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ABSTRACT 

The New Space era has led to an increasing congestion in 

Earth's orbital regions, requiring the immediate 

implementation of advanced Space Surveillance and 

Traffic (SST) methods to protect operational satellites 

and avoid the proliferation of space debris. Accurate 

knowledge of the attitude of uncontrolled space objects 

plays a fundamental role in this effort. This study 

proposes an accurate, robust and computationally 

efficient approach for its estimation. The method is 

designed to be operationally feasible and is evaluated in 

a realistic scenario, demonstrating excellent estimation 

accuracy and robustness to uncertain or unknown optical 

properties of space objects. 

1 INTRODUCTION 

The exponential increase in satellite launches into Earth’s 

orbits over the past decade has led to a significant rise in 

space debris within critical orbital regions used for 

commercial and scientific missions. This growing 

congestion in space traffic requires immediate action and 

has become a key focus in the fields of Space 

Surveillance and Tracking (SST) and Space Environment 

Preservation (SEP). 

In this context, merely estimating the orbit of inactive 

space objects, such as uncontrolled satellites or fragments 

of space debris, is no longer sufficient to ensure the safety 

of space operations and the long-term sustainability of 

the space environment. Estimating the attitude of these 

objects is crucial for many applications, including 

improving collision risk assessments and atmospheric re-

entry predictions, designing Active Debris Removal 

(ADR) and In-Orbit Servicing (IOS) missions, and 

detecting anomalies in both active and inactive satellites. 

The attitude of space objects can be estimated from light 

curves, namely, the temporal variation of sunlight 

reflected by these objects and detected by ground-based 

optical sensors. 

Previous efforts to estimate the attitude of space objects 

from light curves have employed techniques such as the 

Unscented Kalman Filter (UKF), either assuming precise 

knowledge of an object's geometric and optical properties 

[1,2] or attempting to estimate its shape simultaneously 

with its rotational and translational states using a 

Multiple-Model Adaptive Estimation (MMAE) approach 

[3]. A common conclusion of these analyses is the 

presence of measurement ambiguities, that is, the 

existence of multiple attitude states or combinations of 

attitude states and object physical properties that produce 

very similar light curves. 

The potential existence of multiple solutions, combined 

with the highly non-linear measurement function, may 

result in a non-Gaussian and multimodal posterior 

probability distribution. Therefore, Bayesian sequential 

estimation methods have also been explored as an 

alternative to the UKF. The Sample Importance 

Resampling (SIR) particle filter has been used in 

different studies to estimate the attitude, assuming known 

geometric properties [4], and also addressing shape 

model uncertainty and tracking actively manoeuvring 

satellites [5]. Other variants of the particle filter have also 

been investigated, such as the Rao-Blackwellised Particle 

Filter (RBPF) to improve computational performance 

[6], the Unscented Particle Filter (UPF) [7], or a 

combination of two SIR particle filters to improve 

estimation accuracy [8]. 

Other methods that have been investigated consist of a 

combination of different techniques, such as the Adaptive 

Gaussian Mixtures Unscented Kalman Filter 

(AGMUKF) proposed in [9], where the UKF is used to 

propagate and update the kernels of the Gaussian mixture 

employed to estimate the probability density function, 

and the use of Gaussian Process Regression (GPR) in 

[10] to build a non-parametric observation model that is 

combined with the UKF. Optimisation algorithms have 

also been explored, particularly Particle Swarm 

Optimisation (PSO). It has been used to estimate attitude, 

shape and optical properties simultaneously [11], or to 

model arbitrary torque-free attitude motion, assuming 

that the object’s shape and reflective properties are 

known in a two-step estimation technique [12]. 

This work focuses on the estimation of the attitude of 

uncontrolled space objects with known geometric 

properties at a specific time. The objective is analogous 

to that of Initial Orbit Determination (IOD), where orbital 

parameters are estimated with no a priori knowledge, 

typically at the time of the most recent sensor 
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measurement. The primary goal of the proposed 

approach is to provide an accurate, robust and 

computationally efficient solution that can be applied in 

real operational scenarios. The worst-case scenario, 

where only measurements from a single sensor are 

available, is considered. Examples of operational use 

cases for this approach include the design of debris 

mitigation missions, such as Active Debris Removal 

(ADR) and In-Orbit Servicing (IOS), as well as the 

monitoring of active satellites to detect anomalies. 

2 METHODS 

This section introduces a novel approach for estimating 

attitude from light curves in operational scenarios. As 

explained in Section 1, estimation methods that require a 

precise initial guess, such as the UKF, often struggle to 

find the correct solution. This is due to measurement 

ambiguities that can cause these methods to become 

trapped in local optima. While particle filters can 

overcome this limitation, they operate sequentially, 

making them less suitable for this specific application. In 

operational scenarios, photometric measurements are 

only available during the object's visibility interval, and 

the complete light curve is typically processed after the 

observation period has ended. 

Consequently, the proposed attitude estimation method 

efficiently explores the entire solution space without 

relying on an initial guess. Additionally, photometric 

measurements are processed using a batch strategy, 

focusing on estimating the attitude at a specific time 

rather than tracking its evolution over the visibility 

interval. This approach mitigates measurement 

ambiguities and allows the parallelisation of 

computations to improve the method’s efficiency. 

To achieve these objectives, the proposed approach 

integrates statistical techniques —Adaptive Importance 

Sampling and Systematic Resampling— with a 

population-based optimisation method, Particle Swarm 

Optimisation. The fundamentals of these methods and 

their integration are explained in Section 2.3. Before this, 

the attitude and observation models used to propagate the 

attitude state and simulate photometric measurements are 

described in Sections 2.1 and 2.2, respectively. 

2.1 Attitude model 

The evolution of the attitude state over the visibility 

interval can be accurately modelled kinematically, as the 

effects of perturbing torques from forces such as non-

uniform gravitational fields, eddy currents, solar 

radiation pressure and atmospheric drag are negligible 

over the short duration of the visibility interval. In fact, 

considering the dynamics would not significantly 

improve the estimation in a real-world scenario, as 

important parameters such as the eddy currents tensor 

and mass distribution are typically unknown. 

The kinematic evolution of the attitude during a single 

pass over the sensor can be modelled as a purely spinning 

motion, in which the object rotates around a fixed axis 

with a constant angular velocity. This assumption is 

realistic, as energy dissipation causes space objects that 

have not undergone collisions or explosions for a long 

time to adopt a flat spin. In this state, they rotate around 

their principal axis of maximum inertia, which remains 

stable in free space [13]. Even if the object exhibits 

precession, its precession period is typically longer than 

the duration of the visibility interval [14], meaning that 

the sensor perceives only a spinning motion. 

Considering a body-fixed reference frame 𝐵, attached to 

the space object, and an inertial reference frame 𝐼, such 

as the Geocentric Celestial Reference Frame (GCRF), the 

general kinematic equation governing the rotational 

motion of a rigid body is [15]: 
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where 𝒒𝐵
𝐼  is the quaternion representing the rotation of 

frame 𝐵 relative to frame 𝐼 at some time 𝑡, and 𝝎𝑞,𝐵/𝐼 =

[0,𝝎𝐵/𝐼]
𝑇

= [0,𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧]
𝑇
 is the quaternion 

representation of the instantaneous angular velocity of 

frame 𝐵 relative to frame 𝐼, expressed in the rotating 

frame 𝐵. 

Since the components of the angular velocity are 

assumed to be constant, the matrix 𝛀 is constant and Eq. 

(3) can be readily integrated to obtain the following 

closed-form solution for the kinematic equation: 
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where 𝒒𝐵,0
𝐼  is the quaternion representing the reference 

attitude state that the proposed estimation method aims to 

determine using photometric measurements. 

2.2 Observation model 

The observation model used in this work is based on the 

bidirectional reflectance distribution function (BRDF), 

which determines how sunlight is reflected from the 

surfaces of the space object. Since ambient illumination 

in outer space is negligible, the BRDF can be readily 

decomposed into diffuse and specular components. 



 

The specular component models highlights, i.e. light 

reflected directly from the material's surface along the 

mirror direction. The Cook-Torrance specular BRDF 

[16] is used, with the Fresnel factor computed according 

to Schlick’s model [17]. For the facet slope distribution 

function, the Beckmann distribution originally proposed 

by Cook and Torrance is replaced with the GGX model 

introduced by Walter et al. [18]. On the other hand, the 

diffuse component represents light scattered 

approximately equally in all directions, and the Lommel-

Seeliger diffuse BRDF [19] is used in this work. 

Once the incident irradiance detected by the sensor 𝐼𝑜 is 

determined, the apparent magnitude of the space object 

can be computed as: 

𝑚 =  −2.5 log (
𝐼𝑜

𝐼𝑟𝑒𝑓

) + 𝑇(𝜆, ℎ, 𝜃, aod550) (4) 

where 𝐼𝑟𝑒𝑓 = 2.518 × 10−8 W/m2 corresponds to the 

zero point of the apparent bolometric magnitude scale. 

The atmospheric light extinction model proposed in [20] 

is considered with a transmission factor 

𝑇(𝜆, ℎ, 𝜃, aod550) that depends on the mean wavelength 

of light 𝜆, the observer’s altitude above mean sea level ℎ, 

the elevation angle of the observed space object relative 

to the ground station 𝜃, and the optical depth of 

atmospheric aerosols at a wavelength of 550 nm aod550. 

This observation model is implemented in Grial, GMV’s 

high-fidelity light curve simulator, which allows to 

model the actual optical properties of each surface of the 

space object and considers self-shadowing interactions 

between different parts of the object. Grial uses OpenGL 

to graphically compute the contribution of each 

illuminated and visible surface pixel to the reflected light, 

achieving an average simulation performance of 1.4 ms 

per observation. 

2.3 Attitude estimation method 

This section introduces the proposed attitude estimation 

method based on light curves, specifically designed for 

scenarios where no prior knowledge of the attitude is 

available. To mitigate measurement ambiguities and 

improve computational efficiency, photometric 

measurements are processed using a batch strategy. The 

methodology is developed with an operational focus, 

prioritising accuracy and rapid convergence to the correct 

solution while ensuring robustness to uncertain or 

unknown optical properties of the space object. 

To achieve these objectives, the proposed attitude 

estimation method integrates Adaptive Importance 

Sampling, Systematic Resampling and Particle Swarm 

Optimisation. The algorithm of the complete attitude 

estimation approach is presented in Figure 2-1 followed 

by an explanation of the fundamentals of each method 

and the details of their integration. 

 

Figure 2-1. Attitude estimation algorithm 

Considering a vector 𝒙 of unknown attitude parameters 

with a probability density function 𝜋(𝒙), Adaptive 

Importance Sampling (AIS) [21] approximates the 

unknown target probability density function by drawing 

samples from a proposal distribution 𝑞(𝒙). Each sample 

is assigned an importance weight that quantifies its 

contribution to the approximation of the target 

distribution. In the context of Bayesian inference, the 

importance weight function is given by 

𝑤(𝒙) =  
𝜋(𝒙)

𝑞(𝒙)
=  

ℓ(𝒛|𝒙)𝑝0(𝒙)

𝑞(𝒙)
 (5) 

where 𝒛 is a vector of observed data, and the target 

distribution 𝜋(𝒙) is expressed in terms of the likelihood 

function ℓ(𝒛|𝒙), and the prior probability density 

function 𝑝0(𝒙) in accordance with Bayes’ theorem. 

AIS methods are iterative and consist of three 

fundamental steps: sampling from the proposal densities, 

computing the importance weights of each sample, and 

updating the proposal densities for the subsequent 

iteration. As previously mentioned, batch processing of 

photometric measurements is used to mitigate the effects 

of measurement ambiguity. Therefore, the light curve is 

divided into sub-tracks using the inertial rotation period 

as the sampling step. In each iteration of the AIS method, 

one sub-track is processed, incorporating all its 

photometric measurements to compute the importance 

weights. 



 

The weighted root mean squared error (𝑊𝑅𝑀𝑆𝐸) is 

selected as one of the particle quality metrics, as it is 

well-suited for handling measurements from multiple 

sensors with different noise levels: 

𝑊𝑅𝑀𝑆𝐸 = √
1

𝐾
∑(

𝑦𝑗 − 𝑧𝑗

𝜎𝑠,𝑗

)

2𝐾

𝑗=1

  (6) 

where 𝑧𝑗 is a real photometric observation, 𝑦𝑗 is a 

simulated measurement corresponding to a given particle 

state at the time of the real measurement 𝑧𝑗, and 𝜎𝑠,𝑗 

denotes the sensor noise standard deviation associated 

with the real measurement 𝑧𝑗. 

The normalised particle weights are computed using Eq. 

(7), obtained from Eq. (5) by setting the importance 

density equal to the prior density at each iteration of the 

AIS method, i.e. 𝑞(𝒙) = 𝑝0(𝒙): 

   �̅�𝑖 =  ℓ ({𝑧𝑗}𝑗=1

𝐾
|𝒙𝑖)                         

=
exp(−𝑊𝑅𝑀𝑆𝐸𝑖

2)

∑ exp(−𝑊𝑅𝑀𝑆𝐸𝑖
2)𝑁

𝑖=1

 

(7) 

where the likelihood function represents the probability 

of observing a set of photometric measurements given the 

particle state. As shown in Eq. (7), the particle 𝑊𝑅𝑀𝑆𝐸 

is mapped to a probability using a softmax function. 

Before describing the update step of the AIS method, it 

is important to note that during the first two iterations, an 

adaptive allocation of particles is performed to refine the 

initial proposal distribution. This process consists of 

relocating particles from low-probability density regions 

to areas of higher probability density. Specifically, 

particles with a 𝑊𝑅𝑀𝑆𝐸 exceeding 110 % of the average 

𝑊𝑅𝑀𝑆𝐸 of the existing particles are moved towards 

those with the lowest 𝑊𝑅𝑀𝑆𝐸. The new positions of 

these particles are determined based on the sampling step 

of the initial distribution, ensuring that they are placed at 

intermediate positions between the existing ones. 

Finally, the update step is carried out by integrating 

Systematic Resampling and Particle Swarm Optimisation 

to improve computational efficiency. Systematic 

Resampling [22] is used to prevent particle degeneracy, 

a phenomenon in which a small number of particles have 

significant weight while the majority contribute 

minimally to the overall estimate. This resampling step is 

performed if the effective sample size, given by Eq. (8), 

falls below 25 % of the total number of particles. 

𝑁𝑒𝑓𝑓 =
1

∑ �̅�𝑖
2𝑁

𝑖=1

 (8) 

Particle Swarm Optimisation (PSO) [23] is a population-

based global optimisation algorithm used in this case to 

estimate the target distribution implicitly, thereby 

avoiding the computational cost of explicitly computing 

it at each iteration. Additionally, PSO offers a more 

efficient alternative to conventional methods used in 

particle filters to enhance particle diversity, such as the 

introduction of artificial noise, enabling faster 

convergence to the correct attitude solutions. 

In PSO, particles move through the search space based 

on their momentum. The velocity of the particles is 

computed at each iteration 𝑘 to update their trajectory 

according to the following expressions: 

𝒗𝑘
𝑖 = 𝑤𝒗𝑘−1

𝑖 + 𝑐1𝑟1(𝒙𝑝𝑏𝑒𝑠𝑡
𝑖 − 𝒙𝑘

𝑖 )

+ 𝑐2𝑟2(𝒙𝑔𝑏𝑒𝑠𝑡 − 𝒙𝑘
𝑖 ) 

𝒙𝑘
𝑖 = 𝒙𝑘−1

𝑖 + 𝒗𝑘
𝑖  

(9) 

where 𝑤 is the inertia weight factor, 𝑐1 is the cognitive 

coefficient, 𝒙𝑝𝑏𝑒𝑠𝑡
𝑖  is the best position found by the 

particle (personal best), 𝑐2 is the social coefficient, 𝒙𝑔𝑏𝑒𝑠𝑡  

is the best position found by any particle in the swarm 

(global best), and 𝑟1 and 𝑟2 are random numbers drawn 

from 𝑈(0,1). 

In the attitude estimation method proposed in this work, 

the solution space is initially explored through the 

adaptive allocation of particles during the first iterations. 

Therefore, the PSO coefficients are primarily chosen to 

accelerate convergence towards optimal solutions. To 

promote local exploration in the early stages of 

optimisation while gradually shifting towards 

exploitation by guiding particles to global best states, the 

cognitive coefficient is decreased linearly, while the 

social coefficient is increased linearly as iterations 

progress [24]: 

𝑐1(𝑘) = 𝑐1,𝑚𝑎𝑥 +
𝑘

𝐾
(𝑐1,𝑚𝑖𝑛 − 𝑐1,𝑚𝑎𝑥) 

𝑐2(𝑘) = 𝑐2,𝑚𝑖𝑛 +
𝑘

𝐾
(𝑐2,𝑚𝑎𝑥 − 𝑐2,𝑚𝑖𝑛) 

(10) 

where the social coefficient is consistently set higher than 

the cognitive coefficient across all iterations by selecting 

𝑐1,𝑚𝑖𝑛 = 0.5, 𝑐1,𝑚𝑎𝑥 = 1.5, 𝑐2,𝑚𝑖𝑛 = 1.0, 𝑐2,𝑚𝑎𝑥 = 2.0, 

and 𝐾 = 3. Once the iteration count of the PSO exceeds 

𝐾, the values of 𝑐1 and 𝑐2 remain fixed at their values 

from iteration 𝐾 for all subsequent iterations. The inertia 

weight factor remains constant throughout all iterations, 

with a value of 𝑤 = 0.3. 

The attitude estimation problem using light curves is 

strongly influenced by the coupling between attitude, 

geometric properties and surface optical characteristics. 

This coupling implies that different combinations of 

these parameters can produce nearly identical light 



 

curves. The proposed method is designed to be robust 

against uncertainties in the object's surface optical 

properties, which are inherently difficult to determine 

due to the wide variety of materials and their degradation 

from prolonged exposure to the space environment 

[RD.43]. 

A potential strategy to improve the method's robustness 

against uncertain or unknown optical properties could 

involve estimating the reflective characteristics of each 

surface. However, the proposed approach is constrained 

by the curse of dimensionality, and increasing the 

problem's dimensionality results in unacceptable 

computational performance in operational scenarios. To 

address this challenge, this work presents an accurate and 

robust alternative that preserves computational 

efficiency. 

The study by Qiao et al. [25] demonstrated that the 

primary factor influencing the reflectance spectra of 

three-axis stabilised GEO satellites is the presence of 

multi-layer insulation (MLI) on the platform's surface. 

Rodriguez et al. [26] analysed various types of MLI 

materials and reported significant variability in their 

reflectance, ranging from 0.05 to 0.25. Due to the 

irregularities of MLI on satellite surfaces, it can be 

modelled as a purely diffuse reflector. Similarly, 

Mulrooney et al. [27] recommended using a global 

albedo of 0.175 for debris objects, although the later work 

by Mulrooney et al. [28] reported variability in this 

reference value, ranging from 0.12 to 0.275. Regarding 

solar arrays, they can be considered predominantly 

specular reflectors. The studies by Hall [29] and Cao et 

al. [30] suggest that solar arrays reflect with an albedo of 

approximately 0.1, with minimal dispersion. 

In light of these previous studies, the proposed attitude 

estimation method aims to incorporate a global diffuse 

coefficient for the platform or main body of the space 

object to accurately estimate its attitude state. Two 

approaches will be examined: one in which a fixed global 

diffuse coefficient is predefined, and another where the 

global diffuse coefficient is estimated alongside the 

attitude of the space object. As suggested by previous 

studies in the literature, the solar arrays are modelled as 

purely specular reflectors with a specular reflection 

coefficient of 𝑘𝑠 = 0.1. 

3 RESULTS 

This section presents the results of the analyses 

conducted to evaluate the proposed attitude estimation 

method. The study considers a satellite in a circular orbit 

at an altitude of 2000 km. The satellite model used in the 

simulations, depicted in Figure 3-1, consists of a 

quadrangular prism platform with dimensions of 2.5 ×
1 × 1 m and a solar array measuring 1.5 × 3.5 × 0.01 m, 

resulting in a total span of 9 m. 

 

Figure 3-1. Satellite model 

The reference light curve is presented in Figure 3-2. This 

light curve has been generated based on the following 

reference orientation, expressed in terms of Euler angles 

—yaw, pitch and roll— which represents the satellite 

orientation that must be estimated from the light curve: 

𝒙𝑟𝑒𝑓 = [71,−58, 19]𝑇 deg 

Both the spin period and axis are assumed to be known, 

as they can be estimated using alternative methods [29]. 

Specifically, the spin period is set to 15 s and a 7 deg 

deviation from the satellite’s 𝑍𝐵 axis is considered for the 

spin axis. This scenario is representative of a satellite that 

has not experienced explosions or collisions for a long 

time and eventually adopts a flat spin around its principal 

axis of maximum inertia. 

In addition, the reference light curve is generated by 

modelling all platform surfaces with a diffuse reflection 

coefficient of 𝑘𝑑 = 0.15, and the solar arrays as purely 

specular reflectors with a specular coefficient of 𝑘𝑠 =
0.1. The reference light curve has been simulated 

assuming a sensor noise level of 𝜎𝑠 = 0.1 in magnitude. 

 

Figure 3-2. Reference light curve 

The execution of the attitude estimation method 

assuming both known geometric and optical properties is 

described below. Figure 3-3 shows the distribution of 

particles across different iterations of the method. In all 

plots, the actual attitude state to be estimated is indicated 

by a red cross. The numerical results of the estimation 

method at the last iteration are presented in Table 3-1, 

including the weighted attitude state and the weighted 

standard deviation. 



 

 

  

  

Figure 3-3. Execution of the attitude estimation method with known optical properties 

 

Firstly, the light curve is divided into sub-tracks based on 

the inertial rotation period of 15 s and the total 

observation interval of 4 min, resulting in 16 sub-tracks. 

Then, a uniform distribution of particles is generated 

across the solution space, constrained by the symmetric 

geometric and optical properties of the satellite model. A 

sampling step of 30 deg is selected for each angular state 

parameter, obtaining 216 particles, thereby ensuring a 

sufficiently fine grid for accurate attitude estimation. The 

execution of all 16 iterations is completed in 30 seconds, 

although the process could be terminated much earlier, as 

convergence is achieved by the sixth iteration. 

The first two iterations of the attitude estimation method 

focus on exploring the search space through the adaptive 

allocation of particles, ensuring that all promising 

candidate solutions are identified. By the third iteration, 

three higher-probability density regions are identified, 

after which the combined effects of Systematic 

Resampling and PSO further refine these candidate 

solutions. By the final iteration, all particles have 

converged around the true attitude state. The 𝑊𝑅𝑀𝑆𝐸 

between the light curve simulated using the estimated 

attitude and the reference light curve is 0.1213, which 

closely aligns with the sensor noise standard deviation. 



 

Table 3-1. Results of the attitude estimation method for 

an object with known optical properties 

 Reference Result 

Yaw [deg] 71 72.79 ± 0.12 

Pitch [deg] −58 −57.59 ± 0.10 

Roll [deg] 19 18.72 ± 0.06 

 

The next step of the analysis aims to assess the robustness 

of the proposed method to uncertainties in the optical 

properties of the space object. As explained in Section 

2.3, the solar arrays are well characterised by a purely 

specular behaviour with 𝑘𝑠 = 0.1, and therefore, they are 

not considered in this analysis. The focus of the study is 

on the platform, as its surfaces may consist of various 

components and/or materials, each with a wide range of 

diffuse reflection coefficients. Consequently, the analysis 

focuses on varying the diffuse coefficient of one of the 

surfaces that has the greatest impact on many of the 

photometric measurements in the light curve. The 

attitude is then estimated using a single global diffuse 

coefficient for all surfaces of the object. 

The first study evaluates the robustness of the method 

assuming a typical value for the global diffuse 

coefficient. To this end, the reference light curve is 

generated by changing the diffuse reflection coefficient 

of one of the surfaces with the greatest impact on the light 

curve to 𝑘𝑑 = 0.3. Its symmetric surface is also modified 

to maintain the symmetry of the model, while the 

remaining surfaces retain a 𝑘𝑑 = 0.15. The attitude is 

then estimated using a fixed global diffuse coefficient, in 

this case 𝑘𝑑,𝑔𝑙𝑜𝑏𝑎𝑙 = 0.15, which approximates the 

reflective behaviour of the MLI. 

 

Figure 3-4. Robustness analysis using a fixed 𝑘𝑑,𝑔𝑙𝑜𝑏𝑎𝑙  

The results of the attitude estimation method at the last 

iteration are shown in Figure 3-4, where it is clear that 

the method converges to an attitude that does not 

correspond to the actual one. The number of particles has 

been increased to 729 (using an initial sampling step of 

20 deg) to ensure that the result of the analysis is 

independent of the number of particles. 

To make the method robust to uncertain or unknown 

optical properties of the space object, the attitude 

estimation method is extended to also estimate a global 

diffuse coefficient for the satellite platform. This global 

diffuse coefficient is expected to represent an average of 

the different diffuse reflection coefficients of the 

surfaces, weighted according to the relative impact each 

surface has on the resultant light curve. 

Two test cases are considered in this robustness analysis. 

The diffuse reflection properties used to generate the 

reference light curve for each test case are provided in 

Table 3-2. Since there are four faces of equal dimensions 

(the lateral faces of the quadrangular prism), the change 

in 𝑘𝑑 is applied to the surfaces whose normal is aligned 

with the ±𝑌𝐵 direction. This approach ensures a reliable 

assessment, as the surfaces aligned with the ±𝑋𝐵 and 

±𝑌𝐵 directions —now exhibiting different 𝑘𝑑 values—, 

have approximately the same relative influence on the 

resulting light curve. 
 

Table 3-2. Diffuse reflection coefficient of the satellite 

platform's surfaces for the robustness analyses 

 𝑘𝑑  [−] 

 Test case 1 Test case 2 

Surfaces ±𝑋𝐵 0.15 0.15 

Surfaces ±𝑌𝐵 0.30 0.60 

Surfaces ±𝑍𝐵 0.15 0.15 

 

Figure 3-5 and Figure 3-6 present the results of the 

robustness analysis for Test case 1 and Test case 2, 

respectively. Specifically, these figures show the 

estimated attitude and global diffuse reflection 

coefficient at the final iteration of the proposed attitude 

estimation method. The numerical results of the 

robustness analyses are presented in Table 3-3, including 

the weighted attitude state, its associated weighted 

standard deviation, and the weighted global diffuse 

coefficient at the final iteration of the attitude estimation 

method. As it can be observed, the estimated global 

diffuse reflection coefficient closely approximates the 

average 𝑘𝑑 of the satellite platform's surfaces used to 

generate the reference light curve. Notably, the 

estimation accuracy improves as the discrepancy in 𝑘𝑑 



 

between different surfaces decreases. Nevertheless, even 

in the more challenging Test Case 2, the results remain 

highly accurate. 

When the method was constrained to a fixed global 

diffuse reflection coefficient, convergence to the correct 

solution was not achieved. In contrast, allowing the 

method to estimate this parameter provides successful 

convergence to the correct attitude, even in the more 

challenging Test case 2. This case represents an extreme 

scenario in which some surfaces exhibit very low 𝑘𝑑 

values, such as those characteristic of MLI, while others 

have significantly higher values, such as those typical of 

white paint [32] or some aluminium alloys [33,34]. 

Table 3-3. Results of the attitude estimation method for 

an object with unknown optical properties 

 Ref. Test case 1 Test case 2 

Yaw [deg] 71 69.83 ± 0.03 74.57 ± 0.02 

Pitch [deg] −58 −60.33 ± 0.03 −62.30 ± 0.03 

Roll [deg] 19 19.21 ± 0.04 14.33 ± 0.02 

𝑘𝑑,𝑔𝑙𝑜𝑏𝑎𝑙  [−] − 0.243 0.369 

 

  

Figure 3-5. Result of the robustness analysis for Test case 1 

  

Figure 3-6. Result of the robustness analysis for Test case 2 



 

4 CONCLUSIONS 

A novel attitude estimation method using light curves has 

been proposed. The methodology is designed with an 

operational focus to ensure accuracy, robustness and 

computational efficiency. To that end, it integrates 

statistical techniques —Adaptive Importance Sampling 

(AIS) and Systematic Resampling— with a population-

based optimisation method, Particle Swarm Optimisation 

(PSO). This hybrid solution effectively leverages the 

strengths of each method while mitigating their 

respective limitations, resulting in a highly efficient and 

reliable attitude estimation method. 

The proposed approach is also demonstrated to be robust 

against unknown optical properties of a space object’s 

surfaces. This is crucial for real operations, as the diverse 

range of aerospace materials makes precise 

characterisation challenging. Moreover, even when the 

material properties are initially known, prolonged 

exposure to the space environment can significantly alter 

them over time. The results of the test cases show 

exceptional accuracy in attitude estimation, even in the 

most challenging scenario involving surfaces with 

significantly different diffuse reflection coefficients. This 

demonstrates the method’s reliability and its strong 

potential for real SST operations. 

Possible lines of future work include implementing a 

clustering algorithm to assess particle convergence and 

terminate the execution of the attitude estimation method 

accordingly. Moreover, techniques to refine the 

estimation will be explored. Possible approaches include 

re-executing the proposed estimation method —

potentially incorporating the estimation of each space 

object’s optical properties— or employing the Unscented 

Kalman Filter, which offers greater computational 

efficiency for this purpose. The analysis could also be 

extended to account for an unknown spin axis and period. 

In particular, estimating the inertial rotation period from 

the apparent one would be especially valuable, as the 

latter can be directly inferred from the light curve using 

methods such as the Lomb-Scargle periodogram. Finally, 

strategies to improve the method’s robustness against 

uncertain atmospheric conditions, particularly the aerosol 

optical depth (AOD), will also be investigated. 
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