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ABSTRACT

In recent years, the growing number of Resident Space
Objects (RSOs) has raised major concerns due to the in-
creasing risks of potential collisions in space and uncon-
trolled re-entries on Earth. Tackling this issue requires
an effective characterization of orbiting objects, in terms
of orbital and rotational motion, using sensor observa-
tions. However, accurately determining an object atti-
tude remains a significant challenge due to factors such
as measurement noise, short observation windows, com-
plex target shape, and material properties.

This work presents the RSO Characterization Module de-
veloped for the Italian Space Agency ASI-IHS infrastruc-
ture for space surveillance and tracking, under the Next
Generation UE/PNRR framework. The module integrates
existing and newly developed algorithms for tumbling
characterization of RSOs, both known and unknown, us-
ing ground-based optical and radar sensor measurements.
To verify its performance, extensive tests were executed
on both simulated and real data.

Keywords: Space Situational Awareness; RSO Charac-
terization; tumbling; ground-based sensors; frequency
analysis.

1. INTRODUCTION

The growing volume of Resident Space Objects (RSOs),
including active satellites, defunct spacecraft, and orbital
debris, has raised serious global concerns in recent years.
This increase in space traffic raises the likelihood of
potential collisions in orbit and uncontrolled re-entries
on Earth, posing risks to infrastructure, environment,
and human safety. The situation is particularly alarming
in densely populated orbital regions, such as the Low
Earth Orbit (LEO) and Geostationary Orbit (GEO),
where collisions could trigger a cascade effect, known as
the Kessler Syndrome, rendering these orbits unusable

for future missions. Thus, without effective mitigation
strategies, space could become inaccessible within a few
decades.

Addressing this issue requires effective characterization
of orbiting objects, both in terms of orbit determination
and reconstruction of rotational motion from sensor data.
This is essential to enhance tracking accuracy, improve
collisions and re-entries risk assessment, and inform
on-orbit servicing and active debris removal strategies.
However, unlike orbit determination, for which effective
and well-established algorithms are already available
[22], accurate attitude determination, especially for
non-cooperative, uncatalogued objects, remains a sig-
nificant challenge. Ground-based sensors, including
optical systems, radar, and laser-ranging technologies,
are key tools for this task. In particular, light curves,
representing variations in apparent brightness over time,
and Radar Cross Section (RCS) measurements, which
capture signal reflections from the object, are both
intrinsically linked to the rotational motion of the target
[1]. However, besides factors such as measurement
noise, short observation windows, and data gaps, this
kind of measurements are further affected by the target
shape and material properties. ~Consequently, most
existing attitude determination studies focus on simple
RSO shapes or rely on strong simplifying assumptions.
Although these assumptions facilitate modeling and
computation, they limit the applicability of the methods
to case-specific scenarios.

This work aims to overcome the challenges just outlined
for the characterization of tumbling RSOs, both known
and unknown. Specifically, the RSO Characterization
Module, developed for the Italian Space Agency ASI-
IHS infrastructure for space surveillance and tracking
under the Next Generation UE/PNRR framework, is
presented. The module is designed to characterize a
RSO tumbling state using either light curves or RCS
measurements from ground-based optical and radar
sensors. Unlike methods that focus on estimating the full
attitude vector but are built on case-specific scenarios,
the presented approach aims to extract key rotational
features in a versatile way across different target types
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and without requiring prior information, also exploiting
well-established algorithms.

Specifically, the module primary outputs are estimates of
the two apparent dominant periods of the input signal.
One provides information on the rotation of the body
about an extremal principal axis, while the other reflects
the precession of this axis about the angular momentum
vector. The pipeline can operate either with or without an
initial guess for these quantities, accommodating cases
with any prior knowledge of the target. However, it is
important to note that any detected periods correspond to
synodic periods rather than the satellite sidereal rotation
periods.

The paper is organized as follows. Section 2 presents
a review of the literature on RSOs tumbling motion
characterization from ground-based measurements. Sec-
tion 3 provides an overview of the developed pipeline. In
Section 4, the performance of the pipeline is tested on
both simulated and real measurements. Finally, Section 5
discusses the operational potential, identified limitations
and planned future developments.

2. LITERATURE REVIEW ON RSO CHARAC-
TERIZATION

Although several algorithms have been proposed in the
literature, an accurate estimation of the full attitude
vector remains challenging, especially without prior
knowledge of the observed target. As a result, most algo-
rithms are limited to estimating specific attitude-related
quantities.

Among these, many documented techniques focus
on estimating the rotation period of observed objects
from the acquired signals, such as light curves or RCS
time histories. Among the frequency domain techniques,
the well-known Fast Fourier Transform (FFT) [3]
decompose the signal into its constituent frequencies,
allowing dominant periodicities to be identified. For
unevenly spaced data, the Lomb-Scargle Periodogram
[5] [6] offers a robust alternative. Another technique, still
suitable for unevenly spaced data but operating in the
time domain, is the Epoch Folding [7]. This algorithm
divides the overall observation time into segments based
on a guessed period, summing them to identify repeating
patterns. A variant, the Phase Dispersion Minimization
(PDM) [4], improves accuracy by dividing the data
into bins and assessing the variance within each bin
compared to the overall data variance. However, the
major drawback of time domain techniques is their
dependence on an initial guess of the period of the signal.

Delving into light curve analysis, several algorithms have
been proposed to estimate not only the rotation period
but also the orientation of the target spin axis. One such
approach is the Amplitude Method [8], which is based
on the ratio of the maximal and minimal brightness
extracted from the light curve. Using another model
based on the brightness ratio, [3] developed an algorithm

that estimates, in addition to the spin axis direction and
rotation period, also its precession motion.

Another well-known approach is the Epoch Method
[9]. The algorithm exploits the relation between the
phase angle bisector (i.e. the vector that bisects the
Sun-object-observer angle) time variation, expressed as
a function of the spin axis orientation, and the satellite’s
sidereal and synodic periods. A more comprehensive
technique, known as Light Curve Inversion [10], aims
to estimate the full attitude state of an observed RSO.
This method involves generating simulated light curves
based on detailed object models and comparing them
with observed data; an optimization algorithm minimizes
the difference between the two to estimate the attitude
state. However, this method typically requires initial
conditions to guide the optimization process.

Finally, Machine Learning-based approaches have
emerged as a promising tool in light curve analysis. For
instance, in [11] a method to estimate the spin properties
of satellites from their light curves is proposed, using a
physics-based loss function in the learning objective.
Despite the variety of techniques available, all methods
rely on certain assumptions. For example, the Amplitude
Method assumes that the object has a cylindrical shape
and is in a flat-spin motion [3] [8]. Only diffuse reflection
is typically considered, and observation parameters such
as target orbit and observation geometry are generally
well known. Finally, for light curve inversion methods,
additional knowledge about the target’s geometry and
material properties is typically required.

Alternatively to light curves, RCS measurements
offer robustness against many optical limitations such
as illumination and atmospheric conditions. RCS-based
methods are relatively underexplored in the literature, but
many of the algorithms discussed so far find application
even in the radar case. Reference [12] developed a
method that synthesizes RCS time series, which are
then cross-correlated with RCS measurements obtained
simultaneously from monostatic and bistatic radar sys-
tems, in order to estimate the object’s attitude. Similarly,
[13] proposes a method that matches simulated and real
RCS time series (from different radar stations) using a
hybrid particle swarm optimization algorithm.

As for light curve inversion algorithms, these techniques
heavily depend on the availability of a detailed 3D model
of the target, including its shape, material properties,
and surface characteristics. Moreover, RCS signals are
sensitive to the target’s orientation relative to the radar
and can exhibit significant variability even with small
orientation changes.

Regardless of the sensor type used, all the methods
presented so far require prior knowledge of the object
rotational status (e.g., spinning or three-axis stabilized).
When this information is unavailable, classification
algorithms become essential. For instance, in [14], LEO
objects are classified based on their stability using RCS
statistics from Leolabs’ global radar network. In [4],
instead, a classification method based on light curve data
is proposed. This approach utilizes the Lomb-Scargle
Periodogram algorithm to extract the frequency spectrum



from the measurements. Classification is then performed
by analyzing spectral features, and employing PDM
technique to test candidate rotation periods.

Building on all these methods, this work presents a
versatile pipeline for RSO tumbling characterization that
can be applied regardless of whether information about
the target object is available.

3. RSO CHARACTERIZATION
OVERVIEW

MODULE:

The RSO Characterization Module offers a method to es-
timate the characteristic periods of an object in orbit us-
ing measurements obtained from the ground, assuming
that the object is in a rotational state. These measure-
ments can be either brightness variations of the RSO over
time (i.e., light curves), acquired by optical sensors, or its
RCS variations over time, acquired by radar sensors.
The following inputs are required by the processing
pipeline:

* Input signal: the measured time-series data (light
curve or RCS) and the corresponding time vector.

* Filters flags: Flags enabling or disabling optional
pre-processing filters on the data, depending on data
quality and operator requirements.

* firstGuessflag: When this flag is active, the user can
optionally provide initial guesses for the tumbling
periods. This capability is especially useful when
prior knowledge of the RSO’s motion is available, as
it can guide and potentially improve the convergence
of the estimation algorithm.

* SecondPeriodflag: A control flag that selects one of
the two modes described below.

The pipeline has two operative modes, and the number of
outputs depends on the mode selected.

In the Mode #1, as illustrated in Fig. 1, the inputs are
processed through the “First Period Estimation™ block.
Here, as further detailed in Section 3.1, a preliminary
quality check is performed on the input data. If the checks
are passed, the signal is pre-processed based on any ac-
tivated filtering options. Next, the algorithm operates in
the frequency domain by computing the Power Spectral
Density (PSD) of the input signal. The local maxima
(peaks) in the signal PSD are subsequently stored and
post-processed. Finally, the peak most likely to be as-
sociated to the tumbling period of the object is identified,
and the resulting value is returned to the user. If multiples
of the period are also detected (due, for example, to a ge-
ometric symmetry in the target), they are also included
in the output along with a warning message alerting the
operator.

In the Mode #2, shown in Fig. 2, the pipeline adds a

time-domain optimization step to the frequency-domain
analysis described above. Specifically, in the “Second
Period Estimation” block, a two-dimensional Fourier se-
ries is fitted to the input data to identify a second signifi-
cant period that is superimposed to the primary rotation,
with the aim of obtaining a comprehensive assessment of
the RSO rotational and precessional motion components.
Along with the outputs from the first mode, this sec-
ond mode returns the estimated secondary period and the
Root Mean Square Error (RMSE) of the two-dimensional
fit, allowing the user to assess the quality of the final so-
lution.

In both modes, the pipeline provides as output a figure
illustrating the processing performed. In particular, it
shows the input signal, the pre-processed signal (if filters
are applied), and the optimized signal (if the time-domain
fit is executed).
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Figure 1. Overview of the RSO Characterization Module
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Figure 2. Overview of the RSO Characterization Module
(Mode #2)

The two modes are better detailed in the following sec-
tions (Section 3.1 and Section 3.2 for Mode #1 and
Mode #2, respectively).

3.1. Mode #1

The module provides two possible pipelines: one appli-
cable when an initial estimate of the period is available
(Mode #1.1), and another for scenarios where no other
information is available besides the measurements (Mode
#1.2), as detailed below.



Mode #1.1 : First Guess for P; Available

Fig. 3 refers to the scenario where an initial esti-
mate of the tumbling period is available. To activate this
pipeline, which starts at user’s request, all that is required
is to activate the firstGuessflag.

firstGuessflag = 1 Input Signal

- Filters Flags First Guess 1 ‘

!

Pre-Processing Frequency Analysis Post-Processin g

\
Cl ks 1
lose peaks merging | |

1 Fundamental

Period Py

Figure 3. Flow Diagram (Mode #1.1)

As a first step, the “Preliminary Checks” block performs
the following validations on the input signal:

* Ensure that all time samples are unique.

* Check that the samples are approximately evenly
spaced. If the measurements present a time gap
greater than one minute, the input signal is split
into two (or more) portions and the portion with the
longest duration is retained.

* Verify that the signal duration is sufficient. Specif-
ically, the duration must be at least twice the pro-
vided initial estimate of the period.

If these checks are successfully passed, the signal is
pre-processed. As previously mentioned, the user can
control the pre-processing by enabling or disabling two
separate flags: one for a moving average filter and the
other for a Savitzky-Golay filter [16]. The former is used
to detect and remove changes in the mean value of the
signal, while the latter is used to filter out high-frequency
noise. The initial estimate of the tumbling period is used
to define the sliding window size in the moving average
filter. An example of the application of the two filters is
provided in Fig. 4.

Subsequently, in the “Frequency Analysis” block, first
a vector of frequencies on which to estimate the Power
Spectral Density of the signal is defined. The boundary
frequencies fiin »fmae are determined by considering:

* The initial guess of the signal period (only the fre-
quencies in the neighbourhood of the frequency as-
sociated to the guess are considered).

time [s]

Figure 4. Acquired signal before and after filtering using
a Moving Average filter and a Savitzky-Golay filter

* The maximum frequency derived from the Nyquist
theorem.

* The maximum expected period for a tumbling RSO,
set at 100 seconds.

¢ The duration of the observation window.

Given the interval of frequencies, the Lomb-Scargle Pe-
riodogram is applied to estimate the signal PSD. From
this, three candidate periods of the signal are identified,
corresponding to the inverse of the frequencies of the
highest peaks in the PSD. These three periods are then
post-processed in the “Post-Processing” block to deter-
mine the most likely period associated with the tumbling
motion P;. The techniques employed include:

* Close Peaks Merging: weighted merging of peaks in
the PSD that occur at very close frequencies. In par-
ticular, if the frequency difference is less than 5% of
the maximum frequency and the power of one peak
is at least 1/5 of the power of the other, the two peaks
are merged.

* Identification of multiples of the estimated period
using the initial estimate: the periods associated
with the remaining peaks are checked to see if they
are similar to the period initial estimate or if they
are multiples or sub-multiples of it. A 5% mar-
gin is used to define these multiplicities (for in-
stance, a value is considered a sub-multiple of an-
other if the relative difference between twice that
value and the other is less than 5%). The period (or
its multiple/sub-multiple) closest to the period first
guess is then returned to the user.

An example of the application of these two procedures is
provided in Fig. 5.

Mode #1.2 : First Guess for P; Unavailable

Fig. 6 addresses the scenario where no initial esti-
mate of the RSO tumbling period is available. To
activate this pipeline, which starts at user’s request, all
that is required is to deactivate the firstGuessflag. As a
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Figure 5. Signal PSD (blue) with key frequency mark-
ers. The orange line indicates the frequency associated
with the first guess for Py, while red dots highlight es-
timated peaks. The black dashed lines mark estimated
peaks that are multiples of the first guess frequency (con-
sidering the defined margins). The green box encloses
two closely spaced peaks, where the Close Peaks Merg-
ing technique is applied.

consequence, and unlike Mode #1.1 , no first guess of
the tumbling period needs to be provided as input.
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Figure 6. Flow Diagram (Mode #1.2)

The “Preliminary Checks” block performs the same
validations seen for Mode #1.1. However, in this
case, to verify that the signal duration is sufficient, the
lower limit for the signal duration is here set differently.
Specifically, it is defined as twice the 75th percentile of a
distribution of tumbling periods of 11190 objects, which
is found to be 23.87 s. This distribution was obtained
from the MMT-9 database [23], accessed in May 2024,
as shown in Fig. 7.

If these checks are successful, the signal is pre-processed
in the “Pre-Processing #1” block. Even in this case, the
user can control the pre-processing by enabling or dis-
abling the moving average filter flag and the Savitzky-
Golay filter flag. For the moving average filter, the slid-
ing window size is set to 2 seconds. Subsequently, in the
“Frequency Analysis #1” block, the vector of frequen-
cies on which to estimate the PSD is defined by com-
puting fruin, fmaz and taking into account the same con-
straints seen in Mode #1.1, except for the first one that
is related to the availability of the first guess.

Given the interval of frequencies, the Lomb-Scargle Peri-
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Figure 7. MMT-9 database [23] Periods distribution (ac-
cessed in May 2024)

odogram is applied to compute the signal PSD. From this,
ten candidate periods of the signal are identified, corre-
sponding to the inverse of the frequencies of the highest
peaks in the PSD. These ten periods are then treated as
initial estimates of the RSO tumbling period. Each first
guess is iteratively fed into the “Pre-Processing #2” and
“Frequency Analysis #2” blocks along with the signal in
time, in a way similar to Mode #1.1. Thus, for each ini-
tial guess, three candidate periods are estimated, resulting
in a matrix of 10x3 candidate periods at the end of the it-
eration.

In the “Post-Processing” block, the Relative Highest
Peaks Selection Criterion is applied. According to this
method, for each row of the 10x3 matrix, the ratio of the
highest peak (i.e. the one associated with the first period
of the row) to the average of the peaks associated with all
the periods of this row is computed. The candidate with
the maximum ratio is chosen and returned as the tum-
bling period P; of the object. Then, if the other elements
of the chosen row are multiples or sub-multiples of the
returned period, they are also included in a separate vec-
tor and returned along with a warning message alerting
the operator.

3.2. Mode #2

When SecondPeriodflag is activated, the pipeline adds a
time-domain optimization step to the frequency-domain
analysis described above (regardless of whether it is
executed in Mode #1.1 or #1.2). A technique inherited
from asteroid tumbling estimation literature is applied in
a way similar to [2]. After identifying potential initial
conditions, the two-dimensional Fourier series that best
fits the input data is found through an optimization
procedure. This allows to identify the second dominant
period P,, with the aim of obtaining a comprehensive
assessment of the RSO rotation and precession motions.

Even in this case, two sub-pipelines can be distinguished,
according to the case where an initial guess of P is
available or not.

Mode #2.1: First Guess for P, Available

Fig. 8 illustrates the scenario in which an initial guess for
the second fundamental period is provided. The process



involves a double-optimization approach.

The algorithm begins by defining the initial guess (the
user-supplied input), as well as the lower and upper
boundary values for the period P, to be found. These
boundaries are derived from the frequency limits, de-
termined using the same approach as in the “Frequency
Analysis” block for Mode #1.1.
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Figure 8. Flow Diagram (Mode #2.1)
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Next, a non-linear least squares optimization is per-
formed, as detailed in Fig. 9.

Non Linear Least Squares

costFun =

' \
: Find the coefficients of a 2D Fourier :
( RMSE(Fourier series, 1
1

1 1
1

Initial Guess for series, given:
P, * P :period1 (known)

* P, : period 2 (optimization variable) signal)

Optimized P,

Figure 9. Flow Diagram of the optimization procedure
(Mode #2.1)

Given the input signal, the previously computed first pe-
riod P, and the optimization variable P, the algorithm
computes, through an inner optimization procedure, the
Fourier coefficients of a two-dimensional Fourier series
F(t) that best fits the input data, the formulation of which
is provided in Equation 1. The order m chosen for the
Fourier series is 4, which appears sufficient to capture the
trend of the input signal without excessively increasing
the number of coefficients.

F(t) =Cy + i (Oio cos (ZQP—ZTt) + S sin (z%t))

+Z Z (C’” cos((zf +J?D:) t)

j=li=—m

+ 5 sin(( Z +y§3:) t))
(1)

In this concurrent optimization procedure, both the sec-
ond fundamental period P» and the Fourier coefficients
are refined to minimize the cost function, that is defined
as the RMSE between this Fourier model and the input
signal. Finally, the module returns the optimized P> and
the RMSE of the two-dimensional fit, allowing the user
to assess the quality of the final solution.

Mode #2.2: First Guess for P, Unavailable

Fig. 10 illustrates the scenario where no initial guess for
P; is provided. The process in Mode #2.2 is similar
to that in Mode #2.1, with the key difference being the
method used to define the initial guess for the optimiza-
tion procedure.

Multi-Start Optimization
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Definition of a set of 1
Initial Guess for P, 1 Fundamental
( g th ! Period P,
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Input Signal Period Py

firstGuessflag = 0

Figure 10. Flow Diagram (Mode #2.2)
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In this mode, the signal PSD is retrieved and the first ten
peaks are identified. From these, the peak corresponding
to the first estimated period P; and its multiples or sub-
multiples are removed. Additionally, spurious peaks are
eliminated; that is, if two peaks are very close together
and one has a significantly lower associated power than
the other, only the one with the highest power is retained.
The remaining peaks are then used as initial guesses for
the optimization procedure, as in the example shown in
Fig. 11.
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Figure 11. Signal PSD (blue) with key frequency mark-
ers. The orange and green lines represent the frequencies
associated to the true period Py and P, respectively, the
red dot marks the frequency associated to the estimated
Py and the yellow dots the identified candidate frequen-
cies for the optimization procedure.

The lower and upper boundary values for the periods, in-
stead, are determined from the boundary frequencies, fol-
lowing the same approach as in the “Frequency Analysis
#1” block for Mode #1.2.

A non-linear least squares optimization is subsequently
performed for each possible initial guess, as shown in
Fig. 12. Similar to Mode #2.1, this process opti-
mizes both the second fundamental period P> and the
Fourier coefficients to minimize the RMSE between a
two-dimensional, fourth-order Fourier series and the in-
put data.
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Figure 12. Flow Diagram of the optimization procedure
(Mode #2.2)

Table 1. Orbital Parameters

a [km] e [-] i [deg] | Q [deg] | w [deg]
7345 | 7.52e-04 | 66.00 81.47 320.50

4. NUMERICAL RESULTS

The performance of the module has been tested on sim-
ulated RCS measurements, as presented in Section 4.1.
Then, to assess its effectiveness in real-case scenarios, the
tool was tested on light curves from the MMT-9 database
[23], as detailed in Section 4.2.

4.1. Test on Simulated RCS Data

The acquisition of RCS data has been simulated for a
satellite modeled as a parallelepiped with dimensions
3 X 1 x 5 m and a uniformly distributed mass, with faces
exhibiting varying reflectivity properties. The satellite is
assumed to be in an arbitrary LEO with the parameters
specified in Tab. 1. No external torques are applied to the
object, ensuring that its tumbling dynamics and kinemat-
ics remain unaffected by external forces.

The radar station is modeled as a monostatic, stationary
system located at the origin of an inertial reference frame
and operating in tracking mode to follow the object.

For all simulated scenarios, the initial attitude is kept
constant, with Euler angles (describing the orientation of
the target body reference frame with respect to the iner-
tial frame) arbitrarily set to [1.98,12.28, —1.98] degrees.
However, different initial conditions for the angular ve-
locity and varying observation window durations have
been considered.

By propagating the initial attitude vector (defined by the
initial Euler angles and angular velocity vector) over the
observation window, the ground-truth values for the pre-
cession period P, and rotation period P, were determined
for each case.

The simulated examples are presented in Tab. 2. For each
case, the table includes the following information:

* Example ID;
» Satellite initial angular velocity vector wo;
e Duration of the observation window d;

* Ground truth values for the precession and rotation
periods P, and P;

* Selected operating mode of the RSO Characteriza-
tion Module; if a first guess of one of the periods
is provided, which one is specified. This initial
guess is generated by adding noise to the ground-
truth value;

* Values estimated for P, and P, by the RSO Charac-
terization Module;

* Relative error between the ground-truth and the es-
timated values.

Examples E1.1 and E1.2 simulate a scenario where the
RCS time-series is characterized by a single period. The
simulation conditions remain the same across all three
examples, with the only difference being the operating
mode used to analyze the acquired signal. Specifically, in
Example E1.1, the secondPeriodflag is deactivated, and a
first guess for P is provided. Under these conditions, the
estimated tumbling period closely matches the ground-
truth value, with a relative error of 0.18%. In Example
El1.2, instead, no first guess is available, and the estimated
value corresponds to half of the actual period rather than
the full period. This discrepancy likely arises from the
geometric symmetry of the object, which can cause the
algorithm to identify a submultiple of the true period.
However, by simply doubling the estimated value, the
correct period is recovered, reducing the relative error to
just 0.14%.

Examples E2.1, E2.2, E2.3, on the other hand, refer to
cases where the simulated signal is characterized by two
periodicities, requiring the secondPeriodflag to be ac-
tivated. In E2.1, an initial guess is provided for Ps,
whereas in E2.2, an initial guess is assumed for P;. No
initial values are instead provided for Example E2.3. In
all cases, the relative error remains below 0.5% for both
Py and Ps.

The same applies to Examples E3.1, E3.2, E3.3. How-
ever, for Example E3.1 and E3.3, the estimated P; (and
also P, in E3.3) appears to be incorrect. By analyzing the
frequencies associated with these estimated values, it be-
comes evident that they are a linear combination of those
corresponding to the true periods. Specifically, being f;
and f5 the frequencies associated to the ground-truth Py
and P, respectively, in Example E3.3 the first estimated
value corresponds to f1 42 f5, while the second to f1+ fo.
This issue is a known limitation in this type of analysis
and has been documented in previous studies [2] [20].
Overall, looking at the last column, it is possible to
observe that the relative error remains relatively small
(lower than 2%) for both P; and P>, except for Exam-
ples E1.2, E3.1, and E3.3, due to the reasons previously
discussed. For illustrative purposes, Fig. 13 presents the
output of Example E3.2.



Table 2. Results of the RCS Characterization Module on simulated RCS data

Ex. ID wo d Operating Ground-Truth [s] | Estimates [s] | Rel. Error [%)]
[rad/s] [min] Mode P Py Py Py P P
El.1 [0.30.8 0] 3 #1.1 (FirstGuessl) | 7.46 nan 7.47 - 0.18 -
El1.2 [0.30.80] 3 #1.2 7.46 nan 3.73 - 49.93 -
E2.1 [00.8 1.3] 2 #2.1 (FirstGuess2) | 6.01 9.35 5.99 9.37 0.33 0.21
E2.2 [00.8 1.3] 2 #2.2 (FirstGuessl) 6.01 9.35 6.02 9.34 0.17 0.11
E2.3 [00.8 1.3] 2 #2.2 6.01 9.35 5.99 9.37 0.33 0.21
E3.1 [0.04 0.03 0.25] 6 #2.1 (FirstGuess2) | 63.17 38.11 14.76 | 38.27 | 76.63 0.42
E3.2 [0.04 0.03 0.25] 6 #2.2 (FirstGuessl) | 63.17 38.11 62.50 | 38.64 1.06 1.39
E3.3 [0.04 0.03 0.25] 6 #2.2 63.17 38.11 14.76 | 24.02 | 76.63 | 36.97

—acquired signal

- - 2D Fourier series

0 50 100 150 200 250 300 350
time [s]

Figure 13. Example E3.2: Simulated acquired RCS time
series (blue line) and 2D Fourier series (dashed red line)
with periodicities equal to the estimated periods

Regarding computational time, when SecondPeriodFlag
is deactivated, the module can determine the dominant
period of the signal within 5 seconds. In contrast, when
it is activated, the module returns the outputs within a
maximum of 8 minutes.

4.2. Validation on Real Data

Since no public database of RCS measurements is avail-
able, it was not possible to validate the pipeline using real
RCS data. Instead, optical light curves were used for val-
idation, specifically those available in the publicly acces-
sible database of the MMT-9 optical sensor referenced in
[23]. This database provides a rotation period for each
light curve associated with a periodic object. However,
since only a single period is reported for each light curve,
only the fundamental period P; was estimated, assuming
no prior knowledge on this value (i.e., running the mod-
ule in Mode #1.2).

Fig. 14 presents the results of this procedure applied to
30 observations of the H-2A rocket body (norad 26899)
downloaded from the database. The yellow dots repre-
sent the period values recorded in the database for each
observation (with the corresponding date shown on the x-
axis), while the green dots indicate the estimated values.
The continuous red lines represent a confidence inter-

val. To define it, a first-order polynomial (linear trend)
poly, was fitted to the yellow dots. The RMSE was then
computed between poly; and the yellow dots. Hence,
the confidence interval was obtained by adding and sub-
tracting three times the RMSE from the polynomial fit
(polyy £3 RMSE) .

Any green points that fall within this interval are con-
sidered good estimates, totaling 14 out of 30 (46.67 %).
However, 14 other points (46.67 %), although not within
the confidence area, lie within the dashed red lines, which
represent submultiples of the confidence interval (ob-
tained by dividing it by 2 and by 4). This suggests that
these estimated values are submultiples of the true values.
Such a pattern aligns with previously observed shortcom-
ings (Examples E1.2, E3.1, and E3.3) and is likely due to
geometric symmetries in the target, which, in this case,
is a rocket body with a cylindrical shape [19]. The re-
maining 2 points, accounting for 6.67% of the total, are
instead close to but outside the confidence intervals.

100

MMT-9 Periods
« Estimated Periods
—— Confidence Interval

80

- - Sub-multiples of Confidence Intervall

Period s

0 | I I I I I I I I
2015 2016 2017 2018 2019 2020 2021 2022 2023
Observation Date [UTC]

Figure 14. Results of the RSO Characterization Mod-
ule (Mode #1.2) on 30 optical observations of the H-2A
rocket body (norad 26899)

5.  CONCLUSIONS

In this section, the key operational limits of the module
(Section 5.1) and the foreseen future steps (Section 5.2)
are outlined.



5.1. Operational Limits

The accuracy of the results provided by the module heav-
ily relies on the quality of the measurements. Factors
such as low signal-to-noise ratio, insufficient sampling
rate, large gaps in the measurement data, and short ob-
servation windows can all lead to inaccurate period esti-
mates. Moreover, the characteristics of the target object,
including its shape and material properties, can signifi-
cantly affect its measured radar cross section and light
curve, potentially complicating the interpretation of the
measurements and thus the period estimation. For in-
stance, the observation of objects with evident geometri-
cal symmetry may produce signals that erroneously lead
to the estimation of the semi-period of the tumbling tar-
get, especially in the absence of prior information, as seen
in Example E1.2 and in Section 4.2. Moreover, rotating
instruments on-board may cause misinterpretations of the
estimated periods.

Finally, as observed in Examples E3.1 and E3.3, it is gen-
erally difficult to confidently state that the first period
corresponds to the precession period and the second to
the rotation period with no initial guess on any of them.
While this occurs in most simulated cases, there are in-
stances where the result may be a linear combination of
the two values.

5.2. Future Steps

Some improvements are planned to enhance the pipeline.
First, the Lomb-Scargle Periodogram will be combined
with other algorithms (e.g.,Phase Dispersion Minimiza-
tion) to improve result accuracy. Moreover, additional
metrics will be explored to eliminate spurious peaks and
identify the most relevant ones in the signal PSD [21] [4].
Another essential step is to validate these methodologies
with real observational data, particularly for radar mea-
surements, which have so far only been tested in a simu-
lated scenario. This will help refine the pipeline, ensuring
that its performance meets practical requirements and op-
erational constraints.

A significant addition to the pipeline will be the integra-
tion of a classification block. This would allow for the
distinction between stable and rotating objects, ensuring
that the periods estimation pipeline is applied only to the
latter. To achieve this, machine learning techniques will
be explored, inspired by methodologies such as those out-
lined in [17] and [18]. Indeed, machine learning methods
are particularly effective for classification tasks; however,
their application in this field faces the challenge of lim-
ited datasets for proper training.

Finally, data-fusion techniques will be explored to inte-
grate multiple observations from the same or different
sensors, enhancing the ability to accurately characterize
the tumbling motion of the observed RSO.
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