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ABSTRACT 

Orbital debris present a growing threat to operational 
satellites, necessitating accurate modelling of debris 
generation and evolution. In the early 1990s, NASA and 
the Department of Defense (DoD) conducted the SOCIT 
series of ground-based laboratory hypervelocity impact 
(LHVI) tests, providing critical data on debris 
characteristics. As satellite design evolved to include 
advanced materials such as carbon-fiber reinforced 
polymers and Kevlar, fragmentation behaviours changed 
significantly. To address these shifts, NASA, the DoD, 
The Aerospace Corporation, and the University of 
Florida initiated the DebriSat project in 2011, and 
subjected a modern LEO satellite test article to a LHVI 
at Arnold Engineering Development Complex in 2014. 
The resulting fragments were then transported to the 
University of Florida for comprehensive characterization 
of material, shape, mass, and dimensions, thereby 
delivering updated data to refine orbital debris modelling 
capabilities. Since 2022, machine learning (ML) 
capabilities are being developed to rapidly and 
systematically characterize materials of large volume of 
post‐impact fragments generated during the 
hypervelocity tests.  

1 BACKGROUND 

The fragment material assessment in the DebriSat project 
relies primarily on non-destructive material 
characterization methods since the requirement that 
fragments remain undamaged during characterization. 
Due to large number of fragments, the principal 
technique involves measuring mass and dimensional data 
using the DebriSat mass and imaging systems. The UF 
team implemented several dimensional analysis 
instruments (2D and 3D fragment imagers) for material 
characterization, linking them through a database known 
as the Debris Categorization System (DCS) [1][2]. The 
DCS is an interactive database where students use an 
interface to record fragment dimensional data along with 
fragment images. Fragments are categorized by their 
shape, colour, size and materials. The size of the 
fragment is determined by its height, if a fragment has 
height over 3 mm, it is categorized as 3D fragment and 
imaged using the 3D imager. If the fragment’s height is 

lesser than 3 mm, it is categorized as a 2D fragment (thin 
fragment) and imaged using the 2D imagers. 

A preliminary survey indicated that the majority of the 
fragments were 2D fragments. Moreover, significant 
portion of the 2D fragments were found to be carbon-
fiber reinforced polymer (CFRP). These CFRP fragments 
were found as needle‐like or flat plate shapes, both of 
which exhibit a small height (𝑍!"#). As shown in Fig. 1, 
2D imaging systems were developed to efficiently 
determine the volumes of thin fragments. These systems 
capture both top and side views using a camera 
positioned above the fragment. The top-view pixel area 
is calculated by measuring the cross-sectional area from 
the image pixels, while a 45-deg mirror is used to provide 
a side view, enabling accurate height measurement 
(𝑍!"#). [3] 

 
Figure 1. One of two 2D Imagers 

The prismatic volume approach yields highly accurate 
volume estimates for flat, uniform shapes but proves 
inadequate for complex geometries, such as metal 
nuggets or entangled wires. Since density plays a crucial 
role in making decision during material characterization, 
it is very important to obtain an accurate measure of the 
volume in order to determine of an accurate density. In 
cases where volume measurements were known to be 
imprecise, operators relied on their pre‐impact familiarity 
with the DebriSat test article to identify metals.  

However, since char layers formed on most fragments 
during the hypervelocity impact testing, visual 
identifications at time are inaccurate. Consequently, 
density became the most dependable metric for 
classifying metals, yet volume inaccuracies introduced 
significant variability in density estimates. Although 
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predefined density ranges for each metal group helped 
guide decisions, fragments with density values near these 
boundaries remained challenging to classify. 

2 CHARACHTERIZATION BIAS 

In 2022, a labelling bias was identified within the DCS, 
wherein some stainless steel fragments had been 
misclassified as titanium. As shown in Fig. 2 and Fig, 3, 
the titanium fragments were found (mostly intact) after a 
search in the DCS data and the fragment repository.  

 
Figure 2. Titanium Camera Mounts (Before Impact) 

 
Figure 3. Titanium Fragments (After Impact) 

Further investigation revealed that the root cause of this 
issue stemmed from the approach used to compute 
volumes for thin fragments. As seen in Eq. 1 and Fig. 4, 
the prismatic volume calculation was leading to 
overestimation of the fragment volumes when the 
fragment was not perfectly prismatic. The labelling bias 
was also found in aluminium labelled fragments; many 
SS fragments volumes were overestimated and were 
labelled as AL in the DCS due to their low density value.   

 
Figure 4. Prismatic Volume Comparison 

To compensate this volume overestimation and resolve 
the labelling bias, an algorithm was developed using an 
ellipsoidal volume of the fragments. This algorithm was 

labelled the Dynamic Volume Algorithm (DVOL), and it 
was used to relabel (previously biased) stainless steel 
fragments. The DVOL has shown to successfully place 
stainless steel fragments into the high density region 
where stainless steel fragments would reside [4]. The 
selection bias is desired to be avoided for future 
characterizations; thus, machine learning (ML) was 
utilized as a proactive measure. The ML model would 
predict the stainless steel fragments and would prevent 
students from classifying thin stainless steel fragments as 
titanium or aluminium. 

3 BIAS MINIMIZATION USING ML 

The DVOL has minimized the selection bias in the thin 
SS fragments dataset as it was able to obtain true stainless 
steel labels. Thus, it was decided to train a ML model that 
can identify stainless steel fragments from the not yet 
categorized thin metal fragment dataset. This binary 
classification task was accomplished using Logistic 
Regression. The logistic regression model (LRM) was 
trained using a set of numerical features, including mass, 
dimensions, and density estimates, to improve the 
classification accuracy of stainless steel fragments.  

3.1 Training the Logistic Regression Model 

Logistic Regression algorithm is widely recognized as a 
simple yet powerful classification algorithm that excels 
in both interpretability and computational efficiency. Its 
relatively small number of parameters reduces the risk of 
overfitting compared to more complex methods, while 
still delivering robust performance in many real-world 
applications [4]. The key advantage of the LRM is its 
ability to find and label SS fragments before any biased 
decisions are made.  

The dataset used for training was pre-processed to 
remove inconsistencies, and feature selection was 
conducted to ensure that only the most relevant attributes 
contributed to the classification process. To optimize the 
model, hyperparameter tuning was performed by 
adjusting the regularization strength to prevent 
overfitting while maintaining generalizability. The model 
was trained using a stratified dataset to account for 
material characterization imbalances, ensuring that the 
decision boundary was not skewed toward the more 
prevalent material categories. Cross-validation was 
employed to assess model robustness, and performance 
metrics such as accuracy, precision, recall, and F1-score 
were analysed to validate its effectiveness. The final 
version of the LRM was able to obtain over 95% 
accuracy for predicting SS in the training and the test 
datasets [4]. 

Once trained, the LRM was applied to the remaining thin 
metal fragments in the dataset. The predicted 
classifications were then compared against known 
samples to assess model confidence and refine decision 
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thresholds. Overall, this process effectively reduced the 
reliance on manual identification and mitigated SS 
selection biases associated with previous volume-based 
classifications.  

3.2 LRM Limitations 

The results demonstrated that the LRM could 
successfully differentiate stainless steel fragments, 
providing a scalable and systematic approach to 
minimizing selection bias in the DebriSat dataset. 
However, the LRM success did not transfer to predicting 
aluminium. This was revealed as the not yet categorized 
metal dataset was found to have fragment types that are 
metallic by visual inspection yet has very low density. 
One of the most common examples to these types of 
fragments is multi-layer insulation (MLI) fragments. As 
seen in Fig. 5, it visually similar to a metallic foil, yet its 
density is significantly low to be a metal fragment 
(0.00038	g/mm.).  

 
Figure 5. Example MLI Fragment 

The LRM utilized is inherently a binary classifier. While 
it can be extended to multiclass classification using one-
vs-rest or SoftMax regression (multinomial logistic 
regression), these approaches often struggle when the 
dataset contains multiple classes with overlapping 
distributions [5]. The classification task in the dataset 
involves multiple material labels, which require more 
complex decision boundaries that LRM may not 
effectively model. 

LRM assumes that data can be separated using a linear 
decision boundary, which works well when the 
relationship between input variables and class 
probabilities is approximately linear [5]. However, 
materials such as AL, MLI, and CFRP do not exhibit 
clearly linear separability in the DCS numerical feature 
space. For instance, MLI fragments are extremely low-
density, but their densities may overlap numerically with 
plastic fragments. Similarly, AL and Glass fragments 
have densities that are numerically equivalent and thus 
require more complex feature relationships for 
differentiation. LRM is sensitive to feature overlap, 
where different materials share similar numerical 
characteristics (e.g., mass, density, dimensions). 

4 UTILIZATION OF DECISION TREES 
FOR MULTIPLE LABELS 

The transition from using the LRM as a classification 

algorithm to the Decision Tree model (DTM) in material 
classification significantly improved the ability to 
distinguish between different fragment types in the 
dataset. LRM’s inherent limitations, particularly its 
reliance on a linear decision boundary, made it unsuitable 
for capturing the complex relationships among fragment 
properties such as mass, density, and shape. The DTM 
provided a more flexible and effective approach by 
enabling hierarchical decision-making, better handling 
class imbalances, and offering robustness against 
measurement noise [6].  

A major advantage of the DTM is the ability to handle 
nonlinear relationships in the dataset. Unlike LRM, 
which assumes a linear separation between classes, DTM 
partition the feature space iteratively based on optimal 
threshold values. This was particularly beneficial for 
classifying materials that exhibited overlapping densities 
but had distinct geometric characteristics. By allowing 
splits based on features where dimensional data is 
compared to each other for better understanding of the 
fragments shape. These features, such as xyRatio (/!"#

0!"#
), 

PXA ratios (/!"#
1/2

, 0!"#
1/2

), and ellipsoid area 
(3∗/!"#∗0!"#

5
), help the DTM to capture patterns that were 

not apparent in a linear framework. This capability 
proved especially effective in differentiating materials 
such as MLI (fragments appear more of a square, xyRatio 
is close to 1) and CFRP (mostly slender fragments, 
xyRatio is significantly greater than 1), where shape 
variations were crucial in classification.   

Another key improvement introduced by the DTM was 
their ability to capture feature interactions dynamically. 
Unlike LRM, which assigns a fixed weight to each 
feature across all data points, the DTM allow the 
importance of a feature to change based on previous splits 
in the decision path. This adaptive process enabled the 
model to refine its classification strategy based on 
multiple criteria. For example, in distinguishing stainless 
steel from aluminium, the DTM initially considered 
density as a primary factor but further refined 
classifications using secondary attributes such as cross-
sectional area and geometric ratios. This flexibility 
ensured that materials with complex fragmentation 
patterns were more accurately categorized.   

Class imbalance, which posed a significant challenge 
when using the LRM as a classification algorithm, was 
also effectively managed by the DTM approach. The 
dataset contained underrepresented materials such as 
MLI and CFRP which LRM tended to misclassify due to 
its bias toward majority classes. The DTM mitigated this 
issue by adjusting their splitting criteria to ensure that 
minority classes were adequately represented in the 
classification process. Additionally, the use of stratified 
cross-validation ensured that all material types 
contributed proportionally to the training process, 



reducing the likelihood of underrepresented materials 
being misclassified. As a result, The DTM provided a 
more balanced classification framework that accurately 
identified rare material fragments.   

Beyond classification performance, The DTM also 
demonstrated greater robustness to outliers and noise in 
the dataset. Due to the nature of hypervelocity impact 
fragmentation, certain materials exhibited extreme 
density values or irregular shapes that traditional 
classification models struggled to handle. LRM’s 
reliance on a continuous optimization process made it 
highly sensitive to such anomalies, leading to 
misclassifications. The DTM, by contrast, utilized 
threshold-based splits that minimized the influence of 
outliers. This resulted in a more stable classification 
system that was less prone to errors caused by 
measurement variations. Additionally, fragments with 
unexpected density values, which previously led to 
mislabelling, were reassigned based on a combination of 
multiple criteria rather than a single density threshold.   

An important benefit of the DTM approach was its 
interpretability. Unlike LRM, which provides only global 
feature weights, The DTM allow for a detailed analysis 
of feature importance scores, offering insights into the 
most relevant characteristics for classification. The 
ability to visualize decision paths provided further 
transparency, allowing researchers to validate 
classification logic and refine the dataset accordingly. 
This analysis revealed that, while density remained an 
important feature, additional attributes such as shape 
descriptors and cross-sectional area ratios played a 
crucial role in improving classification accuracy. By 
highlighting these key predictors, The DTM enabled a 
more informed and systematic classification process.   

The shift from using LRM as a classification algorithm 
to The DTM resulted in significant advancements in 
material classification by overcoming issues related to 
linearity, feature interactions, class imbalances, and 
outliers. The ability to model complex relationships, 
dynamically adjust classification criteria, and remain 
robust against noise made The DTM a superior choice for 
fragment identification. While challenges remained, 
particularly in distinguishing aluminium from glass, The 
DTM established a stronger foundation for classifying 
lower density fragments. Their hierarchical decision-
making process and ability to incorporate multiple 
feature interactions provided a more reliable and 
interpretable approach, ultimately improving 
classification accuracy and dataset integrity. 

4.1 Training Dataset Construction 

The selection of fragment classes for training the DTM is 
based on the brief observations of these (visually 
classified as metal) specific materials—AL, MLI, SS, 
CFRP, Glass, and copper (CU)—that are present in the 

not yet categorized dataset. The goal of this manual 
selection process is to ensure that the model is trained on 
the same material categories expected to appear in the not 
yet categorized set, improving its ability to classify new 
fragments effectively. Moreover, any existing biases in 
the labelling of materials other than stainless steel could 
propagate through the DTM classification, affecting its 
overall accuracy. To mitigate this risk, the manual 
construction of the training dataset serves as a proactive 
measure to prevent the reinforcement of such biases, 
ensuring a more balanced and representative 
classification process. 

The not yet categorized metal dataset was seen to consist 
of different sizes of classes. A specific case in this dataset 
is CU, which, despite being a metal, is typically found in 
a wire-like shape. This distinct geometric form makes CU 
easier to characterize as metal compared to other 
materials. It is encountered in high quantities in the not 
yet categorized metal dataset and usually appears in tiny 
wire shapes. Thus, the manually curated dataset has 
reflected this domain knowledge by providing more 
samples of CU to ensure a good representative mix of 
fragment types that would be encountered by the model 
while making predictions. A specific case in this dataset 
is CU, which, despite being a metal, is typically found in 
a wire-like shape. This distinct geometric form makes CU 
easier to classify compared to other metals. However, due 
to the presence of char layers or colour inconsistencies 
resulting from the hypervelocity impact, CU fragments 
may not always be immediately identifiable based on 
visual inspection alone. As a result, CU still appears in 
the not yet categorized set before it is properly labelled, 
highlighting the need for a classification model that 
accounts for both numerical attributes and potential 
visual ambiguities.   

This method provided a practical balance between 
ensuring that the DTM encountered all relevant material 
types while also allowing it to generalize effectively to 
the not yet categorized dataset. The somewhat random 
nature of sample selection may introduce slight biases but 
given the Decision Tree’s ability to handle complex 
feature relationships and class separations, this approach 
still allowed the model to learn meaningful classification 
rules. 

4.2 Feature Engineering for Decision Tree 
Algorithm  

The DCS data underwent pre-processing following the 
same methodology used for the LRM ensuring 
consistency in feature extraction and transformation 
across both models. Python’s NumPy and Pandas 
libraries were utilized extensively to manage numerical 
data, perform transformations, and engineer new features 
to improve classification accuracy. The primary 
objective of this stage was to refine the dataset in a way 
that maximized the discriminative power of key 



attributes while maintaining compatibility with the 
model’s processing pipeline.  

There were two additional features that were not present 
in LRMs feature set, the 𝑋!"# and 𝑌!"# ratios to PXA, 
provide information about the slenderness of the 
fragment, an important geometric property that could 
influence classification. The rationale behind including 
these ratios was that certain low density materials tend to 
fragment into distinct shapes (e.g. CFRP needles), and 
their aspect ratios could serve as useful indicators for 
distinguishing between different material classes. 
However, these features were excluded from the LRM’s 
feature set because this relation is found to be nonlinear 
and it was unnecessary as it was not helpful in LRMs 
classification capabilities.  To ensure uniformity in data 
representation, categorical and numerical features were 
transformed using the same pipeline as the LRM. 
OneHotEncoder was applied to categorical variables, 
converting them into numerical format suitable for 
machine learning models while preserving the 

distinctiveness of each category [4]. For numerical 
attributes, MinMaxScaler was used to scale the data, 
normalizing feature values within a specific range to 
prevent any single attribute from disproportionately 

influencing the model’s decision-making process [4]. 
This transformation ensured that all input variables were 
appropriately scaled and encoded, allowing the Decision 
Tree classifier to efficiently learn patterns and 
relationships from the dataset while effectively 
incorporating the newly introduced slenderness-based 
features. 

4.3 Hyperparameter Tuning 

A systematic exploration of the model’s hyperparameters 
was performed using grid search with cross validation 
from scikit-learn [4]. The grid search process involved 
evaluating multiple configurations to identify the most 
effective decision tree structure. The criterion for 
measuring impurity was examined by comparing both the 
gini and entropy functions to determine which provided 
better classification performance. As an illustration, first 
3 levels of the DTM are shown in Fig. 6. The model’s 
complexity was controlled by testing maximum depth 
values ranging from 1 to 9, ensuring that the tree was 

neither too shallow nor excessively deep, which could 
lead to overfitting. Additionally, different thresholds 
were explored for the minimum number of samples 
required to split an internal node and to form a leaf, 

Figure 6: The first three levels of the Decision Tree 

 

 



allowing for a balance between generalization and model 
specificity. Through this optimization process, by 
maximizing models overall, the most effective 
configuration was determined to utilize the entropy 
criterion, with a maximum depth of 7 and a minimum of 
5 samples for splitting nodes. This relatively shallow tree 
structure was chosen to prevent overfitting while still 
preserving the ability to model essential nonlinear 
relationships within the dataset.  

4.4 Decision Tree Model Results 

As seen from Tab. 1 and Tab. 2, the performance of the 
DTM demonstrated strong classification capabilities for 
most material types, particularly for distinct classes such 
as SS, CU, CFRP, and MLI. However, the model 
encountered some challenges in differentiating between 
AL and glass, which contributed to a noticeable drop in 
overall accuracy on the test dataset. The DTM achieved 
an overall accuracy of 82% on the test set, which is 
significantly worse than the training set. The primary 
reason for this decline is misclassification which 
stemmed from glass and AL differentiation. The 
precision for glass (0.52) confirms that it is frequently 
mislabelled, reinforcing that its numerical features 
overlap significantly with AL. With AL having a recall 
of 0.72, the model often fails to capture all its instances 
correctly, further contributing to classification errors. 
The strong precision for copper suggests its unique wire 
shape helps separation, but its recall of 0.80 indicates 
some misclassification before final labelling. 

 Table 1: Decision Tree Performance on Training Set 

 

 Table 2. Decision Tree Performance on Test Set 

 

The primary reason for this classification difficulty stems 
from the highly similar numerical properties of AL and 
glass fragments, particularly in terms of density. Since 
density is a key distinguishing feature in the dataset, the 
overlap between these two materials creates an inherent 
limitation in the model’s ability to establish a clear 
decision boundary. Unlike other material types that 
exhibit distinct ratios or unique geometric features that 
reveals with dimensional comparison features, AL and 
glass often share nearly identical measurements, making 
them indistinguishable using numerical attributes alone.   

This issue is further exacerbated by the fragment 
characterization process, where visual cues—such as 
transparency, edge sharpness, and surface texture—are 
not captured in the numerical dataset. The decision 
making process relies solely on measurements such as 
mass, volume, and derived density metrics, which, while 
effective for certain materials, are insufficient to 
accurately distinguishing between AL and glass. Glass 
fragments exhibit physical properties that make them 
visually distinct, including their sharp edges, brittle 
fracture patterns, and transparency, characteristics that 
are easily recognizable to a human observer. However, 
since these attributes are not represented (as textual or 
numerical descriptions) in the DCS feature columns, the 
DTM has no access to the information that would allow 
it to make such distinctions. Instead, it relies solely on 
numerical attributes that fail to provide adequate 
separation between AL and glass, both of which can have 
similar densities and geometric ratios in the dataset.  

As a result, the Decision Tree frequently misclassifies 
these two materials, introducing systematic errors in test 
predictions and lowering overall classification 
performance. This limitation underscores a fundamental 

Labels Precision Recall F1-
Score 

Support 

AL 0.95 0.96 0.95 64 

CFRP 1.00 0.92 0.96 25 

CU 1.00 0.95 0.98 87 

GLASS 0.85 1.00 0.92 51 

MLI 1.00 1.00 1.00 37 

SS 0.96 0.98 0.97 48 

Accuracy 
Scores   0.95 312 

Macro 
Average 0.96 0.96 0.96 312 

Weighted 
Average 0.96 0.96 0.96 312 

Labels Precision Recall F1-
Score 

Support 

AL 0.84 0.72 0.78 65 

CFRP 0.90 0.79 0.84 24 

CU 0.99 0.80 0.88 88 

GLASS 0.52 0.84 0.65 51 

MLI 0.95 1.00 0.97 37 

SS 0.91 0.83 0.87 48 

Accuracy 
Scores   0.82 313 

Macro 
Average 0.85 0.83 0.83 313 

Weighted 
Average 0.86 0.82 0.83 313 



shortcoming of purely numerical classification systems, 
highlighting the necessity of incorporating image-based 
artificial intelligence (AI) for more accurate material 
identification. Students, when classifying fragments, 
inherently rely on visual inspection, using edge patterns, 
reflections, and overall structural characteristics to 
differentiate between AL and glass.  

Since this level of perception is absent from the current 
numerical dataset, an AI model capable of processing 
images would be essential for bridging the gap. By 
integrating computer vision techniques, such as 
convolutional neural networks (CNNs), the classification 
system could leverage visual features that are 
imperceptible to numerical descriptors alone, improving 
accuracy where traditional DTMs fall short. Thus, while 
numerical classifiers provide an efficient baseline, they 
are inherently limited when tasked with differentiating 
materials that exhibit overlapping physical properties, 
making image-based classification a necessary next step 
for improving fragment identification. 

5 FUTURE WORK 

Building upon these observations, further improvements 
to the classification framework must address the 
fundamental limitations of numerical-based material 
identification. Due to the persistent classification 
inconsistency between AL and glass, the overall accuracy 
of the model on the test dataset remains notably lower 
than on the training set. While the Decision Tree 
effectively learns patterns for most materials, its inability 
to reliably separate AL from glass leads to frequent 
misclassifications, significantly impacting test 
performance. These results reinforce the conclusion that 
the model is constrained by the available numerical 
features, necessitating alternative approaches such as 
image-based analysis to resolve material ambiguities [8]. 

Despite this limitation, the DTM remains an effective 
tool for categorizing most materials, particularly those 
with distinct density distributions or geometric 
properties. However, cases where numerical similarities 
prevent clear differentiation demonstrate that relying 
solely on numerical data is insufficient. Addressing these 
challenges in future work will involve developing hybrid 
classification methods that integrate both numerical 
descriptors and image-based AI techniques. By 
incorporating machine vision models alongside the 
DTM, classification accuracy can be improved, 
particularly for materials where numerical attributes 
alone do not provide enough separation [9]. 
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