
Orbital Element (M-GEqOE) set is explored as a natural
extension within the generalized coordinates. Both the
GEqOE and M-GEqOE sets are characterized by the to-
tal energy of the system, allowing the direct inclusion of
relevant perturbations that arise from conservative forces
and providing the necessary framework for modeling
non-Keplerian dynamics. Various orbits are constructed
using these orbital elements and verified against conven-
tional Cartesian propagation obtained via the Earth-Moon
Circular Restricted Three-Body dynamical model.

The first step in addressing the challenges with cislunar
SDA is to sufficiently model the relevant dynamical per-
turbations. The next step is to predict the evolution of un-
certainty along a given trajectory and to evaluate the ex-
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tent to which it can be accurately characterized in a com-
putationally tractable manner. As such, the uncertainty
along various trajectories is propagated in the generalized
coordinates and compared against Cartesian propagation
techniques. Measures of probability density functions are
employed to quantify errors induced by Gaussian approx-
imations of the probability densities in both coordinates.

2. GENERALIZED ORBITAL MOTION

Consider a spacecraft of mass m orbiting the Earth or
the Moon. In the associated body-centered inertial frame,
the perturbed two-body motion of the spacecraft is repre-
sented as

r̈ +
µ

C
r

r3
= ap(r, ṙ, t) , (1)

where r represents the inertial position vector of the
spacecraft, ṙ is the velocity, and r̈ is the spacecraft accel-
eration. The vector ap represents any perturbing accel-
erations acting on the spacecraft. The variables r and t
denote the magnitude of the spacecraft position and time
respectively. The parameter µ

C
represents the gravita-

tional parameter for the central body (e.g., the Earth or
the Moon), where the mass of the spacecraft is assumed
to be infinitesimal relative to the mass of the central body.

The origin of the inertial reference frame, denoted O, is
centered on the celestial body and is defined as

Σ = {O; ex, ey, ez} . (2)

Here, ex = [1, 0, 0]T , ey = [0, 1, 0]T , and ez =
[0, 0, 1]T . Additionally, the orbital reference frame, de-
noted Σor, is defined by the orthonormal basis,

Σor = {O; er, ef , eh} , (3)

where er points along the spacecraft position vector, eh
is directed along the angular momentum vector, and ef
completes the dextral orthonormal triad

er =
r

r
, ef = eh × er, eh =

r × ṙ

|r × ṙ|
=

h

h
. (4)

The perturbing accelerations in Equation (1) arise from a
total perturbing force, denoted F , that can be written as
a sum of forces that are derived from a potential energy,
such as the gravitational acceleration from additional ce-
lestial bodies, and forces that are not derived from a po-
tential, such as atmospheric drag and solar radiation pres-
sure. Mathematically, the total perturbing force is then
represented as

F = P −∇U , (5)

where P represents the perturbing forces that do not arise
from a potential, and −∇U models the contribution of
forces derived from a potential energy, U . The total or-
bital energy of the spacecraft, E , is a sum of its Keplerian
energy, EK , and this potential energy, such that

E = EK + U . (6)

Expressing the spacecraft velocity vector, ṙ, in the orbital
frame as

ṙ = ṙer +
h

r
eh , (7)

the total orbital energy may be represented as

E =
ṙ2

2
+

h2

2r2
− µ

C

r
+ U , (8)

where ṙ denotes the radial component of the velocity,
and h is the magnitude of the angular momentum of the
spacecraft. Then, the effective potential energy, denoted
Ueff , is defined as

Ueff =
h2

2r2
+ U . (9)

Thus, the total energy of the spacecraft is

E =
ṙ2

2
− µ

C

r
+ Ueff . (10)

Using the effective potential energy, the generalized an-
gular momentum of the spacecraft, denoted h̃, is intro-
duced,

h̃ =
√
2r2Ueff (11)

which defines the generalized velocity vector

ṽ = ṙer +
h̃

r
eh . (12)

Parameters denoted by tildes represent generalized quan-
tities that are defined by the total orbital energy, E , and
are, thus, embedded with conservative perturbations act-
ing on the spacecraft. Although this framework is de-
scribed in the context of orbits centered on the Earth or
the Moon, the equations are applicable to orbits centered
on other bodies as well.

2.1. Generalized Equinoctial Orbital Elements

Assuming that the total energy is negative, the general-
ized analogs for the semi-major axis, eccentricity, and the
semi-latus rectum are evaluated as

ã = −µ
C

2E
(13)

ẽ =

√
µ2

C
+ 2E h̃2

µ
C

(14)

p̃ = ã(1− ẽ2) . (15)

The generalized eccentricity vector, ẽ, orients the ellipse
in the orbital plane and is given as

µ
C
ẽ = ṽ × (r × ṽ)− µ

C
er . (16)

The generalized true anomaly, θ̃, defines the angle be-
tween the ẽ and r vectors and satisfies the relations

ẽ cos θ̃ =
h̃2

µ
C
r
− 1 (17)

ẽ sin θ̃ =
h̃ṙ

µ
C

. (18)



Other angular relationships that parameterize the non-
osculating ellipse include the classical true longitude

L = ω +Ω+ θ , (19)

where θ is the classical true anomaly, and ω and Ω de-
note the argument of periapsis and the right ascension of
ascending node, respectively. The angle Ψ denotes the
generalized longitude of periapsis and is determined as

Ψ = L− θ̃ = ω +Ω+ θ − θ̃ . (20)

In the absence of orbital perturbations (U = 0), the
generalized and classical true anomalies are equal, and
Ψ = ω +Ω.

Using the generalized quantities that characterize the or-
bital motion and the angular relationships, the General-
ized Equinoctial Orbital Elements (GEqOEs) are defined
as

{ñ, p1, p2, q1, q2, λ̃} . (21)

The first element denotes the generalized mean motion
and is expressed as

ñ =
1

µ
C

(−2E)3/2 . (22)

The second and third elements parameterize the eccen-
tricity vector and are defined as

p1 = ẽ sinΨ (23)
p2 = ẽ cosΨ . (24)

The elements q1 and q2 orient the equinoctial reference
frame relative to the inertial reference frame. These el-
ements are functions of the classical inclination, i, and
the classical right ascension of the ascending node, Ω,
expressed as

q1 = tan
i

2
sinΩ (25)

q2 = tan
i

2
cosΩ . (26)

Finally, λ̃ represents the generalized mean longitude and
is a function of the generalized mean anomaly, M̃ , and
the generalized longitude of periapsis, Ψ:

λ̃ = M̃ +Ψ , (27)

where M̃ is determined by solving Kepler’s equation for
the generalized quantities

M̃ = Ẽ − ẽ sin Ẽ . (28)

Define the generalized eccentric longitude as

F̃ = Ẽ +Ψ . (29)

Substituting Equations (28) and (29) into Equation (27)
yields

λ̃ = Ẽ − ẽ sin (F̃ −Ψ) + (F̃ − Ẽ)

= F̃ − ẽ(sin F̃ cosΨ− cos F̃ sinΨ)

= F̃ + p1 cos F̃ − p2 sin F̃ ,

(30)

where the definitions of the elements p1 and p2 via Equa-
tions (23) and (24) provide the relevant substitutions. The
GEqOEs are formulated under the assumption that the
total energy of the system, E , is negative. This inher-
ently limits their applicability to certain cislunar dynam-
ical structures and energy levels near the Earth and the
Moon. Therefore, modifications are required to accom-
modate non-capture behavior in the presence of signifi-
cant perturbations.

3. MODIFICATIONS TO THE GENERALIZED
EQUINOCTIAL ORBITAL ELEMENT SET

An offshoot of the classical Equinoctial Orbital Ele-
ments includes the Modified Equinoctial Orbital Ele-
ments, wherein the semi-major axis and mean longitude
from the classical set are replaced by the semi-latus rec-
tum and the true longitude [14]. In the current work, the
same modification is adopted to extend the applicability
of the GEqOEs to all orbit types, defining the Modified
Generalized Equinoctial Orbital Elements (M-GEqOEs).
The relevant equations and time derivatives of the M-
GEqOE set are detailed.

3.1. Modified Generalized Equinoctial Orbital Ele-
ments

The set of Modified Generalized Equinoctial Orbital Ele-
ments (M-GEqOEs) is defined as

{p̃, p1, p2, q1, q2, L}, (31)

where only the first and the sixth elements of the orig-
inal GEqOE set are modified. The first element in the
M-GEqOE set is selected as the generalized semi-latus
rectum, p̃, determined as

p̃ =
h̃2

µ
C

. (32)

The sixth element of this modified set is the classical true
longitude, L, which represents the time-varying or “fast”
variable along the orbit. The true longitude is directly de-
termined from Equation (19) as a function of the classical
true anomaly, the RAAN, and the argument of periapsis.

3.2. M-GEqOE Time Derivatives

The process of obtaining the time derivatives for each el-
ement in the GEqOE is detailed by Baù et al. [2]. In this



section, the time derivatives for the modified set are de-
tailed, providing a general form that may accommodate
any perturbing forces. From Equation (5), recall that any
perturbing force F comprised of conservative perturba-
tions (derived from some potential energy, U ) and non-
conservative forces may be embedded into the general-
ized elements. Projections of the total perturbing force
and the non-conservative force term, denoted P , into the
orbital reference frame are given as

Fr = F · er, Ff = F · ef and Fh = F · eh (33)
Pr = P · er, Pf = P · ef and Ph = P · eh .

(34)

Additionally, the angular velocity of the equinoctial ref-
erence frame, Σeq , with respect to the inertial frame, Σ,
is projected onto the equinoctial axes as

wX = Fh
r

h
cosL, (35)

wY = Fh
r

h
sinL, (36)

wZ = −Fh
r

h
tan

i

2
sinω + θ . (37)

Other quantities necessary to compute the time deriva-
tives of the M-GEqOEs include the rate of change of the
total energy of the system, that is evaluated as

Ė =
∂U

∂t
+ ṙPr +

h

r
Pf . (38)

Then, the general form of the time derivatives of the M-
GEqOEs is given as

˙̃p =
2h̃

µ
C

[
r2Ė
h̃

+
rṙ

h̃
(2U − rFr)

]

ṗ1 = p2

(
h− h̃

r2
− wh

)
+

1

h̃

(
X

ã
+ 2p2

)
(2U − rFr)

+
1

h̃2

[
Y (r + p̃) + r2p1

]
Ė

ṗ2 = p1

(
wh − h− h̃

r2

)
− 1

h̃

(
Y

ã
+ 2p1

)
(2U − rFr)

+
1

h̃2

[
X(r + p̃) + r2p2

]
Ė

q̇1 =
1

2
wY

(
1 + q21 + q22

)
q̇2 =

1

2
wX

(
1 + q21 + q22

)
L̇ =

h

r2
+

r

h
Fh tan

(
i

2

)
sin (ω + θ) .

(39)
Any significant perturbations, whether conservative or
non-conservative, that are essential for modeling space-
craft dynamics are, thus, directly incorporated into the
generalized elements and their time derivatives.

4. CISLUNAR DYNAMICS MODELING

As spacecraft and other objects traverse cislunar space,
their complex dynamical motion is influenced by the
gravitational forces of both the Earth and the Moon.
Therefore, in addition to the dominant gravitational influ-
ence of one body, the gravitational perturbation caused by
the other must be accounted for in trajectory design and
prediction. While other perturbations, such as the oblate-
ness effects of the Earth and Moon or the gravitational
influence of the Sun, may also be significant, account-
ing for the gravitational forces of both the Earth and the
Moon is essential. For cislunar state propagation employ-
ing the the M-GEqOEs, the process of incorporating con-
servative perturbations that arise from third-body grav-
ity effects is summarized. Additionally, the Earth-Moon
Circular Restricted Three-Body Problem (CR3BP), a dy-
namical model based in Cartesian coordinates that serves
as an analog to the generalized methodology, is briefly
introduced.

4.1. Generalized Coordinates

Cislunar trajectories are parameterized in the generalized
coordinates by embedding third-body gravity perturba-
tions. A general form of the potential energy associated
with the perturbing force is given as [1]

U
P
= µ

P

(
1

r
Psc

− r · r
CP

r3
CP

)
, (40)

where r represents the position vector from the cen-
tral body to the spacecraft, and the subscripts C and P
represent the central and perturbing bodies, respectively.
Equation (40) may be rewritten as a convergent series of
Legendre polynomials

U
P
=

µ
P

r
CP

[
1 +

k=∞∑
k=2

(
r

r
CP

)k

Pk(cosα)

]
, (41)

where α is the angle between the position vectors r and
r

CP
, and Pk represent Legendre polynomials [1]. The

perturbing acceleration takes the form

−∇U
P
=

µ
P

r2
CP

k=∞∑
k=1

(
r

r
CP

)k

(42)

×
[
P ′
k+1(cosα)erCP

− P ′
k(cosα)er

]
, (43)

where er
CP

and er are the unit vectors along r
CP

and
r respectively. By embedding the third-body potential
energy directly into the total energy of the system, lever-
aging the time derivatives of the M-GEqOEs, the element
set is numerically integrated to obtain the spacecraft state
history over time. Furthermore, after integration, the M-
GEqOE set is transformed into Cartesian coordinates at
each time step to obtain a direct comparison against the
conventional CR3BP solutions.



4.2. Cartesian Coordinates

One dynamical model that serves as a point of compar-
ison against third-body perturbed M-GEqOE solutions
is the CR3BP. The Earth-Moon CR3BP is a medium-
fidelity dynamical model that takes into account the grav-
ity of Earth and Moon on the motion of the spacecraft
[12]. The third body, assumed to be a massless space-
craft, does not influence the orbits of the Earth and the
Moon, which orbit their mutual barycenter in circular
coplanar orbits. The CR3BP adopts a rotating frame
based in the motion of the primary bodies to describe the
behavior of the spacecraft governed by the Earth and the
Moon. In this frame, represented {Rx̂, Rŷ, Rẑ}, Rx̂
is directed from the Earth to the Moon, Rẑ is parallel to
the angular momentum direction of the system, and Rŷ
completes the dextral orthonormal triad. The quantities
l∗, m∗, and t∗, termed the characteristic length, charac-
teristic mass, and characteristic time, respectively, nondi-
mensionalize the equations of motion that govern the mo-
tion of the spacecraft. The resulting scalar equations of
motion, expressed in the rotating frame, are

ẍ− 2ẏ =
∂U∗

CR3BP

∂x
, (44)

ÿ + 2ẋ =
∂U∗

CR3BP

∂y
, (45)

z̈ =
∂U∗

CR3BP

∂z
. (46)

The quantity U∗
CR3BP is a pseudo-potential function de-

fined as

U∗
CR3BP =

1− µCR3BP

r
Esc

+
µCR3BP

r
Msc

+
x2 + y2

2
, (47)

where µCR3BP is the CR3BP system mass parameter
evaluated as

µCR3BP =
M

M

M
E
+M

M

, (48)

where the quantities M
E

and M
M

represent the mass
of the Earth and the Moon, respectively. For the
Earth-Moon system, this value is approximately equal
to µCR3BP = 0.0121506. Note that in Equation (47),
r
Esc

and r
Msc

denote the nondimensionalized distances
between the Earth and the spacecraft as well as the Moon
and the spacecraft, respectively. The values [x, y, z] cor-
respond to the nondimensional position of the spacecraft
relative to the system barycenter in the Earth-Moon rotat-
ing frame; similarly, [ẋ, ẏ, ż] represent the velocity com-
ponents of the spacecraft as viewed in the rotating frame.
The CR3BP permits one integral of motion, termed the
Jacobi constant, which provides insight into the energy
levels of trajectories within this model. The Jacobi con-
stant is evaluated as

C = 2U∗
CR3BP − (ẋ2 + ẏ2 + ż2) . (49)

For additional insight into the evolution of various cislu-
nar trajectories, solutions from the CR3BP that are inher-
ently based in the Earth-Moon rotating frame are trans-
formed into inertial frames centered on either primary
body.

5. UNCERTAINTY PROPAGATION

The current work employs two methods for propagating
the uncertainty associated with each cislunar orbit. With
some given initial mean and covariance, the uncertain-
ties are evolved for multiple revolutions to illustrate their
characterization over both short and long time horizons.

5.1. Monte Carlo Analysis

Monte Carlo analysis is employed to obtain a represen-
tation of the true probability distribution along the orbit
in both Cartesian and generalized coordinates. In the cur-
rent work, N = 10, 000 samples are utilized for all sim-
ulations to facilitate preliminary analysis while maintain-
ing computational feasibility. For uncertainty propagated
in Cartesian coordinates, the N samples are propagated
using the CR3BP equations of motion for a given propa-
gation time. Similarly, the M-GEqOE equations of mo-
tion embedded with third-body gravity perturbations are
propagated for N samples for the same total propagation
time. At each time step, then, the mean and covariance
for either scenario are computed as

m(t) =
1

N

N∑
i=1

xi(t) (50)

P (t) =
1

N

N∑
i=1

(xi(t)−m(t)) (xi(t)−m(t))
T

,

(51)

where xi(t) is the state of the ith sample at time t. The
mean and covariance computed via Monte Carlo meth-
ods serve as a benchmark for comparing other approaches
that aim to approximate these statistical moments.

5.2. Unscented Transform

The Unscented Transform (UT) is a methodology for de-
terministically sampling a fixed number of points, termed
sigma points, to approximate the mean and covariance
of some given distribution [8]. Consider some nonlinear
transformation represented as

y = g(x) , (52)

where x is Gaussian. The mean and covariance of x are
known and denoted as mx and P xx, respectively. The
pdf of x is, thus, expressed as p(x) = pg (x;mx,P xx).
The goal of the UT is to approximate the mean and co-
variance of y, denoted my and P yy, respectively. As-
suming x ∈ Rn, 2n+1 sigma points are drawn and given
as

X (0) = mx (53)

X (i) = mx +
√
n+ λ [Sxx]i (54)

X (i+n) = mx −
√
n+ λ [Sxx]i , (55)



where i = 1, ..., n [15]. The quantity [Sxx]i is the ith

column of the matrix Sxx, determined such that P xx =
SxxS

T
xx. In this investigation, the Cholesky decomposi-

tion is employed to determine this square root factor. The
scaling parameter λ is computed as

λ = α2 (n+ κ)− n , (56)

where α and κ dictate the spread of the sigma points
around the mean [13]. Once the sigma points are deter-
mined, the mean and covariance weights associated with
each point are computed

w(0)
m =

λ

n+ λ
(57)

w(i)
m =

1

2 (n+ λ)
(58)

w(0)
c =

λ

n+ λ
+
(
1− α2 + β

)
(59)

w(i)
c =

1

2 (n+ λ)
(60)

∀ i = 1, ..., 2n. The subscripts m and c denote the mean
and covariance weights respectively. The parameter β is
used to incorporate prior information and is optimally set
equal to two when the prior is Gaussian [8]. The non-
linear transformation in Equation (52) is then applied to
each sigma point, yielding the transformed sigma points

Y(i) = g
(
X (i)

)
, (61)

where i = 0, ..., 2n. Together with the mean and covari-
ance weights, the transformed sigma points are used to
approximate the mean and covariance as

my ≊
2n∑
i=0

w(i)
m Y(i) (62)

P yy ≊
2n∑
i=0

w(i)
c

(
Y(i) −my

)(
Y(i) −my

)T
. (63)

The UT is employed to transform the initial uncertainty
from Cartesian to generalized coordinates [2, 6]. The
transformed sigma points are then propagated to approx-
imate the mean and covariance at later times. For this
investigation, n = 6, and the values of the user-defined
parameters are selected as α = 1, κ = −3, and β = 2.

5.3. Kullback-Leibler Divergence

The Kullback-Leibler divergence is a employed to com-
pare the true distributions obtained via Monte Carlo anal-
ysis against the Gaussian approximated distributions ob-
tained via the UT approach. Although the assumption of
Gaussianity may not hold for cislunar orbits over time,
this measure offers insight into the magnitude of error
introduced by a Gaussian approximation. Also called the

relative entropy, the KL divergence is a measure of the in-
formational distance between two distributions p(x) and
q(x), and is determined as [3]

DKL[p||q] =
∫

p(x) log
p(x)

q(x)
dx . (64)

The KL divergence is positive and goes to zero when the
two distributions coincide. For the current work, p(x)
represents the true distribution, and the pdf q(x) repre-
sents the Gaussian approximation characterized by mean
m and covariance P .

To determine the KL divergence, the entropy of the true
distribution is employed, defined as

h[p] = E
{
log

1

p(x)

}
=

∫
p(x) log

1

p(x)
dx . (65)

Using the definition of entropy, the standard form of the
KL divergence given in Equation (64) is rewritten as

DKL[p||q] = −h[p]− Ep(x) {log q(x)} , (66)

where q(x) = pg(x;m,P ). The equation simplifies to

DKL[p||q] = −h[p] +
1

2
log |2πP | (67)

+
1

2
Ep(x)

{
(x−m)TP−1(x−m)

}
.

(68)

This measure provides insight into the error introduced
by approximating the true distribution as a Gaussian dis-
tribution. The KL divergence is computed independently
for uncertainty propagated in both generalized and Carte-
sian coordinates.

6. RESULTS AND DISCUSSION

The methodology for propagating cislunar dynamics and
uncertainty in the generalized coordinates using the M-
GEqOE equations in Equation (39) is demonstrated for
various transfer trajectories and periodic orbits of inter-
est. The transfer trajectories that pass from the near-
Earth to the lunar region are constructed with the Earth
as the central body, and the gravity of the Moon is incor-
porated as the third-body perturbation via Equation (40).
For the selected periodic orbit families that lie near the lu-
nar vicinity, the Moon is selected as the central body, with
the gravity of the Earth embedded via Equation (40).

6.1. Lunar Free Return Trajectories

Lunar free returns are trajectories that transfer from the
Earth to the lunar vicinity and, without requiring any
propulsive maneuvers, return to the vicinity of the Earth
[11]. These trajectories were first investigated in the



Apollo era as a means to guarantee a safe return to the
Earth in case of emergencies or communications disrup-
tions. Since these trajectories represent pathways for
rapid access between the Earth and the Moon, it is crucial
to be able to accurately model the underlying dynamics
in the generalized coordinates. As such, representative
cislunar free return trajectories are investigated in the cur-
rent work.

Representations of lunar free returns from the Earth-
Moon CR3BP are leveraged to assess the accuracy of
modeling the dynamics using the M-GEqOEs [10]. Two
sample free return trajectories are selected, characterized
by cislunar perilune passages and perilune altitudes of ap-
proximately 49, 500 km and 17, 600 km. The trajecto-
ries are assumed to depart from an Earth-centered orbit
of altitude 180 km. The times of flight from the Earth
till perilune for the two trajectories are 4.3 days and
5.6 days, respectively. Results of propagating the trajec-
tories in Cartesian and generalized coordinates using the
CR3BP and M-GEqOE equations, respectively, appear in
Figure 1 as viewed in the Earth-Moon rotating and Earth-
centered inertial frames. The blue curves represent the
M-GEqOE solution, while the orange curves correspond
to the trajectory obtained from the Earth-Moon CR3BP.
For these representative trajectories that traverse from the
near-Earth region to the lunar vicinity, the M-GEqOEs
are able to capture the underlying dynamical motion and
maintain consistency with the CR3BP solution.

6.2. Periodic Orbit Families

Periodic orbit families identified from the Earth-Moon
CR3BP near the lunar vicinity are investigated. In par-
ticular, the Low Prograde Orbit (LPO) family centered
on the Moon, and the L1 and L2 halo orbit families cen-
tered on their respective libration points in the rotating
frame, are constructed using the M-GEqOE equations.
For each orbit family, representative members are se-
lected that span a range of Jacobi constant values (en-
ergy levels) and lunar radii. Since each orbit in the fam-
ily possesses a different period in the rotating frame, a
fixed propagation duration of two weeks is employed for
each orbit. Members from each orbit family appear in
Figures 2 to 4 as viewed in Cartesian and generalized co-
ordinates. Despite the vastly differing geometries and en-
ergy levels along the orbits in the families, the M-GEqOE
propagator is able to accurately represent the behavior
originally modeled in the CR3BP.

To build intuition regarding the M-GEqOE set as it per-
tains to cislunar trajectories, the evolution of the elements
is also considered. Figures 2c, 3c and 4c illustrate the
evolution of the M-GEqOEs for each orbit in their re-
spective orbit families, colored by the associated Jacobi
constant value, over two weeks of propagation time. Con-
sider the evolutio of the M-GEqOEs for the LPOs, as
shown in in Figure 2c. Since motion along these orbits is
restricted to the Earth-Moon plane, the elements q1 and
q2 remain constant and zero for each orbit. As the Jacobi

(a) Earth-Moon rotating frame

(b) Earth-centered inertial frame

Figure 1. Cartesian representations of sample lunar
free return trajectories constructed using the M-GEqEO
(blue) and CR3BP (orange) equations.

constant value increases, the orbits become less eccentric,
as evident by magnitudes of elements p1 and p2 for this
family. Similar insight can be gained regarding the ge-
ometry and structure of the halo orbit families. Since the
halo orbits are inclined relative to the Earth-Moon plane,
the elements q1 and q2 are no longer zero, with their mag-
nitudes informing the inclination of the respective orbit.



(a) Earth-Moon rotating frame (b) Moon-centered inertial frame

(c) Evolution of M-GEqOEs

Figure 2. Representative members of the low prograde orbit family constructed using the M-GEqOE propagation scheme.



(a) Earth-Moon rotating frame (b) Moon-centered inertial frame

(c) Evolution of M-GEqOEs

Figure 3. Representative members of the L1 halo orbit family constructed using the M-GEqOE propagation scheme.



(a) Earth-Moon rotating frame (b) Moon-centered inertial frame

(c) Evolution of M-GEqOEs

Figure 4. Representative members of the L2 halo orbit family constructed using the M-GEqOE propagation scheme.



6.3. Uncertainty Propagation

The evolution of uncertainty along cislunar trajectories
is demonstrated by evolving the uncertainty in Cartesian
and generalized coordinates for the two free return tra-
jectories and a sample LPO. In both sets of coordinates,
recall that Monte Carlo analysis provides the true pdf,
while a Gaussian approximation is obtained using the Un-
scented Transform method.

The evolution of the uncertainty along the two lunar free
return trajectories is evaluated assuming an initial 1σ un-
certainty of 1 km and 0.01 m/s along the position and
velocity channels, respectively. The KL divergence is
computed for both trajectories with propagation in both
coordinate sets, and appears in Figure 5. Notably, even
though the uncertainty at initial time is characterized as
Gaussian, there is rapid divergence from Gaussian behav-
ior along both sample trajectories. Uncertainty evolved in
Cartesian coordinates diverges drastically, whereas prop-
agation via the M-GEqOE set demonstrates better adher-
ence to the Gaussian assumption. It is also noted that
there are no immediately apparent regions along the tra-
jectories at which the Gaussian assumption fails. In gen-
eral, with the M-GEqOE methodology, the likelihood of
measurements exhibiting Gaussian behavior is enhanced,
ensuring more reliable uncertainty characterization.

In a similar way, the uncertainty growth along the LPO
is examined in both coordinates, assuming an initial 1σ
value of uncertainty of 10 km and 0.1m/s along the po-
sition and velocity channels. The KL divergence, which
quantifies the error introduced by approximating the pdf
that characterizes the uncertainty as a Gaussian distribu-
tion, is determined for propagation in both coordinates.
For propagation initiated at apolune and spanning two
weeks, the KL divergence appears in Figure 6. While
both methodologies maintain a nominal value of KL di-
vergence, there is an apparent departure from Gaussian
behavior exhibited at the 5.7 day mark, which corre-
sponds to passage near perilune. At this location, the
uncertainty evolved using the M-GEqOE equations in
generalized coordinates exhibits a smaller degree of non-
Gaussianity than the Cartesian method, indicating better
preservation of uncertainty realism in the generalized co-
ordinates.

This is further validated by projecting the uncertainty
cloud obtained via both methodologies along each pair of
components that comprise their respective 6-dimensional
state, as shown in Figure 7. The lower triangular por-
tion of the pairs plot illustrates uncertainty along Carte-
sian coordinates, while the upper triangular portion il-
lustrates uncertainty propagated in the generalized coor-
dinates. In each cell of the pairs plot, the gray mark-
ers project the Monte Carlo samples along the associated
components. For the Cartesian subplots, the black and
red curves indicate the 3σ uncertainty intervals associated
with the Monte Carlo (true) and UT (approximate) meth-
ods, respectively. The mean obtained via Monte Carlo
sampling and via the UT is indicated by the black and
red markers, respectively, as well. Similarly, in each sub-

(a) LFR 1

(b) LFR 2

Figure 5. KL divergence between the true and Gaussian
approximated distributions that characterize the uncer-
tainty along the sample lunar free return trajectories.

Figure 6. KL divergence between the true and Gaus-
sian approximated distributions for uncertainty propa-
gated along the low prograde orbit.



plot for uncertainty in M-GEqOE coordinates, the black
and green curves indicate the 3σ uncertainty intervals as-
sociated with the Monte Carlo (true) and UT (approxi-
mate) methods, respectively. The black and green mark-
ers indicate the true and approximated mean at that time.
For the selected LPO, the pairs plot is visualized at the
point of the greatest divergence from Gaussian behav-
ior in both coordinates, 5.7 days downstream. At this
time, the projections in Cartesian coordinates clearly ex-
hibit non-Gaussian behavior, and the Gaussian approx-
imation supplied by the UT fails to capture a majority
of the Monte Carlo samples. In generalized coordinates,
non-Gaussian behavior emerges along certain projections
that fail to fully capture the tails of the true distribution.
However, the overall representation of the distribution re-
mains more accurate compared to the Cartesian approach.

7. CONCLUSIONS

The current work investigates an alternative orbital ele-
ment representation of cislunar dynamics for applications
towards SDA. To overcome the challenges of accurately
capturing essential perturbations and to improve uncer-
tainty realism, the Modified Generalized Equinoctial Or-
bital Element (M-GEqOE) set is introduced. This mod-
ified framework relaxes the energy constraints that limit
the applicability of the Generalized Equinoctial Orbital
Element (GEqOE) set, while preserving the inherent ad-
vantages of the latter. The M-GEqOE methodology is im-
plemented for propagating various cislunar transfer tra-
jectories and periodic orbits, showing agreement with the
conventional Cartesian solutions. It is also demonstrated
that propagating uncertainty directly in generalized coor-
dinates reduces the degree of non-Gaussianity compared
to Cartesian uncertainty propagation. At regions along
the orbit where uncertainty deviates from Gaussian be-
havior in Cartesian coordinates, a closer adherence to
Gaussianity is observed when propagated using the or-
bital elements based in the generalized coordinates.
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Figure 7. Pairs plot for the LPO at perilune with uncertainty propagated in Cartesian (lower triangular) and generalized
(upper triangular) coordinates. Propagation time: 5.7 days.
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