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ABSTRACT

The growing number of space objects threatens mission
sustainability, making precise real-time tracking essential
for Active Debris Removal (ADR) and In-Orbit Servic-
ing (IOS) missions. For an uncooperative target, a Vision
Based Navigation (VBN) relative pose (attitude and po-
sition) estimation system coupled with a state estimator
are likely required. Missions can further be supported by
commissioning unresolved observations of the target to
produce light curves which can then be used to extract
rotation rates and axes of rotation. This work performs
the novel task of exploiting the light curves as kinematic
priors to enhance the performance of the state estimator.

An Extended Kalman Filter (EKF) and an Unscented
Kalman Filter (UKF) are implemented. Light curve mo-
tion prior extraction and VBN pose estimation are simu-
lated. Three independent studies are performed exploit-
ing the motion priors: (1) Optimizing the Kalman fil-
ter tuning for specific kinematic scenarios; (2) Inject-
ing the priors as an initial condition to improve conver-
gence and steady state errors; and (3) Enhancing an out-
lier rejection function with supplementary proxy mea-
surements from the priors. Performance is evaluated on
a custom synthetic light curve dataset based on the At-
las Centaur rocket body, and a private commercial dataset
based on the Vega Secondary Payload Adapter from com-
mercial collaborator, ClearSpace. Pose estimation results
are simulated based on state-of-the-art machine learning
spacecraft pose estimators.

By exploiting kinematic priors, convergence time and
steady state error reductions of 3× or more are exhibited
for certain state components, dependent on the kinematic
scenario and filter tuning. In general, several trade-offs
are observed with kinematic priors providing the oppor-
tunity for the lowest steady state errors. This method has
the potential to improve the pose estimation accuracy for
proximity operations of uncooperative tumbling objects,
supporting ADR and IOS missions, especially consider-
ing the mild assumptions required.

Figure 1. Project overview. Motion priors from previous
ground observations are exploited to augment the perfor-
mance of an on-orbit state estimator for an uncooperative
target. Light curve visualization from [34]. Spacecraft
visualization from [16].

Keywords: Active removal and serving; Light-curves;
Measurements; State estimation; Kalman Filtering; ESA.

1. INTRODUCTION

As of the July 2024 space environment report, the ESA
is tracking 20k+ objects in Low Earth Orbit (LEO) with
modeled estimations of millions more untracked objects
[10]. Currently, various programs are underway to sup-
port and develop the technologies necessary for active de-
bris removal (e.g. ADRIOS and CRD2). This work is
carried out in the context of a general in-orbit servicing
or active debris removal mission.

For a non-functioning target satellite or piece of debris, a
servicer satellite will not have access to cooperative rel-
ative navigation techniques such as relative GNSS, tar-
get telemetry or beacons. For relative attitude determi-
nation in such uncooperative circumstances, an optical
sensing technique coupled with a state estimator such as
a Kalman Filter is required.
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In advance of a servicing mission, observations of the
client satellite can be made using ground-based and in-
orbit Space Situational Awareness (SSA) services. In par-
ticular, light curve observations can be contracted from
several telescope networks to assess a satellite’s opera-
tional status [30, 13]. Assuming the target’s shape and
reflective properties are known, it is possible to extract
information about the target’s kinematics. This extrac-
tion of kinematics information can then be passed to a
state estimator as a kinematic prior (or ”motion prior”).

In this paper, the benefits of exploiting the motion prior
for an uncooperative servicing mission are explored. The
remaining paper sections are organized as follows. [2]
Related Works are reviewed. [3] A Relative Dynam-
ics Model is introduced to simulate both the target and
servicer orbits, positions and attitudes. The [4] State Es-
timation Model is introduced. The choice of Kalman
Filter is justified and the mathematical preliminaries of
state estimation are provided. [5] Light Curve Analy-
sis is reviewed. Limitations associated with single axis
rotation and two axis rotation are discussed. [6] Results
from the Experiments with the state estimation model
exploiting motion priors are presented.

In particular, the advantages of exploiting motion priors
are quantified in three studies as depicted in Figure 1.

1. With prior knowledge of the target, the state estima-
tor parameters, Q, can be tuned for a specific kine-
matic state resulting in a lower steady-state error.

2. By incorporating the motion prior, ω0 as an initial
condition, the state estimator is able to converge ear-
lier. This is especially evident when estimating the
target inertia matrix for multi-access tumbling.

3. The motion prior can be used to augment measure-
ment error outlier rejection algorithms.

2. RELATED WORK

This work focuses on a state estimation model which re-
lies on inputs from light curves and relative pose (i.e.,
position and attitude) measurements. For uncooperative
targets (i.e., no telemetry, visual markers or beacons), a
VBN system is typically required for pose estimation.
Here a brief review of uncooperative target spacecraft
state estimation, Kalman filter implementations and light
curve inversion techniques are reviewed.

2.1. Uncooperative Spacecraft Pose Estimation and
State Tracking

The state-of-the-art for uncooperative spacecraft VBN is
briefly reviewed here.

Sensor fusion from multiple independent sensors is stan-
dard practice for estimating the relative pose of space-
craft. In 2019, the Northropp Grumman Mission Ex-
tension Vehicle (MEV)’s VBN system included 6 visi-
ble spectrum cameras, four infrared cameras and a single
scanning LIDAR [33]. The visible and infrared cameras
included both narrow and wide Field of View (FoV) for
long distance and proximity imaging respectively. The
work was able to perform target classification and dis-
tance estimation in excess of 30 km. The system transi-
tions to wide FoV cameras at approximately 15 m. The
infrared system was used similarly with narrow FoV cam-
eras in excess of 10 km and wide FoV cameras again at
15 m. The LIDAR provided rough scans at 2 km and
was used throughout many phases of the mission. The
computer vision feature extraction method and the state
tracking algorithm were not explicitly shared.

In 2018, the RemoveDEBRIS mission demonstrated un-
cooperative capture of a target cubesat. The removeDE-
BRIS VBN system had two visible spectrum cameras and
a LIDAR [11]. Mission planning explored chaser-target
scenarios up to 500 m apart and state tracking was per-
formed with an EKF [5]. A template matching VBN
technique was employed for 3 DoF (i.e., position) nav-
igation. For 6 DoF navigation, measurements are fused
from the LIDAR and cameras. With the LIDAR 3 DoF -
3 DoF point cloud matching to a target CAD model is per-
formed. With the cameras, first initialization is performed
by extracting a silhouette from the images and compared
against a hierarchical model view graph. Once initializa-
tion is complete, a frame by frame local edge tracking is
performed similar to [8].

In 2018, the JAXA Hayabusa 2 mission visited the aster-
oid Ryugu and released the MinervaII-2 rover to the sur-
face of Ryugu [14]. The Hayabusa 2 optical navigation
camera system was equipped with two wide FoV cam-
eras and a single narrow FoV camera [37]. JAXA used
the narrow FoV camera to track the orbit insertion of the
MinervaII-2 rover and compared the observed arc to or-
bit insertion Monte Carlo simulations to finally obtain the
release velocity [26]. Additionally, an independent study
similarly estimated the release velocity from initial im-
ages captured by one of the wide FoV cameras using a
Convolutional Neural Network (CNN) [32].

Notably, the majority of in-orbit demonstrations have
used conventional computer vision techniques such as
edge detectors and template matching. However, the
spacecraft pose estimation competitions hosted by ESA
and the Stanford Space Rendezvous Laboratory yielded
only machine learning based pose estimation algorithms
as state-of-the-art [21, 29]. Companies such as Airbus
and Clearspace are planning on in-orbit demonstrations
of machine learning VBN.

From this context of uncooperative spacecraft pose es-
timation supplied as measurements to a state estimation
algorithm, a simple measurement system consisting of an
optical camera and a CNN pose estimation algorithm is
proposed for this study. No sensor fusion is performed



here. Measurement errors proportional to the error rate
of a deployable CNN [15, 35] are assumed.

2.2. Kalman Filter Implementations

The most used model for real-time state estimation is,
notably, the Kalman Filter. Given some noisy measure-
ments, it employs a two step prediction-update recursive
algorithm, leveraging a dynamic model representation of
the underlying physical system.

Among several spacecraft relative dynamics models, this
work adopts the one in [4]. It references the model in
[12], but re-derives the expressions in the Target’s (the
uncooperative object) body frame. This way, the only
additional measurements required are the absolute states
of the Servicer, which are available from its Attitude and
Orbit Determination System AODS. Additionally, a Tar-
get’s inertia matrix parametrization as the one proposed
in [38] is included.

To ensure the quaternion unitary norm, Kalman Filter im-
plementations addressing this constraint have been con-
sidered. The Extended Kalman Filter EKF, originally de-
veloped by R.E.Kalman [20] constitutes the easiest non-
linear Kalman Filter extension. In [38] they developed
an EKF propagating attitude errors in a minimal three
parameters rotation representation, that then reconstructs
the quaternion at each iteration (Multiplicative EKF).
However, for simplicity, an explicit normalization at each
iteration can yield acceptable results.

The Unscented Kalman Filter, a nonlinear extension that
did not require an explicit linearization was originally de-
veloped in [17]. It propagates via the Unscented Trans-
form a set of points sampling the state estimation error
covariance matrix through the actual nonlinear process
model. An UnScented QUaternion Estimator (USQUE)
was proposed in [7], handling the unitary norm quater-
nion constraint by propagating a set of attitude errors rep-
resented as vectors of Modified Rodrigues Parameters,
with a very similar approach to [38]. While adaptive
methods, like the one in [28] building on USQUE, im-
prove the parameter tuning process, they increase compu-
tational complexity. Instead, this work is able to provide
information for accurate Kalman Filter parameter tuning,
favoring a slightly risk-adverse but lighter approach.

To mitigate divergence due to possibly non-Gaussian
measurement noise, as happens during pose estimation
neural network faults, robust filtering approaches have
been explored. Among various techniques [22], the sim-
plest outlier rejection method proposed in [31] has been
implemented. By setting a validation gate around the in-
novation term, an incoming measurements can be tested
for a desired confidence level.

2.3. Light Curve Analysis

Acquiring and examining series of brightness measure-
ments, called light curves, is a very powerful technique
to obtain additional characteristics of unresolved targets.
Light curve analysis has many applications in astronomy,
including determining rotation rates [39], shapes [18, 19],
and taxonomic classification of solar system objects [27],
characterizing exoplanets and extrasolar planetary sys-
tems [24] and variable stars [9].

Light curves contain extensive information on the dy-
namic and physical properties of satellites and orbital de-
bris. The brightness variations are directly related to the
rotation of the object and the observation geometry. Light
curve analysis allows to determine the attitude of the
observed object and provides important information for
ADR and helps to model effects that influence the long-
term dynamics of the object, such as the electromagnetic
field, drag, solar radiation, fuel sloshing or outgassing.
The most frequently used methods to extract the appar-
ent (synodic) period from the light curves are Fourier-
based techniques. A comprehensive review on the anal-
ysis techniques of optical measurements from space ob-
jects is given in [36]

In this work, we apply the Fourier transform and CLEAN
algorithm (WindowCLEAN). This method was devel-
oped to characterize the complex rotation of asteroids and
comets in the solar system [23, 1, 25] and can reliably
detect the dominant frequencies in light curves obtained
from non-principal axis rotators. It was suggested that
combining the periodicity analysis of light curves with
WindowCLEAN with the shape inversion of radar obser-
vations may be a powerful tool to deduce non-principal
axis spin states by significantly reducing the spin state
parameter space that the shape inversion algorithm has to
search [25]. This is why we selected WindowCLEAN to
extract the kinematic priors for the state estimation.

3. RELATIVE DYNAMICS MODEL

In this section a model for the description of two space-
crafts’ relative motion is presented. Consider two rigid-
body spacecrafts orbiting around the earth, label one
spacecraft as the Target, the uncooperative object in our
context, and the other as the Servicer. For the chosen
representation from [4], the relative translational dynam-
ics is dependent on the relative attitude dynamics, which
will be presented first.

Let qTS = q−1
S ⊗ qT be the quaternion error between the

attitude of the Target qT and the attitude of the Servicer
qS , representing the relative orientation between the two.
The equivalent rotation matrix RT

S = R(qTS) transforms
a vector expressed in the Servicer’s body frame to the
Target’s body frame.

The relative angular velocity expressed in the Target



frame is given as:

ωT
ST = ωT

S − ωT
T = RT

Sω
S
S − ωT

T (1)

knowing that ωT
ST = −ωT

TS . Relative attitude and rel-
ative angular velocity follow the quaternion kinematics
equation as:

qTS =
1

2
Q(qTS)ω

T
TS (2)

where

Q(q)
.
=

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 (3)

The relative angular acceleration is expressed as:

αT
ST =

(
dωST

dt

∣∣∣∣
T

)T

= RT
I

(
dωST

dt

∣∣∣∣
I

)I

− ωT
T × ωT

ST

(4)

where the subscripts after the vertical bar represent in
which reference frame the differentiation is done, I is the
Earth Centered Inertial (ECI) frame, and RT

I is the rota-
tion matrix that transforms a vector from the ECI frame
into the Target frame, represented by the Target’s attitude.

The expression of the relative angular acceleration with
respect to the ECI frame, differentiated in the ECI frame,
is computed as:(

dωST

dt

∣∣∣∣
I

)I

=

(
dωS

dt

∣∣∣∣
I

)I

−
(
dωT

dt

∣∣∣∣
I

)I

(5)

Knowing that:

RT
I

(
dωT

dt

∣∣∣∣
I

)I

=

(
dωT

dt

∣∣∣∣
T

)T

= J−1
T

(
mT − ωT

T × JTω
T
T

)
RT

I

(
dωS

dt

∣∣∣∣
I

)I

= RT
S

(
dωS

dt

∣∣∣∣
S

)S

= RT
S

[
J−1
C

(
mC − ωS

S × JSω
S
S

)]
(6)

where JT and JS are respectively the inertia matrices of
the Target and of the Servicer, and mT and mS are re-
spectively external moments applied to the Target and to
the Servicer (assumed zero), the final expression for the
relative angular acceleration then becomes:

αT
ST = RT

S

[
J−1
S

(
mS − ωS

S × JCω
S
S

)]
− J−1

T

(
mT − ωT

T × JTω
T
T

)
− ωT

T × ωT
ST

(7)

The relative dynamics description is instead computing
starting from the expressions of rTT and rSS , which are, re-
spectively, the Target’s and Servicer’s position expressed

in their respective body frames. The relative position is
defined as:

rTST = rTS − rTT = RT
Sr

C
S − rTT (8)

The relative velocity expressed in the target frame is ob-
tained as:

vT
ST =

(
drST

dt

∣∣∣∣
T

)T

=

(
drST

dt

∣∣∣∣
I

)T

− ωT
T × rTST ,

(9)

= RT
SR

S
I

(
drST

dt

∣∣∣∣
I

)I

−
(
RT

Sω
S
S − ωT

T

)
× rTST .

(10)

developed using Eq. (1).

The relative acceleration in the Target frame is computed
as:

aTST =

(
d2rST

dt2

∣∣∣∣
T

)T

=

(
d2rST

dt2

∣∣∣∣
I

)T

− 2ωT
T × vT

ST

+

(
dωT

dt

∣∣∣∣
T

)T

× rTST + ωT
T ×

(
ωT
T × rTST

)
(11)

The relative acceleration term expressed in the Target
frame, differentiated with respect to the ECI frame is sim-
ply corresponding to:(

d2rST

dt2

∣∣∣∣
I

)T

=

(
d2rS
dt2

∣∣∣∣
I

)T

−
(
d2rT
dt2

∣∣∣∣
I

)T

(12)

The absolute accelerations of the Target and the Servicer
with respect to the ECI frame are:(

d2rS
dt2

∣∣∣∣
I

)T

= − µ

r3S
RT

Sr
S
S (13)(

d2rT
dt2

∣∣∣∣
I

)T

= − µ

r3T
rTT

= − µ

∥RT
Sr

S
S − rTST ∥3

(RT
Sr

S
S − rTST ).

(14)

which correspond to the standard Keplerian orbit propa-
gation derived from the free restricted two body equation.
By substituting Eqs. (12), (13) and (14) into Eq. (11), the
complete expression of the relative translational dynam-
ics expressed in the Target’s body frame yields:

aTST = − µ

r3S
RT

Sr
S
S

+
µ∥∥RT

Sr
S
S − rTST

∥∥3 (
RT

Sr
S
S − rTST

)
+ J−1

S

(
mS − ωT

S × JSω
T
S

)
× rTST

− 2ωT
S × vT

ST + ωT
S ×

(
ωT
S × rTST

)
(15)



The complete dynamics of the spacecraft relative motion
problem, expressed in state-space representation, thus
propagates as follows:

ẋ =
dx

dt

∣∣∣∣
T

=
d

dt


qTS

ωT
ST

rTST

vT
ST


|T

=


1
2Q(q)ωT

TS

αT
ST

vT
ST

aTST


(16)

As stated in the introduction, all the description is pre-
sented in its most general form. At the same time, it pro-
vides also the expressions that allow to derive a repre-
sentation solely dependent on relative states and absolute
states of the Servicer, which will be needed later during
the discussion.

3.1. Software framework

The principal simulation environment has been designed
in MATLAB/Simulink version R2019b. All the integra-
tions are performed using the ode4 integration method
with fixed simulation sampling time of 0.01 seconds. The
integrations inside the Kalman Filter exploit the same
ode4 integration method with the fixed filter sampling
time defined before each case study.

4. STATE ESTIMATION MODEL

This chapter introduces the state estimation framework
used in this study.

The state estimation model internally reference the space-
craft relative dynamics model presented in Section 3. In
particular, the following state vector is defined:

x =
[
qTS ωT

ST rTST vT
ST Jk

T

]T
(17)

The first 4 components, for a total vector of dimension-
ality in R13, correspond exactly to the 4 relative attitude
and relative translational dynamics components from Eq.
(16). The last state component Jk

T refer to a parametriza-
tion of the Target’s inertia matrix, to possibly enable its
estimation in some scenarios. The following parametriza-
tion from [38] is used:

Jk
T =

[
Jx/Jy 0 0

0 1 0
0 0 Jz/Jy

]
=

ek1 0 0
0 1 0
0 0 e−k2

 (18)

where Jx, Jy, Jz are the elements on the diagonal and the
two parameters whose fixed values are:

k1 = ln(Jx/Jy)

k2 = ln(Jy/Jz)
(19)

are estimated during the process. The Target’s inertia ma-
trix can thus only be estimated up to a scale factor, which

represents the third missing degree of freedom. The Eu-
ler equations that appear in the dynamics model, however,
yield the same result regardless.

This estimated inertia matrix is used as the Target’s iner-
tia matrix JT inside the estimation process. Being con-
stant, the inertia matrix parameters have no dynamics.
Thus, with

J̇k
T =

[
k̇1
k̇2

]
= 0 (20)

the complete process dynamics used inside the estimator
becomes:

ẋ =
dc

dt

∣∣∣∣
T

=
d

dt


qTS

ωT
ST

rTST

vT
ST

Jk
T


|T

=


1
2Q(q)ωT

TS

αT
ST

vT
ST

aTST
0


(21)

for a total dimensionality in R15.

In this work, an Extended Kalman Filter and an Un-
scented Kalman Filter implementation have been devel-
oped to serve as real-time state estimation models. Since
quaternions are used for attitude representation, main-
taining their unit norm is crucial to prevent errors in rota-
tion, loss of physical validity, and drift in estimated states.
Norm deviations arise from operations outside quaternion
space, with error accumulation depending on how often
such violations occur.

Consider the discrete-time autonomous (no external in-
put) nonlinear system:

xk+1 = f(xk) + dk (22)

yk = h(xk) + dyk (23)

where k ∈ Z is the time index, xk ∈ Rn is the state,
yk ∈ Rm is the measured output, dk is the process noise
and dyk is the measurement noise. Assume that both dk
and dyk are independent and identically distributed and
white noises, zero mean with bounded variance. Eq. (22)
is called process model, and references the relative dy-
namics model presented inside the Kalman Filters. Eq.
(23) is called measurement model, it’s the same for the
two filters and, as already introduced, is simply defined
as:

h(xk) =

[
qTS

rTST

]
(24)

The first two section describes the Kalman Filter imple-
mentations, with the respective strategies to handle the
quaternion normalization constraint. After, a description
of the measurement model and their real-time simulation
is presented.

4.1. Extended Kalman Filter

The idea behind the EKF, the easiest extension of the Lin-
ear Kalman Filter, is to work with the linearized system



around the estimated state trajectory. That is, at each time
step, compute:

Fk =
∂f

∂x
(x̂k)

Hk =
∂h

∂x
(x̂k)

(25)

where Fk is the Jacobian of the relative dynamics process
model f evaluated at (x̂k, uk) and Hk is the Jacobian of h
evaluated at (x̂k). The estimation procedure is thus linear
and of relatively simple implementation. It is based on
the two steps described below:

1. Prediction
Knowing the estimated state of the system at time
k−1, the filter computes a prediction of the state x̂−

k
using the system model and of the error covariance
matrix P−

k

x−
k = f(x̂k−1, uk−1)

P−
k = Fk−1Pk−1F

T
k−1 +Qd

(26)

2. Update
The filter then uses the current output measurement
yk to build the innovation term δyk and obtain the
corrected estimate x̂k and error covariance matrix
Pk.

x̂k = x̂−
k +Kkδyk

δyk = yk −Hkx̂
−
k

Sk = HkP
−
k HT

k +Rd

Kk = P−
k HT

k S
−1
k

Pk = (I −KkHk)P
−
k

(27)

where Kk is the Kalman gain matrix. The quater-
nion portion of the state estimate is then explicitly
normalized:

q̂k =
q̂k
∥q̂k∥

(28)

The Qd and Rd matrices, respectively the process noise
covariance matrix and measurement noise covariance
matrix, are mostly designed offline and subject to tun-
ing. Their values, for each state component, embed the
confidence that is given on the model of the process and
on the quality of the measurements (lower value, higher
confidence) and have an impact on the convergence time
and the amplitude of the oscillations at steady state (lower
value, less oscillations but slower convergence). Typi-
cally, they are chosen as diagonal matrices with the vari-
ances of dk and dyk on the diagonal. Such values can
be modeled from prior understanding of the environment,
and usually require trial and error tuning procedures.

Another parameter of a Kalman Filter is its sampling fre-
quency fS = 1/τS . While analytical computations set
a minimum value, it is usually constrained by the one of
slowest processing unit in the real pipeline implementa-
tion. The value of the sampling rate, intuitively, has quite

a big impact on the performance of the estimation pro-
cess, both in terms of accuracy and convergence time.

Final relevant role in the process is played by the chosen
initializations of the estimated variables, x̂0 and P0. If a
priori information on the system is available, the initial
value of P0 shall reflect the associated confidence (lower
value, higher confidence), and a performance improve-
ment can be expected. The two are set to 0 ad In other-
wise.

With the relevant drawback associated to the computation
of the Jacobians, that might need numerical derivation,
the EKF has demonstrated to be effective for applications
where models have low nonlinearities. The relative navi-
gation scenario outlined in this work can arguably be the
case.

4.2. Unscented Kalman Filter

The UKF is another extension of the Kalman Filter for
nonlinear systems. Consider the same discrete-time non-
linear system in Eq. (22), with the same noise distribution
assumptions.

The core process behind the UKF is, at each step, to
generate a set of points, called Sigma Points, that sam-
ple that distribution of the state estimate. Those are
then propagated individually through the nonlinear model
(Unscented Transform), and then the distribution of such
points is rebuilt, thus retrieving the new state estimate.
In particular, the implementation uses attitude errors rep-
resented as a three-dimensional Modified Rodrigues Pa-
rameters vectors to be used inside the computations, as
proposed in [7]. This way, a quaternion is never explic-
itly used in operations outside of its space, but an equiv-
alent quaternion sigma points is still kept and propagated
trough the process model.

Owing to space limitations, for the complete description
of the model the reader might refer to [7].

A key addition lies in the handling of the incoming mea-
surements. In particular, the quaternion error between be-
tween the incoming measurement ỹqk and the propagated
quaternion of the latest state estimate sigma point q̂−k (0)
is computed and converted to MRP via the transforma-
tion defined in the cited source. The innovation term vδpk
is thus computed as:

δp̃k = δq̃k|MRP =
[
ỹqk ⊗

(
q̂−k (0)

)−1
]
|MRP

(29)

vδpk = δp̃k − ŷ−,δp
k (30)

The update steps are then computed regularly.

The same reasoning for parameter tuning process as in
the EKF holds here, keeping in mind the dimensionality
3 of the attitude component due to the error MRP repre-
sentation used.



Among the advantages of the UKF with respect to the
EKF there are lower expected errors and validity for
higher-oder expansions. The principal drawbacks are
usually higher computational costs and a more complex
tuning process.

4.3. Outlier rejection

As stated, a robust filtering technique consisting of a sim-
ple outlier rejection mechanism, as proposed in [31] has
been included in this work.

A validation gate is set around the innovation term using
the normalized estimation error squared:

e2k = vTk S
−1
k vk (31)

where vk is the innovation term and S is the innova-
tion covariance matrix (P vv

k for a UKF). The innovation
covariance weights the validation gate with the filter’s
trust in the measurement, preventing unnecessary rejec-
tion due to, for example, convergence being in progress.

Since e2k follows a Chi-Squared (χ2) distribution with m
degrees of freedom, a hypothesis test determines whether
to accept or discard a measurement. The Chi-Squared
distribution, defined as:

Y =

k∑
i=1

(
Xi − E[Xi]

σ

)2

(32)

measures how much a value deviates from expectations,
higher values indicate larger deviations.

To test a measurement at confidence level α, the Kalman
Filter checks whether e2k lies within (χ2

L, χ
2
U ). These

boundaries are computed as the inverse of the Chi-
Squared cumulative distribution function with m degrees
of freedom at α

2 and 1− α
2 .

If a measurement is detected as faulty, the filter skips
the update step, relying only on state prediction. When
measurements originate from multiple sources, the out-
lier rejection mechanism is applied individually to each
portion of the measurement vector. This requires defin-
ing individual update execution flows, where each update
step maintains a covariance matrix Rd restricted to the
non-faulty measurements, following the standard update
steps.

This technique effectively detects measurement faults,
provided they are temporary. Extended or frequent faults
prevent measurement updates, leading the filter to di-
verge.

4.4. Real-time measurements model

As previously mentioned, the state estimation models in-
troduced in this work rely on real-time measurements

from a pose estimation model operating on proximity im-
ages. The available measurements consist of the relative
orientation, represented as a quaternion, and the relative
distance, defining the measurement model in Eq. (24)

Since the relative dynamics model directly solves for
position and orientation, which are both states in the
Kalman Filters, the measurement model remains linear,
contributing to improved filter robustness.

The additional measurements required for process model
integration are the absolute states rSS and ωS

S of the Ser-
vicer, which are provided by its Attitude and Orbit De-
termination System. If the representation was instead de-
rived with respect to the Servicer, the filters would need
the absolute states of the Target, which are unavailable
due to its assumed uncooperative nature.

This work is developed in a simulated environment that
individually integrates torque-free attitude dynamics and
Keplerian orbits for both the Servicer and the Target. The
real-time measurements from the pose estimation model
are thus simulated as the relative attitude and distance
states, with added noise, and fed at a fixed Kalman Filter
sampling frequency fs = 1/τs.

Quaternion noise is modeled using a rotation vector with
a Gaussian-distributed random amplitude αn (zero mean,
variance σq

y) and a uniformly distributed random axis rn
on the unit sphere. The resulting noisy quaternion mea-
surement is computed as:

qn = q⊗ δqn (33)

where q is the ground truth relative attitude, and δqn is
obtained from the random rotation vector:

δq =
[
cos

(
αn

2

)
rn sin

(
αn

2

)]
(34)

Relative distance noise is modeled as a three-dimensional
random vector whose norm follows a zero-mean Gaus-
sian distribution with variance σr

y . The quaternion angle
noise variance σq

y = 0.12 rad and relative distance noise
variance σr

y = 0.37 m are derived from real pose estima-
tion results at a distance of 50 m.

Faulty measurements are modeled as highly noisy values
to mimic the instability of relative pose and relative dis-
tance measurements during fault windows.

5. LIGHT CURVES ANALYSIS

The goal of this section is to briefly present some light
curves analysis results to justify the assumed quality of
the kinematic priors used in this work.

As presented in Section 2.3, the WindowCLEAN method
has been implemented. Given the brightness samples of
a light curve, the algorithm produces a dirty spectrum
of the periodicities latent in the observations through a
discrete Fourier transform that is then iteratively cleaned
from aliases and unpredictable spurious periodicities.
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Figure 2. Synthetic Light Curve of an Atlas Centaur R/B.
One axis tumbling, 5 deg/s

5.1. Single Axis Rotation

Extracting motion priors from an object in space rotating
about a single axis is relatively straightforward. The pe-
riod extracted by means of the frequency analysis directly
corresponds to the synodic period and is interpreted as the
rotation rate of the object that generated the light-curve.

In this context, the main issue lies in the scarce availabil-
ity of light curves and related ground truth attitude data
to effectively enable validation of the analyses.

Thanks to Luı́s Gonçalves, a PhD student from University
of Coimbra, we had the opportunity to have access to a
Lightcurve Simulator tool under his development. Based
on an orbit integrator paired with the Cook-Torrance re-
flection model [6], it is able to generate a synthetic light
curve generated by a given object model observed dur-
ing a specified time window. As the implementation cur-
rently stands, the tumbling integration only supports one
axis rotation with constant speed scenarios, and no addi-
tional simulated noise is included.

Below, a result on synthetic data is shown, with an addi-
tional case studied in collaboration with the commercial
partner ClearSpace.

Synthetic data

An example of a synthetically generated light curve is
presented in Fig. 2. It is produced by the simulated tum-
bling motion of an Atlas Centaur Rocket Body model,
similar to the one proposed in [2]. The body is rotating
about its z axis, aligned with its shorter dimension, ob-
served for a time window of 400 seconds with a sampling
time of 0.5 seconds.

The WindowCLEAN tool ran on this light curve is able
to recover the clean spectrum shown in Fig. 3.

The extracted spectrum has the highest component at
frequency 0.028 Hz, which corresponds to a period of
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Figure 3. Spectrum of a synthetic Light Curve of an Atlas
Centaur R/B. One axis tumbling, 5 deg/s

around 35 seconds. Inspecting the nature of the light
curve, exhibiting peaks at different magnitudes values,
one can infer that the two different magnitude peaks are
not generated by the same reflecting surface of the body.
The resulting frequency corresponds thus to half the turns
of the rocket body, whose two ends produce different
brightness values. The recovered rotation rate, associ-
ated to half the extracted period, thus corresponds to 5.04
deg/s. For a ground truth constant rotation rate of 5 deg/s,
the obtained precision is 99%.

Commercial data

We had the opportunity to validate our work on com-
mercial data from our industry partner Clearspace. We
had access to a generated light curve based on high fi-
delity synthetic ground based observations of a tumbling
VEga Secondary Payload Adapter, corresponding to the
one currently left in Low Earth Orbit after a launch in
2013.

We are unfortunately unable to share the raw brightness
data, but the motion prior extraction process executed
with our tool results in the recovered frequency spectrum
shown in Fig. 4.

The commercial light curve accessed is 550 seconds long,
with a sampling time of 1 s. The highest and most rel-
evant frequency component is detected at 0.0082 Hz,
which leads to a rotation rate of around 2.9 deg/s. Given
the available ground truth value of 3 deg/s, the resulting
precision is around 97%.

5.2. Two or Three Axis Rotation

While challenging, light curves scientific literature shows
that it is possible to extract rotation rates for object rotat-
ing about a non trivial axis, resulting from superposition
of motion about multiple body-fixed axes. In particular,
accounting for the axis precession period requires knowl-
edge of the targets body geometry, which cannot be al-
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Figure 4. Spectrum of a Light Curve of a VESPA com-
mercial model. One axis tumbling, 3 deg/s

ways assumed for an uncooperative target. Moreover, as-
suming a rotation rate can be extracted, enabling the mo-
tion prior injection as initial condition for the State Esti-
mator would require adjusting for phase, due to the time
shift between the light curve observation and the actual
proximity operation with the Target.

5.3. Motion Prior Extraction Assumption

For the following experiments, we assume that motion
priors are obtainable for both single axis and multi-axes
tumbling cases. Specifically, we assume a conservative
motion prior rotation rate extraction error of 5% relative
to the ground truth rotation rates, based on our results
from 5.1. In addition, a real Active Debris Removal mis-
sion would likely be planned to target an object that has
been observed for a long time and exhibits a stable and
safe motion. Therefore, assuming non-complex target
tumbling, hence a trivial light curve analysis process, is
thus justified for this reason as well.

6. KINEMATIC PRIOR INJECTION STUDIES

The experiments are organized into three studies demon-
strating independent advantages of exploiting motion pri-
ors for state estimation as depicted in Figure 1.

• Study 1 - Kalman Filter parameter tuning.
With a good initial estimate of the kinematics state,
the Kalman filter parameters can be specifically
tuned (e.g., tuning for a fast vs a slow rotation will
enable a quicker convergence or lower steady state
error).

• Study 2 - Inertia matrix estimation improvement.
A kinematic prior can be directly injected as an ini-
tial condition for the Kalman filter.

• Study 3 - Enhanced outlier rejection.
In challenging pose estimation scenarios such as

during an eclipse, a kinematic prior may be in-
jected as a proxy measurement to mitigate filter di-
vergence.

Experimental Conditions

For the following experiments, the target is assumed to
be a rocket body (e.g., the Atlas Centaur or the Japanese
H2A). A representative principle inertia matrix, Jk

T =
diag(4.33, 1, 4), is used as defined by the parameteriza-
tion of equation (18) with k1 = 1.466, k2 = −1.439.

The simulation length Tsim and the sampling time τs are
defined before each case study. Unless specifically stated,
the state variable is initialized with relative position r0,
velocity v0, attitude q0, and rotation rate ω0 set to 0⃗ and
the target inertia matrix, Jk

T,0 = Jk
T ◦ [a0, a1, a2], with ai

uniformly distributed on (0.7, 1.3) to reflect an assumed
knowledge on the rough shape but without precise pro-
portionality of the mass distribution1. As per Section
5.3, when kinematic priors are used with a 5% error from
ground truth. Finally, as per Section 2.1, attitude and po-
sition estimations with errors proportional to the works
[15, 35] are used; the measurement noise is observable in
Figures 6 and 7.

Evaluation Metrics

The two metrics can be applied to internal filter parame-
ters or state estimation variables. A visualization of the
metrics is shared in Fig. 5. Tracking the error of the state
estimation variables is intuitive (e.g., is the attitude, qi,
sufficiently close to the ground-truth). However, the error
covariance matrix, P , (recall Eq. (16)) is a real-time es-
timate of the filter’s uncertainty and thus useful for com-
paring differently tuned filters. Consider one filter, Ff ,
tuned for a fast angular velocity condition and a second
filter, Fs, tuned for a slow angular velocity condition. If
both Ff and Fs are tested on the slow angular velocity
condition, Ff will likely converge faster than Fs (good),
but Ff will likely exhibit a worse steady-state Root Mean
Squared Error (RMSE) than Fs (bad). In such circum-
stance, it is thus beneficial to also observe the filters’ er-
ror covariance matrices, P (i.e., do the Ff and Fs filters’
confidence converge comparably and remain confident at
steady state).

To evaluate the performance of the filters, two metrics are
used

• Convergence time is defined as the time all tracked
parameters pass below a set threshold and do not ex-
ceed the threshold again.

• Steady state error is defined as the RMSE of the
parameters at steady state. Steady state is defined as
from the convergence time to the end of the simula-
tion.

1◦ denotes the element-wise multiplication operation.



Metrics visualization

50 100 150 200 250 300 350 400 450
time (s)

0

0.5

1

1.5
S

ta
te

 E
st

im
a
ti

o
n
 E

rr
o
r

Convergence Metrics Visualization

State Estimation Error; No Priors
State Estimation Error; With Priors

50 100 150 200 250 300 350 400 450
time (s)

0

0.5

1

1.5

P
 D

ia
g

o
n
a
l 
N

o
rm

P Matrix Diagonal Norm; No Priors
P Matrix Diagonal Norm; With Priors

Convergence Threshold

Steady State Error Windows

Convergence Threshold

Steady State Error Windows

Figure 5. Convergence and Steady State Error Metrics
[Top] using the state estimation error
[Bottom] using the filter covariance matrix, P

Table 1. Scenarios definition, respectively: 1 axis
slow/fast, 2-axes slow/fast

ω SC1 SC2 SC3 SC4
rad
s “slow” “fast” “slow” “fast”
ωx

0 0 0 0.020 0.100
ωy

0 0 0 0 0
ωz

0 0.050 0.200 0.045 0.150

6.1. Kalman Filter parameter tuning

For experiment 1, the availability of the motion prior is
exploited to tune the process noise covariance matrix, Qd,
for a specific scenario. Four tumbling scenarios are de-
fined in Table 1; two 1-axis tumbling conditions and two
2-axis tumbling conditions.

Tuning a single Kalman filter to perform optimally in ev-
ery scenario is challenging. Assuming no motion prior
information is available, the following tuning process is
undertaken.

The process noise covariance matrix search space is quite
large; it is recommended to increment through different
orders of magnitude (e.g., Q1 = diag(100, 100, 100, ...),
Q2 = diag(10−1, 100, 100, ...), ...). The Kalman filter’s
score, GKF (i), is then used to identify the best filter for
a given scenario. In the case that no kinematic priors
are available, an engineer must conservatively tune the
Kalman filter to accommodate all scenarios. The Kalman
filter with the highest score for the SC4 2-axis fast tum-
ble scenario (best GKF (4)) is selected here as a conser-
vative choice. Hereafter, KFgen will refer to the gener-

Algorithm 1 Qd tuning process
Kalman Filter, KF
Qparameters = [Q1, Q2, ...Qn]
SC = [SC1, SC2, SC3, SC4, ...]

for Q in Qparameters do
KF ← Q
for i in range(1, length(Scenarios)) do

Run Simulation SC[i] with KF
SC[i]→ Ct,i

SC[i]→ ESS,i

GKF (i) = λCt,i + (1− λ)ESS,i

end for
end for

Where,
Ct is the convergence time
ESS is the RMSE at steady-state
λ is the bivariate weight
GKF (i) is the Kalman filter’s “score” for a scenario

Table 2. State based convergence time comparison for
scenario specific tuning. The performance of the general
tuned Kalman filter is shown in brackets. Lower times
are better ↓. The scenario specific tuning outperforms the
general tuning when the non bracketed number is bold.

SC1 [s] SC2 [s] SC3 [s]

U
K

F

qTS 73 (22.0) 36 (34.0) 35 (66.5)
ωST 4.0 (4.0) 5.5 (4.5) 4.0 (4.0)
rST 6.0 (3.5) 6.0 (3.5) 9.5 (3.5)
vST 5.5 (4.0) 5.5 (4.0) 7.5 (4.0)
Jk

T - (-) - (-) 281.0 (108.5)

E
K

F

qTS 56.5 (20.0) 84.5 (114.5) 37.0 (38.5)
ωST 7.0 (7.0) 7.5 (7.5) 7.0 (7.0)
rST 10.5 (5.5) 6.0 (5.5) 10.5 (5.5)
vST 12.0 (9.0) 11.5 (8.5) 11.5 (9.0)
Jk

T - (-) - (-) 270 (224.5)

ally tuned Kalman filter (no access to motion priors) and
KFsc will refer to the scenario specific tuned Kalman fil-
ter which exploits knowledge of the motion priors. Simu-
lations are run for 300 s with a sampling time of 0.5 s (i.e,
the pose estimation model acquires a new image every 1
second)

The KF gen, KF sc convergence comparison results are
shared in Table 2 and the steady state error results are
shared in Table 3. Note that the scenario 4 comparison is
excluded from the tables as KFgen = KFsc. Addition-
ally note that the inertia matrix, Jk

T , is not estimated for
scenario 1 and 2, as they are 1-axis torque free scenarios
and thus independent of the inertia matrix.

Notably, the tuning of the KFsc prioritized minimizing
the steady state error. Consequently, the scenario conver-
gence times showcased in Table 2 are similar, but with



Table 3. State based steady state error comparison for
scenario specific tuning. The performance of the general
tuned Kalman filter is shown in brackets. Lower errors
are better ↓. The scenario specific tuning outperforms the
general tuning when the non bracketed number is bold.

×10−3 SC1 [RMSE] SC2 [RMSE] SC3 [RMSE]

U
K

F

qTS 723 (1123) 771 (996) 1393 (1198)
ωST 3 (4) 5 (5) 5 (4)
rST 323 (415) 346 (422) 283 (416)
vST 132 (282) 178 (303) 91 (282)
Jk

T - (-) - (-) 1741 (1737)

E
K

F

qTS 517 (944) 619 (943) 960 (1032)
ωST 2 (2) 3 (3) 2 (2)
rST 260 (323) 331 (330) 252 (324)
vST 57 (126) 459 (460) 64 (127)
Jk

T - (-) - (-) 125 (1261)

generally worse performance of the KFsc at converging
to the correct attitude (qTS).

However, the KFsc reduction in steady state error is sig-
nificant and consistent across all scenarios as seen in Ta-
ble 3. In particular, the EKFsc exhibited a 10× reduction
in steady state error while tracking the inertia matrix for
scenario 3. It is clear that with access to kinematic priors
it is possible to greatly reduce the steady state error of the
Kalman filter for specific scenarios.

6.2. Inertia matrix estimation

For the second study, the scenario specific tuned Kalman
Filter, KFsc, for scenario 3 (2-axis slow tumbling) is con-
sidered. Simulations are run for 450 s with a sampling
time of 1 s (i.e, the pose estimation model acquires a new
image every 1 second). The kinematic prior (with a 5%
error as per Section 5.3) is then injected as an initial con-
dition for the angular velocity, ω̂0. At the same time the
values of the error covariance matrix, P0, corresponding
to rotation rate are initialized to a lower value, encourag-
ing the filter to trust the initial condition.

The convergence time comparison and steady state error
comparison are shown in Table 4 and Table 5 respec-
tively. The metrics are calculated for both the state es-
timation variables and the filter error covariance matrix,
P . Note that the rotation rate, ωST , convergence time
is 0 s because the kinematic prior initial condition; ωST

starts converged and rise above the 2◦ threshold. Addi-
tionally, comparison plots of the no prior and with kine-
matic priors injected filters’ error as a function of time
are provided in Figure 6.

In the context of the EKF, the results show how the trust
in the kinematic prior initial condition is able to shift the
energy of the estimation process towards the inertia ma-
trix component, Jk

T . This is observable in both the state

Table 4. Convergence time comparison for no prior and
with kinematic prior injected. A lower convergence time
[s] is better ↓. NaN indicates the filter did not converge
below the set threshold.

UKF +prior EKF +prior

St
at

e
B

as
ed

qTS NaN NaN 39 90
ωST 60 0 32 0
rST 176 176 176 176
vST 119 119 266 266
Jk

T NaN NaN 262 86

Fi
lte

rB
as

ed

qTS 101 85 91 37
ωST 74 70 49 30
rST 10 8 12 12
vST 9 7 13 13
Jk

T 121 115 109 103

Table 5. Steady state error comparison for no prior and
with kinematic prior injected. A lower RMSE is better
↓. NaN indicates the filter did not converge below the set
threshold.

×10−3 UKF +prior EKF +prior
St

at
e

B
as

ed

qTS NaN NaN 1466 1288
ωST 4 4 1 2
rST 392 392 391 391
vST 101 99 108 107
Jk

T NaN NaN 184 145

Fi
lte

rB
as

ed

qTS 2950 2584 1275 1949
ωST 4 3 1 1
rST 401 397 395 395
vST 119 101 116 115
Jk

T 1181 701 310 146

estimation and filter metrics but is especially evident for
the EKF, with a state variable convergence time reduc-
tion of 3×. Additionally the EKF Jk

T steady-state error
is much improved from 0.184 to 0.145.

In the context of the UKF, both the quaternion, qTS , and
inertia matrix, Jk

T , estimations did not converge within
the simulation time (with or without kinematic priors).
An overall conclusion is that the UKF is slightly more
unstable and some of its results do not exactly follow the
expected trend obtained with the EKF.

6.3. Enhanced outlier rejection

For the third study, the scenario specific tuned Kalman
Filter, KFsc from study 1 is used. Additionally the kine-
matic priors are introduced as an initial condition as in
study 2. Finally, the kinematic priors are lastly again
exploited, not for outlier rejection. The kinematic prior
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Figure 6. Relative attitude qTS , relative angular velocity ωT
ST and target inertia matrix parameters kJT

1 , kJT
2 estimation

errors for a 2-axis slow tumbling scenario.

can firstly be used to establish an outlier rejection thresh-
old (i.e., if an incoming measurement is outside what is
expected, it is rejected). Secondly, if a measurement is
rejected, the kinematic prior can be injected as a proxy
measurement.

As discussed in Section 4.3, outlier/fault rejection can be
an intricate process dependent on the source and length
of the measured fault. For this study, redundancy is in-
troduced to the measured state variables (attitude, qTS ,
and position, rST ). An additional measurement source is
added to the state vector: the kinematic prior is “pushed”
at each time step as a fixed fictitious measurement. More-
over, since each measurement needs to be weighted by
a component on the Rd measurement noise matrix, an
additional component Rω = 10−3 [1 1 1] is defined
to weight the forced kinematic prior measurement inside
the Kalman filter. This implementation only supports a

kinematic prior of a constant value (i.e., phase is not ac-
counted for) and is therefore only applicable for 1-axis
rotation.

The considered scenario is 1-axis slow tumbling. Simula-
tions are run for 300 s with a sampling time of 1 s (i.e., the
pose estimation model acquires a new image every 1 sec-
ond). Kinematic prior error and measurement error are
mainted from previous studies. A fault window of 120
s is simulated for both attitude, qTS , and position, rST

measurements; such circumstance may be representative
of a VBN system passing through an eclipse.

Steady state error values are shared in Table 6 with a
30 s settling time after the fault is finished to allow re-
convergence. There is very marginal change in the steady
state error with or without enhanced outlier rejection. The
exception is in the UKF attitude, qTS , estimation. The fil-



Table 6. Steady state error comparison for no prior and
with kinematic prior enhanced fault rejection. A lower
RMSE is better ↓.

×10−3 UKF +prior EKF +prior

St
at

e
B

as
ed

qTS 12.50 4.92 3.75 4.88
ωST 0.01 0.00 0.00 0.00
rST 42.69 42.69 39.90 39.89
vST 1.48 1.48 1.55 1.55
Jk

T - - - -

ters behave quite similarly after recovering from the fault.
It is clear that the kinematic prior enhanced outlier rejec-
tion has a sufficiently relevant impact only in the attitude,
qTS , and angular velocity, ωST , state estimations.

Comparison plots of the no prior and with kinematic prior
enhanced outlier rejection filters’ error as a function of
time are provided in Figure 7. Notably, the enhanced out-
lier rejection greatly reduces the divergence of the angu-
lar velocity estimation, ωST . Moreover, a dramatic re-
duction in the attitude, qTS , estimation error is observed
for the UKF. Conversely, a slightly worse attitude, qTS ,
estimation error is observed for the EKF.

Although not observable in Figure 7, the position, rST ,
faults introduced a large but non-diverging error. In the
event of a position fault, the attitude, qTS , and angular
velocity, ωST , estimations are not significantly effected.

7. CONCLUSIONS

This work explored the enhancement of uncooperative
spacecraft kinematic state estimation by leveraging kine-
matic priors extracted from light curves.

The simulation and state estimator’s relative spacecraft
dynamics model were first introduced. Two Kalman fil-
ter models enforcing the quaternion unitary norm con-
straint were then implemented; an EKF and a UKF. A
discussion on light curve analysis justified the source and
fidelity of the kinematic motion priors. Kinematic mo-
tion prior extraction was demonstrated on synthetic and
commercial 1-axis tumbling data. Three orthogonal stud-
ies were performed to demonstrate the impact of injecting
information from kinematic priors into the Kalman filter.

By exploiting kinematic priors, convergence time and
steady state error reductions of 3× or more are exhib-
ited for certain state components, dependent on the kine-
matic scenario and filter tuning. Overall, the EKF outper-
formed the UKF. Notably, the UKF was quite sensitive to
tuning and also unstable in challenging low sample rate
conditions. If additional model nonlinearities (e.g., orbit
perturbations, kinematic damping or atmosphere-induced
torque) were considered, the environment would become
intrinsically more challenging. Under such conditions,

an UKF could conceivably outperform an EKF due to its
improved handling of high nonlinearities.

This work has been developed in the context of a six
months Master’s Thesis project supervised by the EPFL
Computer Vision Laboratory, hosted at the EPFL Space
Center. Comprehensive mathematical and filter deriva-
tions are available in the Thesis manuscript.

7.1. Future work

Future efforts should be focused on easing the current as-
sumptions.

First, model validation on higher precision synthetic data
could be pursued. To this extent, orbital perturbations
(e.g., Earth oblateness J2, third-body etc.) and dissipa-
tion torques (e.g., LEO atmospheric drag) in the attitude
dynamics can be incorporated. Additionally, a Servicer’s
thrust model could be added to simulate realistic ren-
dezvous operations.

Second, improved support for 2-axes tumbling scenarios
could be developed. State-of-the-art light curve analy-
sis and inversion techniques would enable more accu-
rate motion prior extraction characterization for complex
body tumbling around non-trivial axes. Consequently,
the enhanced outlier rejection method in 6.3 could be ex-
tended for supporting multi-axes angular velocity injec-
tion.
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