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ABSTRACT 

A highly effective approach to satellite and space debris 

monitoring involves advanced machine learning (ML) 

techniques. This study introduces an ML-driven solution 

for object detection and classification, employing the 

You Only Look Once (YOLO) algorithm, a 

convolutional neural network (CNN) based model that 

excels in real-time object recognition. YOLO’s single-

pass prediction capability enables rapid and accurate 

detection, essential for applications with large-scale data 

acquisition. During this project, 1,411 images from an 

all-sky  camera [1] installed at Berthelot Observatory 

(IAU Code L54) were processed to detect the space 

objects (active satellites and debris) during several 

observational campaigns. Following the training, tunning 

and validation steps, the performance of our model leads 

95.5% accuracy and 91% precision.   

1 INTRODUCTION 

The unprecedented surge in satellite deployment projects 

numbers up to 100,000 new launches by the end of 2030 

[2] and [3]. A substantial number of these satellites is 

expected to be concentrated in Low Earth Orbit (LEO) 

regions, altitudes of up to 2,000 km, favored for their 

operational advantages, such as reduced deployment 

costs and minimal communication latency. Given the 

magnitude of this expansion, there is a critical need for 

enhanced automation in the monitoring of space objects. 

The convolutional neural network (CNN) architecture 

allows for efficient feature extraction through 

convolutional layers, generating bounding boxes around 

detected objects. One of these CNN approaches which 

also generates bounding boxes around detected objects is 

You Only Look Once (YOLO) algorithm. It’s operational 

efficiency, superior to many conventional detection 

methods, stems from the ability to analyse entire images 

in a single pass, a quality that significantly enhances 

processing speed [4]. 

Deployed in February 2025, YOLO12 is the newest 

version of YOLO Algorithm, a computer vision model 

architecture developed by Ultralytics [4]. The latest 

iteration of YOLO, presented by Ultralytics as 

"YOLO12: Attention-Centric Object Detection", adopts 

a distinct approach that diverges from the traditional 

CNN-based solutions integrated in earlier versions. The 

developers assert that this model achieves substantial 

improvements in accuracy compared to its predecessors, 

with some compromises in terms of speed, a phenomenon 

that we also observed during our training process. 

According to the Ultralytics press release (February 20, 

2025), the main advantages of YOLO12 are the new Area 

Attention Mechanism, Residual Efficient Layer 

Aggregation Networks (R-ELAN), the optimized 

attention architecture, the comprehensive task support, 

the enhanced efficiency and the flexible deployment [4].  

The goal of this study was to evaluate the new detection 

algorithm using a minimal dataset of FITS images 

acquired from an all-sky camera. For this purpose, we 

used the Python package option developed by Ultralytics. 

The results were promising and in the next phase, we will 

rectify the issues encountered and subsequently move on 

to the space object classification stage. 

The paper is organized as following: in the section 2 the 

process of data acquisition is presented followed by the 

methodology (section 3) and the results (section 4). 

Finally, the conclusions are presented in the section 5.   

2 DATA PREPARATION 

The dataset consists of all-sky images coming from the 

Meteorites Orbits Reconstruction by Optical Imaging 

(MOROI) infrastructure [1] and [5]. This is a sky-

surveillance camera network operated by Astronomical 

Institute of the Romanian Academy (AIRA).  

For this study we used an all-sky camera located at 

Berthelot Observatory (IAU Code L54) based on the 4.9 

x 3.6 mm Sony CCD chip ICX445 (1296 x 966 active 

pixels, 12 bit dynamic range), resulting in a 3.75 x 3.75 

µm pixel size. [5] 
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During of nine observational sessions conducted between 

January and February 2025, a dataset comprising 1,589 

images in FITS format was extracted from 96 known 

space objects observable transits. For each pass, the all-

sky system was scheduled to continuously acquire 

images with 3 or 5 seconds exposure time.  

 

Figure 1. Data Overview: active satellites and debris 

These objects were subsequently classified into two 

primary categories: active satellites and space debris 

(rocket bodies and inactive satellites), based on 

information from the literature [6]. Figure 1 reveal a 

clustering of space objects within the higher magnitude 

interval (between +3.5 and +5) in the area of 20 – 45 

degrees above the horizon. Further analysis of our dataset 

indicates that active satellites are primarily composed of 

those belonging to the Starlink mega-constellation. 

Moreover, we have identified a transit by the 

International Space Station (ISS). In the Figure 2, it can 

be observed that most of the recorded objects were from 

Low Earth Orbit (LEO), characterized by orbits with very 

low eccentricities, almost circular. However, the dataset 

also includes five debris objects (Centaur D-1A AC-31, 

Breeze M-DEB, Breeze M-DEB (Tank), CZ-3A RB and 

Cosmos 2344) from Medium Earth Orbit (MEO), which 

were detectable due to their high orbital eccentricities 

and, consequently, of their low perigee values. 

 

Figure 2. Correlation of orbital parameters 

Following the analysis of the dataset, it can be observed 

in the Figure 3 that the detection limit of the setup used 

for the observational campaigns extends up to 6,000 km, 

e.g Centaur D-1A AC-31 and CZ-3A RB. 

 

Figure 3. Detection limit 

3 METHODOLOGY 

The planning of observations was designed to record the 

space objects at their point of maximum altitude on 

celestial sphere, as in [7]. We extracted the ephemeris for 

Berthelot Observatory (IAU Code L54) from the online 

database [6] over several weeks of observation, covering 

both morning and evening periods. For the calibration of 

the data acquiring workflow, we initially chose to record 

brighter objects (magnitude limit +3). After the analysis 

of the initial dataset, we decided to modify the magnitude 

limit to +5, to detect even more space objects. 

Furthermore, during the first observation night, we tested 

a exposure duration of 3 seconds for each frame. This 

exposure time shows that the trails (satellites and debris) 

on the images were not sufficiently distinct. 

Consequently, we changed the strategy of observations 

for an exposure time of 5 seconds.  

We decided to acquire a total of 40 images (5s/ exposure) 

for each object in the list—20 captured prior to the 

moment of maximum high and 20 captured afterward. On 

a daily basis, we reviewed the recorded data sets to 

validate the images suitable for progression to the next 

stage: constructing a consistent dataset for machine 

learning (ML) training. In the end, 1,589 valid images 

were included in this set. From these, 1,411 images were 

selected and subsequently divided based on their 

intended purpose. This was done using the open-source 

online computer vision platform Roboflow, as follows: 

988 images (70%) for the training set, 282 images (20%) 

for the validation set, and 141 images (10%) for the test 

set [8]. In the subsequent step, we manually annotated the 

trails in the images by employing bounding boxes to 

delineate the areas of interest. Finally, we exported the 

dataset in YOLO12 format for training step in Python 

using the Ultralytics library [4]. 



 

4 RESULTS 

The trails detection model was trained for 50 epochs, 

batch size of 16 and the process was completed in 0.429 

hours. The performance was evaluated using mean 

average precision (mAP50) at 94,1%. This threshold is 

often chosen as it provides a balance between precision 

and recall, allowing model evaluation based on detecting 

objects with a minimum 50% overlap. 

 

Figure 4. Confusion matrix normalized 

In the Confusion Matrix (Figure 4) it can be observed the 

results of the model: TP (True Positive) = 0.91; TN (True 

Negative) = 1; FP (False Positive) = 0.09 and FN (False 

Negative) = 0. Based on these values, the following 

performance parameters can be calculated: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

TP + TN + FP + FN
= 0.955   

   

(1) 

The model demonstrates a high level of accuracy, 

indicating that it correctly classifies the majority of 

instances, achieving an accuracy rate of 95,5%. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

TP + FP
=   0.91 

   

(2) 

The precision of the model is relatively good, indicating 

that when the model predicts “trail”, it is correct 91% of 

the time. There is a low risk of incorrectly classifying 

“background” as 'trail. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP + FN
= 1  

   

(3) 

The recall of the model is perfect, indicating that it 

correctly identifies all instances of “trail”. There are no 

“trails” that the model fails to detect. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
=  0.953 

   

(4) 

The F1-score indicate a strong balance between precision 

and recall, suggesting that the model exhibits good 

overall performance. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP
=  0.917  

   

(5) 

The specificity of the model is quite good, indicating that 

it correctly identifies the majority of instances of 

“background” (91.7%). There is a low risk of incorrectly 

classifying “trail” as “background”. 

Based on these results, we can affirm that the model 

exhibits excellent performance and it demonstrates high 

accuracy and a strong balance between precision and 

recall. Furthermore, perfect recall suggests that the model 

is highly effective at identifying all instances of “trail”. 

 

Figure 5. Loss and Metrics for the detection model 

The graphs presented in Figure 5 are used to monitor and 

analyse the performance of a machine learning model 

during the training and validation processes, being 

essential tools for diagnosing and improving machine 

learning models. Analysis of the loss graphs during the 

training (train) and validation (val) stages for box_loss, 

cls_loss, and dfl_loss reveals a general downward trend 

over the epochs, indicating that the model is learning and 

improving. However, it should be noted that the 

validation graphs reveal greater fluctuations compared to 

the training graphs. The significant fluctuations observed 

in the validation graphs may suggest a slight overfitting, 

particularly towards the end of the training process. 

The metrics graphs for precision, recall, mAP50, and 

mAP50-95 demonstrate a general upward trend 

throughout the training process. This indicates that the 

model is becoming increasingly accurate and effective at 

identifying and localizing objects.   

To demonstrate the effectiveness of our trail detection 

model, we extracted a random sample from the prediction 

folder. As shown in Figure 6, we observed two types of 

detections within the same image: either one trail or 

multiple trails. Additionally, there were samples where 

the "background" was detected, indicating no trail 

present, as illustrated in Image 72 of the Figure 6. In the 

Image 68 of the Figure 6, two trails were detected with 

confidence scores of 82% and 75%, showcasing a clear 

example of the model's effectiveness.  

In our final analysis, we examined all 141 images from 



 

the test set and found that 101 images contained a single 

detection, while 32 images had multiple detections. 

Furthermore, 8 images were predicted as "background," 

indicating no trail present. These results underscore the 

model's capability in accurately identifying and 

localizing trails within various contexts. 

 

Figure 6. Confidence scores for a random samples set: 

Image 66 (0.87), Image 67 (0.76), Image 68 (0.82, 

0.75), Image 71 (0.66), Image 72 - no trail, Image 73 

(0.75)  

5 CONCLUSIONS 

Based on the analysis of the confusion matrix, loss 

curves, and performance metrics, we can conclude that 

our detection model has been trained effectively, though 

opportunities for further optimization remain. It should 

be mentioned that our test model was trained on a small 

sample of images and most of the space objects were 

relatively fainter (magnitude between +3.5 and  +5).   

As strengths, we can highlight the overall good accuracy 

of 95.5%, excellent background detection, and relatively 

strong performance metrics, indicating decent model 

effectiveness. It is observed that there are instances where 

the model confuses “trail” with “background”. However, 

these situations are relatively rare, accounting for only 

9% of cases. Our study further revealed that filtering false 

detections is crucial for enhancing accuracy, particularly 

through multiple confidence threshold values and 

employing Non-Maximum Suppression (NMS), which 

retains just the best detection. Overall, the model is well-

trained and operates within optimal parameters, but the it 

can be improved for “trail” detection.  

As a result of this test, which represents the initial phase 

of a larger project, several issues have been identified that 

need to be addressed before proceeding to the next step, 

namely classification. A solution is to increase the 

training dataset, because this test iteration was performed 

on a modest sample of images. Also, we plan to 

implement several data augmentation techniques [8], 

which would also reduce overfitting. Furthermore, issues 

related to image quality have been identified, 

necessitating the automation of the all-sky camera 

calibration procedure for the collection of bias, flat, and 

dark frames. New tests are required to improve overall 

detection accuracy and performance.  
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