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ABSTRACT

Two-line Element Sets (TLEs) remain, to this day, one
of the few publicly-available, comprehensive sources of
ephemerides for objects in the near-Earth environment.
However, their intrinsic limited accuracy and effectively
unknown uncertainty makes them unsuitable for preci-
sion applications, such as Conjunction Assessment (CA).
Previous literature has shown that systemic, determin-
istic along-track errors are the primary source of error
in TLEs. These along-track errors can be reduced with
relatively simple models. In this study, it is shown that
generalised models created with Global Navigation Satel-
lite System (GNSS) data can reduce typical mean posi-
tion errors by 40% while significantly suppressing oscil-
lations affecting TLE-based Pseudo-Orbit Determination
(P-OD).

Keywords: Orbit Determination; Two-Line Element Sets;
Debiasing; Space Situational Awareness.

1. INTRODUCTION

The “New Space” era, driven by the growth in the num-
ber of commercial actors in the space domain, has led
to a significant increase in the near-Earth Resident Space
Object (RSO) population over the past decade, including
year-on-year growth in the number of launches and pay-
loads [1]. The majority of these RSOs are concentrated
into the same limited regions, increasing the risk of col-
lisions. This is driving the need for improving the ca-
pacity and capabilities of Conjunction Assessment (CA)
systems.

Satellite operators remain dependent on governmental
and commercial organisations, and data sharing with
other operators, for Space Situational Awareness (SSA)
data, such as state estimates for other satellites and ob-
jects. The financial cost of these services introduces a
barrier which results in smaller operators and academia
remaining reliant on publicly available sources, primar-
ily Two-line Element Set (TLE) published by the United
States Space Force (USSF).

TLEs have a number of advantages, including that they
are freely available for a significant proportion of RSOs
currently (and formerly) in near-Earth orbit, and that the
analytical model used for propagation (SGP4 and SDP4,
commonly referred to jointly as SGP4) has a very low
computational cost. These advantages result in an ability
to generate a large number of RSO state vectors quickly
and cheaply. Nevertheless, the intrinsic limited accuracy
and effectively unknown uncertainty of TLEs, make them
unsuitable for precision applications, such as CA.

The development of SGP4-XP seeks to address some of
these limitations [2–4], however the compatible Type 4
TLEs still remain to be be published routinely, leaving
the SSA community reliant on traditional TLEs. Addi-
tionally, it is unclear whether the historical catalogue will
be updated to include Type 4 TLEs.

Previous literature has demonstrated that Pseudo-Orbit
Determination (P-OD) on TLEs can produce more ac-
curate state estimates [5–7]. In this process, TLEs are
propagated with SGP4 to produce pseudo-observations
of the objects which are fed into well known state estim-
ation algorithms. Nevertheless, systemic, deterministic
biases are present in the TLE dataset [8, 9] which can
significantly degrade the accuracy of P-OD techniques.
Compensating for these biases poses a critical challenge
for improving state estimation with TLE-based pseudo-
observations [10].

Along-track error is the primary source of error in
TLEs [6]. The along-track error present in TLE-based
state predictions varies significantly for objects with peri-
ods above 225 minutes, where deep-space terms are in-
cluded in SGP4 [11]. This corresponds primarily to ob-
jects in Medium Earth Orbit (MEO) and Geostationary
Earth Orbit (GEO) where previous analysis has found
systematic along-track errors with periods of approxim-
ately one month [10].

The presence of biases presents an issue for instantan-
eous TLE accuracy, but even more so when conducting P-
OD: fits based on TLE pseudo-observations can be heav-
ily skewed by biases. In some cases, this can result in
state estimates, which when propagated into the future,
have position accuracies which are worse than simply
propagating the original TLEs with SGP4.
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In Section 2, the methodology for creating bias models
will be described, followed in Sections 3 and 4 by sev-
eral examples of data-driven models which can be used to
debias TLE pseudo-observations in MEO. The perform-
ance of these models is investigated in Section 5, before
concluding in Section 6.

2. MODELLING TLE ERRORS

Reference states are generated from Standard Product 3
(SP3) files, produced from either Satellite Laser Ranging
(SLR) or Global Navigation Satellite System (GNSS)
pseudo-ranging. These reference states are compared
against the predicted states from TLEs to calculate the
state errors, and hence bias, present in the TLE cata-
logue. Bias model are then created based on the state
errors between the TLEs and SP3 data. Following the
creation of the models, they are evaluated to determine
their quality and performance. This is achieved by com-
paring the debiased TLE states against the SP3 states to
measure any reductions in state error.

A summary of the model creation process is presented in
Fig. 1, highlighting the generation of states from TLEs
and SP3 files to calculate the bias.

TLEs

SGP4 Propagator

Epochs

TLE States

SP3s

SP3 Propagator

SP3 States

Bias

Bias Estimator

Bias Model

Fig. 1. Flowchart of the bias model creation process.

The satellites considered for the study are presented in
Table 1, including several Galileo and Global Position-
ing System (GPS) satellites, and the LAGEOS and Etalon
geodesy satellites.

Table 1. Satellites considered during the study.

Name NORAD ID SP3/PRN

GALILEO 16 (26C) 41860 E03
GALILEO 18 (26E) 41862 E05
GALILEO-FM2 37847 E12
GALILEO 24 (2C0) 43567 E13
GALILEO 25 (2C1) 43564 E15
GALILEO 5 (261) 40128 E18
GALILEO 20 (2C6) 43056 E25
GALILEO 7 (263) 40544 E26
GALILEO 21 (2C7) 43057 E27
GALILEO 10 (206) 40890 E30
GALILEO 22 (2C8) 43058 E31
GALILEO 26 (2C2) 43565 E33
GALILEO 23 (2C9) 43566 E36

NAVSTAR 66 (USA 232) 37753 G01
NAVSTAR 56 (USA 180) 28474 G02
NAVSTAR 72 (USA 258) 40294 G03
NAVSTAR 77 (USA 289) 43873 G04
NAVSTAR 64 (USA 206) 35752 G05
NAVSTAR 70 (USA 251) 39741 G06
NAVSTAR 62 (USA 201) 32711 G07
NAVSTAR 74 (USA 262) 40730 G08
NAVSTAR 71 (USA 256) 40105 G09
NAVSTAR 75 (USA 265) 41019 G10
NAVSTAR 81 (USA 319) 48859 G11
NAVSTAR 59 (USA 192) 29601 G12
NAVSTAR 43 (USA 132) 24876 G13
NAVSTAR 80 (USA 309) 46826 G14
NAVSTAR 60 (USA 196) 32260 G15
NAVSTAR 51 (USA 166) 27663 G16
NAVSTAR 57 (USA 183) 28874 G17
NAVSTAR 78 (USA 293) 44506 G18
NAVSTAR 54 (USA 177) 28190 G19
NAVSTAR 52 (USA 168) 27704 G21
NAVSTAR 67 (USA 239) 38833 G24
NAVSTAR 65 (USA 213) 36585 G25
NAVSTAR 73 (USA 260) 40534 G26
NAVSTAR 68 (USA 242) 39166 G27
NAVSTAR 61 (USA 199) 32384 G29
NAVSTAR 69 (USA 248) 39533 G30
NAVSTAR 58 (USA 190) 29486 G31
NAVSTAR 76 (USA 266) 41328 G32

LAGEOS-1 8820 L51
LAGEOS-2 12160 L52
Etalon 1 19751 L53
Etalon 2 20226 L54

2.1. Datasets

2.1.1. Two-line Element Sets

TLEs are provided by USSF via Space-Track1. For the
satellites considered in this analysis, TLEs are released
approximately every one or two days. In some cases
TLEs can be re-issued to update parameters, creating
scenarios were, for a given epoch, multiple TLEs exist for
a single object. To avoid this ambiguity, the most recently
released TLE is used as it represents the most up-to-date
information.

1Available at: https://space-track.org/ (accessed on 10/03/2025)

https://space-track.org/


Object states are represented in TLEs by a number of
parameters, including a set of mean elements, based on
a development from theories by Brouwer and Kozai,
among others [11, 12], and a ballistic coefficient.
Propagation of these parameters to future times, and con-
version to Cartesian state, is based on the SGP4 single-
averaged theory. For orbits with a period greater than
225 minutes, deep space perturbations are included to
“account for lunar and solar gravitation as well as the res-
onance effects of Earth tesseral harmonics” [11].

Propagation with SGP4 can be expressed analytically as:

yptq “ RTEMEptq gpzk, tq, (1)

zptkq “ zk, (2)

where yptq is the TLE-based osculating Cartesian state
in the Geocentric Celestial Reference Frame (GCRF) at
a future time t; RTEMEptq is the transformation mat-
rix which rotates from the True Equator Mean Equinox
(TEME) frame to the GCRF; gpz, tq represents the map-
ping in SGP4 from the TLE state to the osculating TEME
Cartesian state; and tk and zk are the epoch and state
of the appropriate TLE respectively, including both the
mean elements and ballistic coefficient.

The TLE sampling strategy proposed for P-OD by
Levit and Marshall [5] was used to generate pseudo-
observations. Sampling times were equally spaced
between the start and end epochs of the evaluation win-
dow. The state at given time was calculated by propagat-
ing the most recent preceding TLE forward in time with
SGP4. For sample times before the first TLE, states were
calculated by propagating backwards in time.

SGP4 conducts propagation in its set of mean elements
which are converted then into Cartesian positions and ve-
locities in TEME. These are transformed into GCRF for
consistency with the SP3-based states. In this work, both
the SGP4 propagation and frame transformations were
provided by the Orekit spaceflight library [13].

2.1.2. Standard Product 3 Data

“Ground truth” data in the form of post-processed, high-
accuracy ephemerides was provided through NASA’s
Crustal Dynamics Data Information System (CDDIS),
both for LAGEOS-1 and -2, and Etalon 1 and 2, based
on SLR2; and for Galileo and GPS satellites, based on
GNSS pseudo-ranging3.

The SLR- and GNSS-based data is provided in the form
of post-processed orbit products using the SP3 format.

2Available at: https://cddis.nasa.gov/archive/slr/products/orbits/
(accessed on 10/03/2025)

3Available at: https://cddis.nasa.gov/archive/gnss/products/ (ac-
cessed on 10/03/2025)

This format includes state vectors at a series of epochs
for each satellite, each identified by a SP3 identifier. For
GNSS satellites, this identifier is based on the Pseudo-
Random Noise (PRN) codes, in this case with the prefixes
“E” and “G” for Galileo and GPS, respectively.

Interpolation between the state vectors at each epoch is
conducted to generate satellite states for any given time
within the timespan of the SP3 data. In the case of the
GNSS satellites, velocities were not included in the SP3
files, therefore these were estimated as part of the inter-
polation process. Both the SP3 interpolation and frame
transformations were provided by the Orekit spaceflight
library [13].

2.2. Along-track Error

The position error is simply the difference between the
positions from the TLEs and SP3:

∆rptq “ rTLEptq ´ rSP3ptq. (3)

The along-track position error can be extracted from the
Radial, Transverse, Normal (RTN) position error, found
by rotating the position error vector into to an RTN frame:

∆r̂ptq “ RRTNprTLEptqq ∆rptq, (4)

where RRTNprTLEptqq is the transformation matrix which
rotates the position error from the GCRF to RTN frame,
based on position vector from the TLE.

The along-track angular error is calculated by dividing
the along-track position error by the the magnitude of the
radial distance of the object:

∆θT ptq “
∆r̂T ptq

||rTLEptq||
. (5)

where ∆r̂T ptq is the along-track component of the posi-
tion error.

2.3. Model Fitting

The along-track error is modelled using a scalar function:

∆θ˚
T puq “ fpu,µq, (6)

where u are a set of inputs, such as time or parameters of
a perturbing acceleration, and µ are the model paramet-
ers.

The model can be linearised with respect to the model
parameters for a given set of inputs:

https://cddis.nasa.gov/archive/slr/products/orbits/
https://cddis.nasa.gov/archive/gnss/products/


∆θ˚
T puq “ Apuqµ, (7)

where Apuq is a partial derivatives matrix that maps the
model parameters to the estimated along-track error.

The individual linear systems can be concatenated into a
single overall linear system which maps the model para-
meters to a set of estimated along-track errors:

»

—

—

—

—

—

–

∆θ˚
T,0

∆θ˚
T,1

...
∆θ˚

T,n´1

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

A0

A1

...
An´1

fi

ffi

ffi

ffi

ffi

ffi

fl

µ, (8)

where each ∆θ˚
T,i corresponds to the along-track error at

a given epoch and for a given object. Sets of along-track
errors belonging to different objects can be also concaten-
ated in a single along-track error vector through equation
(8). The predicted along-track errors can be expressed as
a function of an overall derivatives matrix and the para-
meters of the bias model:

∆θ˚
T “ Hµ, (9)

The errors between the actual and predicted along-track
errors are expressed as a set of residuals:

b “ ∆θT ´ ∆θ˚
T , (10)

“ ∆θT ´ Hµ. (11)

The process of fitting the model parameters to the along-
track errors is expressed as an optimisation problem with
the objective of minimising the sum of the square of the
residuals:

min
µ

Jpµq “
1

2
bTb, (12)

“
1

2
p∆θT ´ Hµq

T
p∆θT ´ Hµq , (13)

where Jpµq is the objective function.

It can be shown that the minimisation problem can be ex-
pressed as the solution to a linear system [14, 15], known
as the Gauss-Newton method:

`

HT
i Hi

˘

δµi “ HT
i bi, (14)

µi`1 “ µi ` δµi, (15)

where δµi is the best estimate of the optimal decision
vector update for the i-th iteration. Due to the non-
linearity of the models, the minimisation is iterated by
re-linearising at each solution. This iteration continues
until convergence is reached.

For this study, an enhanced version of the Gauss-Newton
method was used: the Levenberg-Marquardt method [16,
17]. This method adaptively updates the solution by in-
troducing a gradient descent term into the update equa-
tion:

“

HT
i Hi ` λ diag

`

HT
i Hi

˘‰

δµi “ HT
i bi, (16)

where λ is the damping coefficient, which determines the
importance of the gradient descent update (the second
term in brackets in Eq. (16)) relative to the Gauss-Newton
update. The method initially prioritises gradient descent.
The damping coefficient is reduced during iteration to in-
crease the influence of the Gauss-Newton solution as the
solver approaches the local minimum.

2.4. Model Evaluation

Models were evaluated by considering the position errors
following debiasing (i.e. the application of the bias model
to the states):

∆ri “ ||r˚
i ´ ri||, (17)

where r˚
i and ri are the predicted and true positions, re-

spectively, at the i-th epoch.

The position Root-Mean-Square Error (RMSE) was used
as the primary metric for model quality when considering
an entire set of predictions:

∆rRMSE “

g

f

f

e

1

n

n
ÿ

i

∆r2i , (18)

where n is the number of samples.

Additional metrics considered include the mean and
standard deviation of the position errors:

∆r “
1

n

n
ÿ

i

∆ri, (19)

σ∆r “

g

f

f

e

1

n

n
ÿ

i

`

∆ri ´ ∆r
˘2

. (20)



3. BIAS MODELS

3.1. Time-based Model

A simple model for estimating the along-track biases con-
siders a sinusoidal behaviour with respect to time [10]:

∆θT ptq « at sin

„

2π

bt
pt ` ctq

ȷ

` dt, (21)

where t is time, expressed in days since 1st January 2000
at 12:00 Terrestrial Time (TT)4; and at, bt, ct, and dt
are model parameters, corresponding to the amplitude,
period, phase, and offset of the oscillation, respectively.

The time-based model was fit individually to the geodesy
satellites and the GNSS satellites. The models for the
geodesy satellites are presented in Fig. 2 and Table 2.
The model showed good agreement with the along-track
errors of Etalon 1 and 2, and limited agreement for
LAGEOS-1, where an additional longer-term variation
was present. LAGEOS-2’s model had a complete lack of
agreement due to the satellite’s along-track error exhibit-
ing a significant different behaviour with large variations
in amplitude.

Table 2. Individual time-based model parameters.

Satellite at [rad] bt [days] ct [days] dt [rad]

LAGEOS-1 1.42 × 10−5 27.5 −1.1 1.32 × 10−7

LAGEOS-2 2.40 × 10−6 26.1 −8.9 −4.01 × 10−6

Etalon 1 4.83 × 10−5 27.5 −2.8 −4.66 × 10−7

Etalon 2 6.76 × 10−5 27.6 −13.4 2.71 × 10−7

One notable feature of the models was their periods.
These had close alignment with the Moon’s sidereal or-
bital period of approximately 27.3 days, supporting the
suggestion that errors in modelling lunar perturbations in
SGP4 contributes to the along-track error [10].

The models for Etalon 1 and 2 were roughly in phase
with each other throughout the year 2022, despite the dif-
ference in phase in the model. The slight difference in
period between the two models meant that there was a
small amount of drift. This drift, accumulated over a
22 year timespan, resulted in a significant phase differ-
ence when defining the model at J2000.

3.2. Moon-based Model

An alternative formulation, based on the position of
the Moon along its orbit, more directly considers the
position-based nature of the perturbation mismodel-
ling [10]:

4The reference epoch has been changed from a previous study [10]
to more closely align with the commonly used J2000 epoch.

∆θT pMq « am sin pM ` cmq ` dm, (22)

where M is the mean anomaly of the Moon; and am, cm,
and dm are model parameters.

The fitted Moon-based models for the geodesy satellites
are presented in Fig. 3 and Table 3. The model showed
good agreement with the along-track errors of LAGEOS-
1, and Etalon 1 and 2. The additional longer-term vari-
ation for LAGEOS-1 was not visible when plotted as a
function of the Moon’s mean anomaly. In a similar fash-
ion as the time-based model, LAGEOS-2’s Moon-based
model was unable to capture the variation in along-track
error throughout the year.

Table 3. Individual Moon-based model parameters.

Satellite am [rad] cm [rad] dm [rad]

LAGEOS-1 1.33 × 10−5 1.73 × 10−1 1.63 × 10−7

LAGEOS-2 1.96 × 10−6 −3.42 × 10−1 −4.05 × 10−6

Etalon 1 4.62 × 10−5 −8.42 × 10−2 −6.24 × 10−7

Etalon 2 6.59 × 10−5 1.00 × 10−2 1.09 × 10−7

3.3. General Moon-based Model Behaviours

The individual fits of the Moon-based model on the
GNSS satellites are presented in Fig. 4 to investigate cor-
relations between the model parameters and a subset of
Keplerian orbital elements.

There appeared to be generally limited correlation
between the Keplerian orbital elements and the model
parameters. An exception was the amplitudes of the
model and the mean Right Ascension of the Ascending
Node (RAAN) of each satellite which, bar some outliers,
appeared to have a strong correlation, suggesting that a
further development of the time- and Moon-based mod-
els could consider the RAAN of the satellite.

The phases for all of the models remained near-zero with
a largest absolute departure from zero of approximately
0.22 rad (or 12.6°). The impact of the Moon on the bias,
therefore, is near-zero when the Moon is near its perigee
and apogee, consistently for all of the satellites. It should
be noted that the distribution of the phases is different
for the two constellations: the Galileo phases were typic-
ally greater than zero, while the GPS phases were more
centred about zero.

A significant difference in behaviour between Galileo and
GPS can be seen in the offsets: the fits on Galileo satel-
lites had a constant near-zero offset; while the fits on GPS
satellites had much more variance, mainly in a band from
−2 × 10−4 to 2 × 10−4 rad. The GPS TLEs often have a
mean along-track shift, either leading or lagging the true
position of the satellite, which does not appear correlated
with any of the Keplerian orbital elements.
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The relationship between the RAAN of the satellites and
the amplitude of their respective Moon-based models was
approximated with an additional sine function:

a pΩq « α sin pΩ ` βq ` γ, (23)

where Ω is the RAAN of the satellite, and α, β, γ are
model parameters.

In five cases (one Galileo and four GPS) the amp-
litudes of the individual Moon-based models did not ap-
pear to follow the sinusoidal behaviour with respect to
RAAN, therefore these cases, all with amplitudes below
0.2 × 10−4 rad, were excluded from the fitting procedure.

It should be noted that the fit illustrated in Table 4
and Fig. 5 was based on the mean osculating RAAN of
each satellite throughout the year. This element cannot
be assumed to remain constant with respect to time, due
to influences such as nodal precession and manoeuvres,
therefore this example provides an initial guess for the
parameters needed to capture the effect of RAAN with a
more detailed model.

Table 4. RAAN-based amplitude model parameters, de-
rived from individual fits with Eq. (22).

α 2.08 × 10−5 rad
β 1.44 rad
γ 6.10 × 10−5 rad

One interesting result of fitting the RAAN-based amp-
litude model was the model’s phase of 1.44 rad (or 82.5°).
During the year 2022, the Moon’s RAAN in GCRF
ranged from 7.33 to 10.3° with a mean value of 8.60°.
This suggests that the phase of the amplitude model could
be tied directly to the difference between the RAANs of
each satellite and the Moon.

3.4. Combined Models

The combined versions of the time- and Moon-based
models presented in Eqs. (21) and (22) replace constant
amplitude with the RAAN-based relationship in Eq. (23):

∆θT pt,Ωq « atpΩq sin

„

2π

bt
pt ` ctq

ȷ

` dt, (24)

∆θT pM,Ωq « ampΩq sin pM ` cmq ` dm. (25)

For each combined model, a single set of model paramet-
ers was estimated using all of the GNSS satellite residuals
concatenated together, excluding the outlying cases. The
model parameters resulting from fitting the full combined
models are presented in Table 5.

Table 5. Combined model parameters.

(a) Time-based.

bt 2.76 × 101 days
ct 1.07 × 101 days
dt −6.58 × 10−6 rad

αt 2.06 × 10−5 rad
βt 1.44 rad
γt 6.28 × 10−5 rad

(b) Moon-based.

cm 5.99 × 10−2 rad
dm −6.64 × 10−6 rad

αm 2.08 × 10−5 rad
βm 1.44 rad
γm 6.09 × 10−5 rad

4. DYNAMIC MODE DECOMPOSITION

Dynamic Mode Decomposition (DMD) is a linear dimen-
sionality reduction technique which models time-series
data as a linear dynamical system [18–21]:

xptk`1q « Axptkq. (26)

The linear system can be expressed with two time-shifted
matrices of a given set of observed states:

X1 “

»

—

–

| | |

xpt1q xpt2q . . . xptn´1q

| | |

fi

ffi

fl

, (27)

X2 “

»

—

–

| | |

xpt2q xpt3q . . . xptnq

| | |

fi

ffi

fl

, (28)

X2 « AX1. (29)

In traditional DMD, a solution can be found through the
Moore-Penrose pseudo-inverse [18], however several al-
ternative algorithms exist. One of the limitations of tradi-
tional DMD is that is highly sensitive to noise. This lead
to the development of Optimised Dynamic Mode De-
composition (OptDMD) [22], and later Bagging, Optim-
ised Dynamic Mode Decomposition (BOP-DMD) [23].
These versions of DMD provide greater resilience to
noise through the use of numerical optimisation tech-
niques. Furthermore, several features were introduced
which improved the adaptability of the method for mod-
elling different dynamics, such as the ability to specify
constraints on the eigenvectors of the system.
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Fig. 5. Individual Moon-based model amplitudes as a function of the mean of each satellite’s osculating Keplerian ele-
ments throughout the year 2022. The dashed line represents the fitted amplitude model.

Time-delay embedding, in the form of Hankel prepro-
cessing, was used to augment the state space [21] before
conducting OptDMD fits. The method augments the state
space by stacking states from several successive times to-
gether, increasing the dimensionality of the system.

The results of testing traditional DMD, OptDMD, and
OptDMD with Hankel preprocessing are presented in
Fig. 6. For both Etalon 1 and 2, traditional DMD failed to
capture the oscillatory behaviour of the along-track error,
as expected due to the high amount of noise. Likewise,
stand-alone OptDMD did not successfully model this be-
haviour. OptDMD with Hankel preprocessing, on the
other hand, successfully converged on a solution similar
to the time-based model of a single sinusoidal variation
throughout the year. In the case of Etalon 2, it can be
seen by visual inspection that the frequency of the model
does not match the underlying observations.

Despite OptDMD’s greater resilience to noise in the ob-
servations, it was found, in some cases, that the com-
bination of noise and specific hyperparameters prevented
the solver from converging on a solution. A significant
amount of manual trial and error was required to find suc-
cessful hyperparameters.

Smoothing the signal with a moving average of several
days was found to improve the robustness of the method.
Nevertheless, this removed high-frequency information
which could be used otherwise in a more detailed model.
Additionally, convergence was still sensitive occasionally
to the size of the averaging window, suggesting that this
strategy was not without issues.

5. COMBINED MODEL PERFORMANCE

5.1. Geodesy Satellites

The results of applying the combined time- and Moon-
based models to the geodesy satellites are presented in
Figs. 7 and 8 respectively. In the cases of LAGEOS-1
and -2, both of the combined models failed to accurately
estimate the along-track error. Conversely, the combined
models accurately modelled the along-track errors for Et-
alon 1 and 2, albeit not as accurately as their correspond-
ing individual models.

In the case of LAGEOS-1, the amplitudes were overes-
timated by up to almost three times. The use of these
models would degrade P-OD significantly due to the in-
troduction of oscillations larger than present in the TLEs.
One interesting result can be seen by the change in amp-
litudes, decreasing in the case of LAGEOS-1 and increas-
ing in the case of LAGEOS-2, highlighting the change in
RAAN for both satellites. In the case of LAGEOS-2, the
change in model amplitude is opposite to actual change
in amplitude in its TLEs.

The combined models produced generally good bias es-
timates for Etalon 1 and 2, matching the true along-track
errors. Nevertheless, both models slightly overestimated
the bias amplitude, most visibly in Fig. 8, where the mod-
els touched the edges of the noise bands. It is expected,
therefore, that these models will generally improve P-OD
state estimation performance in most cases, although not
to the same level as the individual models.
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Fig. 6. Models for along-track error, using traditional DMD (blue), OptDMD (orange), and OptDMD with Hankel pre-
processing (green). Note that, in the case of Etalon 2, OptDMD did not converge to a solution successfully. The
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The difference in model performance between the
LAGEOS and Etalon satellites might be a result of their
different orbits. Etalon 1 and 2 lie in very similar orbits
to the GNSS satellites, both in terms of semi-major axis
and inclination. On the other hand, both LAGEOS satel-
lites are in lower orbits at approximately half the altitude.
Additionally, LAGEOS-1 lies in retrograde orbit with an
inclination of approximately 110°. These cases, there-
fore, represent a high level of extrapolation for a model
generated using only GNSS satellites.

5.2. GNSS Satellites

A comparison of the four models is presented in Fig. 9.
The individual time- and moon-based models saw the
most significant reduction in errors with typical RMSEs
reducing by approximately 75% from 2000 m to 500 m.
The mean position error was reduced by a similar
amount. Additionally, the typical standard deviation in
position error was reduced from approximately 1000 m to
250 m. The combined models were less effective at redu-
cing RMSEs and mean errors with reductions of approx-
imately 30% and 40% respectively. Nevertheless, these
models were effective at halving the typical standard de-
viation to approximately 500 m.

Although the combined models had a limited impact on
the position RMSE and mean position error, they had
a major impact on the standard deviation, in both cases
halving the typical value from approximately 1000 m to
500 m. In many cases, particularly with the GPS satel-
lites, the TLEs of an individual satellite had a mean offset.
In contrast, the combined models had a near-zero offset
due to the averaging effect of including the residuals of a
large set of satellites with various offsets about zero.

The combined models suppressed the periodic compon-
ent of the along-track error but had a limited impact on
the mean along-track error. This manifested as the reduc-
tion in along-track variation, resulting in a post-debiasing
along-track error more closely representing a constant
lead or lag, instead of an oscillation centred about the
true state.

6. CONCLUSIONS

It has been shown that generalised models can be cre-
ated which can be applied to large sets of satellites in the
same orbital regime. Although not as effective as models
tailored to each satellite individually, these models can
reduce typical position errors and, importantly, suppress
periodic variation in along-track error.

Nevertheless, even within a given regime, the behaviour
of TLEs can vary between constellations, as observed in
this study by differences in offset with Galileo and GPS
satellites. It remains unclear as well how far these models
can be extrapolated. For example, the LAGEOS satellites
could not be debiased by the combined models success-
fully, likely due to their significant difference in semi-
major axis and inclination.

This study was limited by its selection of satellites and
corresponding data sources. The lack of available data
for satellites and objects in a greater variety of orbits is
a key blocker in the continuing development of bias cor-
rection models. One potential source of additional data is
long-term P-OD on debris and rocket bodies to produce
datasets approximating the true along-track errors present
in TLEs [10]. Nonetheless, this is dependent on the fur-
ther development of effective P-OD on TLEs.
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Fig. 7. Along-track errors of TLEs with respect to SLR. The SLR data and combined time-based models are presented in
grey and colour respectively.
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Fig. 9. Bias model performance for Galileo and GPS, evaluated over the entirety of the year 2022. Each dot represents
the value of the metric for an individual GNSS satellite, while the coloured boxes indicate the quartiles of the
distribution, and the whiskers the minimum and maximum values.



Ly, Lucken, and Giolito [9] noted that a longer-period
component of along-track error existed due to mismod-
elling of the third-body perturbation from the Sun. Al-
though a year-long variation should be observable within
the current evaluation window, ideally a longer window
should be used to capture multiple cycles. Future stud-
ies would benefit from extended windows to capture this
behaviour.

The DMD-based models did not provide any advantages
over the time-based model, but were subject to several
limitations, notably sensitivity to hyperparameters and
the input states. Although the method showed promise,
particularly when considering the possibility of extend-
ing the method with additional states (such as radial and
cross-track errors), it will require further investigation.
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