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ABSTRACT

More than one third of the trackable population of space
objects is classified as operational payload. Most of them
are satellites and spacecraft with manoeuvring capabili-
ties. The proliferation of satellite constellations has in-
creased and will continue to escalate the complexity and
volume of space traffic, urging the need for solutions
for cataloguing. This paper presents several innovative
algorithms designed for an automated, efficient and ro-
bust tracking of manoeuvring space objects during cata-
logue maintenance. For cases where correlated observa-
tions are available (i.e., already associated with a specific
space object), we introduce a manoeuvre detection strat-
egy that supports optical, radar, laser, and passive ranging
sensors. Additionally, we propose a dynamics-agnostic
alternative aimed at maintaining the trackability of the
space object by characterising the uncertainty introduced
by the manoeuvre using covariance inflation and smooth-
ing within sequential estimation. Finally, we address the
challenging issue of uncorrelated observations by propos-
ing a multiple hypothesis tracking-like methodology. The
different methodologies are presented comprehensively,
along with relevant test cases that assess the performance
and suitability of the different approaches. The results
demonstrate the potential of these algorithms to signifi-
cantly improve the accuracy and reliability of the cata-
logue of space objects.

Keywords: Manoeuvre Detection; Manoeuvre Estima-
tion; Catalogue Maintenance; Tracking.

1. INTRODUCTION

At the current time of space exploration, Space Traf-
fic Management (STM) and Space Situational Awareness

(SSA) have become a crucial issue to ensure the safety of
all stakeholders. Congestion in the most densely popu-
lated Earth orbits poses a challenge to their exploitation.
The latest reports estimate a population of 40500 objects
larger than 10 cm, usually considered trackable popula-
tion [1] and this situation is expected to aggravate in the
coming years with more launches and the generation of
new space debris.

In this context, one of the main strategies in the Space
Surveillance and Tracking field (SST) is the creation and
maintenance of space object catalogues. It allows to
know and predict the status of the population of objects
orbiting Earth. A space objects catalogue is defined as
a robust, automated and reliable database containing the
information of the detected space objects. It has to be
built and maintained through a series of data processing
techniques, known as the cataloguing chain. The main
inputs to the catalogue are the observations from a sensor
network, which are grouped into tracks or tracklets, i.e.
batch of observations belonging to a unique object gener-
ated when it passes over a sensor. From these, it is possi-
ble to establish an orbit for each space object, which will
be updated and maintained over time as more information
is received. The cataloguing process includes techniques
to correlate the generated tracks to existing objects (track-
to-orbit correlation), include new space object to the cat-
alogue and estimate an initial orbit (track-to-track asso-
ciation), and avoid duplication of objects (orbit-to-orbit
correlation), among other applications.

However, this process is hindered by the presence of ma-
noeuvrable objects. In these cases, the trajectory cannot
be properly maintained without a priori knowledge of the
manoeuvre plan. Unfortunately, this information is rarely
published by most operators, which hinders orbit update.
In current catalogues, for example the one maintained by
Kelso [2], the fraction of objects listed as ‘active’ is on
the order of 33%. In fact, it is estimated that this situa-
tion will become more and more concerning in the com-
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ing years, since a great deal of scheduled launches cor-
respond to large constellations such as Starlink, Oneweb
and Quianfan.

The main issues regarding manoeuvrable objects can be
sorted into two kind: survey and tracking problems. Sur-
vey problems arises when the tracks cannot be correlated
to any of the objects in the catalogue. The usual strategy
to correlate tracks is to compute the residuals between
the actual observations and the predicetd ones, i.e. the
difference between the computed measurements coming
from the orbit prediction and the actual ones. However,
if a manoeuvre happens between the last available mea-
surement and the target track date, the correlation pro-
cess may fail. The predicted trajectory will not take into
consideration the manoeuvre information and it will not
match the observations. Even more, this situation could
lead to generation of duplicated objects during catalogue
maintenance. Provided that the track will not be assigned
to any of the existing objects, catalogue maintainer could
try to conduct track-to-track association strategies to es-
timate the state of a possible new object. Then, if they
succeed, the catalogue could be extended with an RSO
which is in fact a duplication of an existing one.

On the other hand, tracking problem might occur when
the track has been pre-correlated, so the involved object
is known and thus there is no need to perform a correla-
tion process. However, catalogue maintainers might not
be able to estimate an accurate orbit. Most of the cur-
rent Orbit Determination (OD) processes for SST rely on
Batch Least Squares solutions [3]. These algorithms use
as initial information a set of measurements associated to
a specific object and an initial estimation of the state vec-
tor at a certain epoch. The aim is to fit the parameters of
the considered dynamical model to the observations, by
minimizing the root mean square of the residuals. These
are also usually weighted with the expected sensor mea-
surement noise. In this process, the tracks are treated in
groups, so if the actual manoeuvres in the observation
time span have not been taken into account, the dynami-
cal model may not be able to reproduce the trajectory and
the orbit determination may fail. One possible way to
mitigate this is to reduce the orbit determination interval
to one without manoeuvres. Nevertheless, this will result
in less accurate orbits, since the number of observations
used to generate them will be much smaller. In certain
cases, it could even lead to custody loss of those objects.

This paper presents three innovative methodologies to ad-
dress both the tracking and survey problems. Firstly, we
consider the case in which correlated observations are
available but the manoeuvre plan of the target object is
unknown. A manoeuvre detection and estimation algo-
rithm has been developed to cover the cases of radar, laser
and passive ranging sensors. The starting point for this
research can be found in [4] and [5]. Manoeuvre detec-
tion is done by trend analysis of the residuals between
the actual observations and the predicted orbit, weighted
by the reported sensors noises. The algorithm is capa-
ble of inferring a time interval to search for the manoeu-
vre based on thresholds. Then a linearized propagation

model based on the use of State Transition Matrix al-
lows to estimate the manoeuvre date and magnitude by a
weighted non-linear least squares process that tries to fit
the post-manoeuvre tracks. The methodology in this pa-
per is an extension of the latter, in which a multiple burns
manoeuvre scenario is considered. The previous propa-
gator is extended, taking into account the linearized effect
of successive impulsive manoeuvres and a cost function
function is defined to minimize both the residuals with
respect to the observations and the expected manoeuvre
magnitudes.

Furthermore, a dynamics-agnostic solution for the track-
ing problem is proposed, aimed at maintaining the tracka-
bility of the space object by characterising the uncertainty
introduced by the manoeuvre. In this case we rely on se-
quential estimators (e.g., Extended Kalman Filter) [3] to
process the observations continuously. Manoeuvre detec-
tion in this case explores, among others, the Mahalanobis
distance [6] of track attributables, using the predicted or-
bits and covariances [8]. An attributable is defined as
an observation compression consisting in the transfor-
mation of a track into a single observation [7]. One of
the main issues with sequential estimators is covariance
shrinkage with each new estimation. This strategy in-
tends to mitigate this problem by covariance inflation.
Once a manoeuvre is detected, the covariance matrix is
artificially increased in an attempt to capture the uncer-
tainty increase due to this discontinuity. Since the orbit
uncertainty would have risen, the filter is able to assim-
ilate the new observations coming from post manoeuvre
tracks. In addition, a smoothing step with several for-
ward and backwards estimations is applied to achieve the
most refined solution for the orbit estimation, until the al-
gorithm converges. This may prevent us from inferring
the manoeuvre characteristics, which is not required for
catalogue maintenance purposes, but allow us to keep on
tracking the object.

Finally, we address the survey problem by proposing a
multiple hypothesis tracking-like methodology. This ap-
proach uses track-to-track association techniques [9] [10]
to group uncorrelated tracks, retrieved by the sensor net-
work. These clustered observations are considered as
post-manoeuvre tracks. Thus, it is possible to try to
estimate a manoeuvre that allows to fit these measure-
ments to the orbits present in the catalogue prior to the
reception of the observations. The algorithm used for
the manoeuvre estimation is based again on the same lin-
earized method presented for the tracking problem pre-
viously mentioned. This results in multiple solutions,
which allow to reach the desired orbit from different can-
didate orbits. A pruning and ranking process based on
the weighted root mean square of the residuals it and the
magnitude of the estimated manoeuvre is used to promote
the final solution.

This paper is structured in 5 different sections: Section 1
presents the challenges related to catalogue maintenance
in the presence of manoeuvring objects, summarizes the
motivation behind this research and introduces the pro-
posed solutions. Section 2 and Section 3 describe the



developed methods targeting the tracking problem and
outlines use cases for each of them. Section 4 proposes
a solution for the survey problem, with the correspon-
dent description and use case. Finally, Section 5 com-
piles the conclusions and future work derived from these
approaches.

2. MULTIPLE BURNS MANOEUVRE ESTIMA-
TION

This work focuses on the development of a new method-
ology to perform manoeuvre determination for satellites
in LEO, starting from a set of ground station measure-
ments acquired at different epochs, and based on trajec-
tory optimization using a cost function.

2.1. Methodology

In a multi-manoeuvre scenario, the orbit is divided into
several arcs, with manoeuvres occurring at specific times.
A Linear Multi-Manoeuvre Orbit Propagator method
(LMMOP), based on the use of State Transition Matrix
(STM) has been developed to properly simulate this be-
haviour in an operational environment. Through the STM
the effects of single manoeuvres are added consecutively
to the reference orbit. Generalizing the enhanced STM
correction method of Porcelli [5], tailoring it for a multi-
manoeuvre scenario, Eq. 1 can be defined for the cor-
rection of the state of a space object after a number of
manoeuvres, at time t̂:

x(t̂) = xA(t̂) +

nman∑
i

{
ΦA(ti, t̂)δxi+

+Ri

[
xK,post(t̂)− xK,pre(t̂)+

− ΦK,pre(xK,pre(t̂), ti, t̂)δxi

]} (1)

being xA the reference pre-manoeuvre state, nman the
total number of manoeuvres, ti the manoeuvring times,
ΦA the STM of the reference orbit, and δxi the manoeu-
vre vector at time ti, considered as a perturbation. Ri is
the keplerian correction rotation matrix, while xK,post,
xK,pre and ΦK,pre are the keplerian correction terms
(see [5]), with the subscripts post and pre referring to
the post-manoeuvre and pre-manoeuvre keplerian orbit
arcs, corresponding to the considered ui, array holding
the components for manoeuvre i.

An important assumption is made when two or more ma-
noeuvres are considered: that the post manoeuvre arc is
close to the reference orbit, since the used STMs are al-
ways the ones of the initial reference orbit. The effect of
manoeuvre, starting from the second one onwards, are
computed as they were applied to the reference orbit,
while in reality they are acting on different orbit arcs.

As it can be seen from Fig. 1 the real correction would be
∆x1 + ∆x2, which are the increment in the state vector

Figure 1. STM approximation.

due to the effect of u1 and u2. Instead of using always the
STM of the reference orbit, it is approximated as ∆x1 +

∆̂x1, with both manoeuvre acting on orbit A.

The effect of this approximation can be mitigated per-
forming a rotation of the STM before computing the cor-
rection. Indeed after each manoeuvre the orbit changes
its orientation in space, by an angle α, and the STM can
be rotated by the same angle, re-aligning it with the cor-
rect orbital dynamics. To realign the STM with each new
orbit arc, a rotation matrix Γ is used:

Γ(t) =
(
Rcorrected

TNW (t)
)T

Rreference
TNW (t) (2)

being Rcorrected
TNW (t) and Rreference

TNW (t) the rotation matrices
from the Cartesian frame to the local TNW frames asso-
ciated with the current corrected orbit arc (after the ma-
noeuvres) and the reference orbit.

The STM is therefore rotated as follow:

Φ̂A(ti, t) = Γ(t)ΦA(ti, t)Γ(t)
T (3)

and Eq. 1 can be reformulated accordingly:

x(t̂) = xA(t̂) +

nman∑
i

{
Φ̂A(ti, t̂)δxi+

+Ri

[
xK,post(t̂)− xK,pre(t̂)+

− ΦK,pre(xK,pre(t̂), ti, t̂)δxi

]} (4)

A genetic algorithm, the Differential Evolution (DE) al-
gorithm, has been chosen for the optimization routine.
The chosen logic for the optimizer is a Global Optimiza-
tion strategy. This approach considers all the measure-
ments at the same time, processing them in parallel. The
founding assumption for this is that at maximum one ma-
noeuvre per day is performed, as this is typical for Star-
link satellites [11]. Measurement passes are therefore
grouped accordingly, starting from the first pass where
a manoeuvre is detected, with intervals of one day, and a
manoeuvre is assumed to be present in each of them.

At each iteration of the optimization a guess on the ma-
noeuvres magnitudes and epochs will be produced. This



guess is used to propagate the orbit with the LMMOP, to
then compute the simulated measurements for the current
guess (without noise). Those simulated measurements
will be compared to the real ones and residuals will be
computed.

The selected optimization variables are, for each manoeu-
vre, its magnitude and its epoch. Manoeuvres are consid-
ered always in the along track direction, neglecting the
radial and out of plane components. By doing so the total
number of optimization variables is twice the number of
manoeuvres (2 · nman).

Parameters entering the cost function are the Root Mean
Square Errors (RMS) of the measurement residuals ρ
(one for each group of passes, for each day), together
with the RMS of the manoeuvre magnitudes. All the
RMS are scaled through the adimensionalization of the
measurement residuals and the manoeuvre magnitude to
standardize their influence (Weighted Root Mean Square,
WRMS), allowing the optimizer to explore the landscape
more evenly and converge faster. The scaling parameters
are the noise values for the ground stations together with
the expected manoeuvre magnitude (∆v) value (Tab. 1),
such that at the optimum point the cost function will be
unitary. Manoeuvre magnitude is extracted from [11].

Table 1. Scaling factors for the adimensionalization. Val-
ues for range (R), range rate (Ṙ), azimuth (Az), elevation
(El) and manoeuvre magnitudes

σR σṘ σAz σEl σ∆v

10 m 600 mm/s 0.3 deg 0.3 deg 10 mm/s

After adimensionalizing the residuals, the WRMS for
each group of measurement can be computed:

WRMSmeas,j =

√√√√√∑nmeas,j
i

[(
ρmeas
σmeas

)2
]

4nmeas,j

(5)

With nmeas,j being the number of observations in the con-
sidered group of passes. The scaled WRMS for the ma-
noeuvre magnitudes can be computed similarly:

WRMS∆v =

√√√√∑nman
i

(
∆vi
σ∆v

)2

nman
(6)

Since at the optimum point the measurement residuals
will be around the noise values, and the manoeuvre mag-
nitudes will be the expected ones, the scaled WRMSs will
all be unitary. They finally enter the cost function, J ,
which is divided by the total number of entries, such that
it remains unitary at optimum:

J =

∑ndays
j (WRMSmeas,j) +WRMS∆v

ndays + 1
(7)

With ndays being the number of days over which passes
are observed, that corresponds to the number of grouped
passes and optimized manoeuvres.

Regarding the manoeuvre magnitudes, an upper limit is
set both in the positive and negative along track directions
(Tab. 2):

Table 2. Bounds for manoeuvre magnitude [11]

UB∆v LB∆v

30 mm/s −30 mm/s

Bounds for the manoeuvring epochs are instead designed
ad-hoc for each manoeuvre, depending on which day
they are happening, and considering that each batch of
grouped passes is positioned after the current manoeuvre
and before the next one. This is summarized in Tab. 3
with tlast

meas,i being the last epoch of the batch of grouped
passes on the i-th day.

Table 3. Bounds for manoeuvring epochs

nman UBt LBt

i = 0 tlast
meas,0 ti

i > 0 tlast
meas,i tlast

meas,i−1

2.2. Use Cases

The performance of the optimizer is analysed, in differ-
ent designed test cases, from the nominal scenario to a
more complex one, identifying the strengths and the crit-
icalities of the method. The observation data has been
simulated using own software, assuming a LEO object
similar to STARLINK-5885 (NORAD ID: 56352, Keple-
rian elements and considered manoeuvres are described
in Tab. 4). The simulated stations are located in Southern
Spain (37◦10’N, 5◦36’W) and in Kiruna (67◦ 51’N, 20◦
26’E)

Table 4. Keplerian elements of the observed satellite and
manoeuvring epochs

a e i Ω ω

6935.69 km 1.384 · 10−3 97.5◦ 274.9◦ 46◦

First manoeuvre October 2nd 2024, 00:00:00 UTC 10 mm/s
Second manoeuvre October 3rd 2024, 00:00:00 UTC 10 mm/s
Third manoeuvre October 4th 2024, 00:00:00 UTC 10 mm/s



2.2.1. Nominal case

In the nominal case scenario the tracked space object per-
forms one manoeuvre per day, and the ground stations
correctly observe the passes over their field of view. A
total of 67 observations per day are available for the anal-
ysis.

The chosen figure of merit to evaluate the goodness of
the solution at convergence is the cumulative error in the
epochs:

etime =

nman∑
i

|t̂man
i − tman

i | (8)

with t̂ being the true manoeuvring epoch, and t being
the result of the optimization. The obtained cumulative
probability distribution, on a total of 75 tests, out of 80,
filtered with etime < 1000 s, is shown in Fig. 2.

Figure 2. Filtered error cumulative probability distribu-
tion of the population evolved in genetic algorithm. etime

in abscissa.

As it can be seen with the selected configuration the opti-
mizer almost always converges to an acceptable solution.
This means that the cost function has been correctly de-
signed, with all the contributions weighted equally.

The distribution of the solutions can also be shown in a
graph linking the errors in the epochs and the magnitudes
(Fig. 3), with each solution overlayed with the associated
WRMS. Two clusters of solutions can be identified for
each manoeuvre, with the WRMS values always close to
unity, as in Eq. 5.

Considering the result of a single optimization run, an
orbit comparison between the result at convergence, and
the real manoeuvres, can be performed, with the propaga-
tion performed by a high-fidelity propagator. Differences
in radial, along-track and out-of-plane components of the
state vectors of the true and optimized orbits are shown
in Fig. 4. The error is always in the order of few meters
also in the end of the propagation, and it is mainly along
track.

Figure 3. Heat map of solutions for each of the starting
individuals of the genetic algorithm.

Figure 4. Orbital comparison between simulated and es-
timated orbit for nominal case optimal solution.

2.2.2. Data Scarcity subcase

In this subcase observations come only from one of the
two ground stations, which is the one located in Spain.
This situation ought to simulate a malfunction on one of
the radars. A total of 28 observations per day are avail-
able.

With measurements from only one station the amount of
available information for the optimizer diminishes, mak-
ing it more challenging for it to accurately converge to-
wards the true solution, as can be seen from Fig. 5.

Figure 5. Error cumulative probability distribution for
tests in data scarcity subcase.



The results are much worse than when two stations are
available: out of a total of 49 performed tests, only 3 (≈
6%) were below the 1000 s threshold.

Even though results are bad, it doesn’t mean that the op-
timizer does not converge: indeed in all the tests the ob-
tained WRMSs for the measurements, entering the cost
function, were around unity.

This means that the optimizer does not have enough in-
formation on the orbital status of the tracked space object
to correctly determine the manoeuvring epochs and mag-
nitudes.

2.2.3. No-measurement case

In this scenario, the tracked space object performs one
manoeuvre per day as in Tab. 4. However observations
from the radar stations are not produced during one day
(the first one), to simulate a malfunction on ground.

This translates into the fact the optimizer has to guess two
manoeuvres with only one group of measurements. The
obtained result, on a total of 30 tests, is a cloud of points
spread around the central optimal solution for the first and
second manoeuvres, while the third one almost always
converged close to the optimum (Fig. 6). However this
does not imply that the optimizer didn’t actually work as
intended, since looking at the values of the cost function,
they are always close to unity.

Figure 6. Set of solutions for no-measurement case.

An explanation for the fact that the optimizer converged,
but to a solution that is not the real one, is that since in the
first day measurements are missing, the problem is less
constrained. The algorithm converged to a solution that
guarantees a good fit with the available measurements of
the second and third days. This is similar to what happens
in the case with only one station: there is not enough in-
formation to correctly converge to the real solution, since
the optimization space is vast and multiple minima are
possible.

Analysing the orbit comparison between one of the solu-
tions and the real orbit, as it has been done in the nominal

case, the same conclusion can be inferred, considering
that its solution at convergence for the considered opti-
mization run is the one presented in Tab. 5:

Table 5. Optimization result test 26 in no-measurements
case

Manoeuvring epochs Manoeuvring magnitudes
October 2nd 2024, 09:39:09 UTC 9.166 mm/s
October 2nd 2024, 14:20:57 UTC 10.96 mm/s

October 4th 2024, 00:00:38 9.742 mm/s

Figure 7. Orbital comparison between simulated refer-
ence and estimated for no-measurements cases.

From Fig. 7 it is seen that in the first day the orbit diverges
from the true one, since the problem is unconstrained and
the optimizer cannot rely on measurement residuals to
determine the true orbital fit. In particular the first ma-
noeuvre is missed by approximately 9 hours. However,
together with the second one, they are placed such that at
the epoch of the second real manoeuvre, the 3rd of Octo-
ber 00:00:00 UTC, the orbital difference drops drastically
again. What happens is that the optimizer finds one of the
multiple solutions to the unconstrained problem (the op-
timal one), which is different from the real one but in the
end leads to the same orbital position.

3. MANOEUVRE HANDLING WITH SEQUEN-
TIAL ESTIMATION

An alternative is presented aiming at maintaining the
trackability of the space object by characterising the un-
certainty introduced by the manoeuvre, rather than the
manoeuvre itself, using covariance inflation, attributa-
bles and smoothing within sequential estimation. This
may prevent us from inferring the manoeuvre character-
istics, which is not required for catalogue maintenance
purposes, while ensuring continuous tracking of the ob-
ject. The detection and handling of the manoeuvre is per-
formed as an additional step of the so-called Manoeuvre
Detection Filter (MDF) built on an Extended Kalman Fil-
ter (EKF).



3.1. Methodology

For the tracking scenario, a high density of observations
is available at frequent intervals. The EKF is particularly
well-suited for this application due to its computational
efficiency and sequential, forward-moving prediction ca-
pabilities [12]. The MDF is implemented for this task
and is described in Algorithm 1. It consists of an addi-
tional step in the sequential filtering after the prediction
step and before the correction step.

The MDF consists of two parts: the detection and the han-
dling. A manoeuvre detection metric has been computed
by modeling the squared mahalanobis distance (MD) as
a χ2 distribution function. To declare a manoeuvre event,
a residual χ-square test is used. For this, MD between
the measurements and the predicted state and covariance
is used in the observation domain. Clearly, the MD is
a scalar function of the observational residual which is
continuously updated during the estimation process. If
a manoeuvre occurs, MD increases proportionally to the
growth of the residual. Furthermore, by accounting for
the inherent noise in the residual, MD can be used to
identify the onset of a manoeuvre. The probability of ma-
noeuvre PRmd defined in [8] is used as the final metric
for manoeuvre detection to reduce the number of false
positives. When PRmd, which is a function of MD, ex-
ceeds a predefined threshold, a manoeuvre is assumed to
have happened. Among the four radar measurements, an-
gle measurements are usually the least accurate and are
less effective at detecting manoeuvres compared to range
and range-rate measurements, which provide quicker and
more reliable indications of orbital changes [13]. There-
fore, range and range-rate measurements are utilized in
the MDF, meaning that the number of degrees of freedom
in the χ-squared test is set to n = 2.

The χ2 cumulative distribution function is computed us-
ing the regularized lower incomplete gamma function
P (a, x) with a being half of the degrees of freedom and
x being half of the squared MD. P (a, x) is defined as the
ratio between the lower incomplete gamma function and
the complete gamma function :

P (a, x) =

∫ x

0
ta−1e−tdt∫∞

0
ta−1e−tdt

(9)

In hypothesis testing, and using the χ-square distribution,

it is usual to compute P (
n

2
,
MD2

2
) which is the proba-

bility that a variable distributed according to the χ-square
distribution with n degrees of freedom exceeds the value
of MD2. The problem here faced is the one of computing
the confidence level given an experimentally determined
χ-square value and this involves the direct computation
of the cumulative distribution function [14].

The predicted covariance P−
k is inflated until PRmd <

0.5. The larger the manoeuvre, the larger the inflation.
This enables the filter to not diverge and to keep track-
ing the target despite an un-modeled manoeuvre. Radar
data is processed after the time of the manoeuvre until the

sequential filter converges again, that is, when the uncer-
tainty in the state estimate returns to a nominal ballistic
condition.

The MDF is detailed in the Algorithm 1. The variables
x̂k and Pk represent the estimated state and covariance
at step k of the filter. Φk−1,k represents the State Tran-
sition Matrix (STM) between steps k − 1 and k. The
superscripts − and + indicate whether the quantity cor-
responds to the prediction from step k − 1 (−), or to the
update after incorporating the observation at step k (+).
Additionally, yk is the actual observation, Rk is the sen-
sor noise covariance and Qk is the process noise covari-
ance.

Algorithm 1 Manoeuvre Detection Filter (MDF)
Inputs: x̂+

k−1 and P+
k−1

Outputs: x̂+
k and P+

k
(1) Propagate the state until next attributable epoch
(step k)
(2) Compute Φk−1,k between k − 1 and k
(3) Propagate the state error covariance

P−
k = Φk−1,kP

+
k−1Φ

T
k−1,k +Qk, P+

0 = P0

(4) Compute the theoretical attributable ŷk with the ob-
servation function h and the partials matrix Hk:

ŷk = h(x̂−
k ), Hk =

∂h

∂x

∣∣∣∣
x̂−

k

(5) Compute the total covariance of the observation Sk

Sk = HkP
−
k HT

k +Rk (10)

(6) Compute the Mahalanobis distance MD of range
and range-rate residuals

MDk =
√
(yk − ŷk)S

−1
k (yk − ŷk)T (11)

(7) Compute the probability of manoeuvre

PRmd = max (0, 2(χ2(MDk
2, n)− 0.5) (12)

If PRmd > 0.5, multiply P−
k by 2 and come back

to step (5). Otherwise, continue.
(8) Compute the Kalman gain and update the estimated
state and covariance

Kk = P−
k HT

k S
−1
k (13)

x̂+
k = x̂−

k +Kk(yk − ŷk) (14)

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k

(15)

The process noise covariance Qk is null when we deal
with simulated observations where the dynamical model
is identical for both the generated tracks and the esti-
mation filter. However, the State Noise Compensation
(SNC) technique can be used when dealing with real ob-



servations. In addition, a backward smoothing process is
applied to refine the post-manoeuvre region, where co-
variance inflation has been applied. The McReynolds
consistency test [15] can also be leveraged for manoeuvre
detection.

3.2. Use Cases

The subject of the tests is based on Sentinel 3-A, which is
on a low-eccentricity, near-polar, sun-synchronous orbit.
Both the orbit and manoeuvre history are publicly avail-
able and taken from [16] and [17] respectively. The time
window considered for the simulation starts in Septem-
ber 1st, 2018, 10:30 and ends in September 12th, 2018,
00:00.

Table 6. S3A satellite data.

Epoch September 1st, 2018, 10:30 (UTC)
Position vector [-2301.83, 1156.13, 6694.98]T km
Velocity vector [-4.27, 5.60, -2.43]T km/s

The altitude of the orbit is 814.5 km with an inclination
of 98.65 deg.

Station 1 will be used as the only source of measurement
tracking data. The latter will be simulated and used with
approximately 4 to 5 tracks per day. The simulated mea-
surement noise is detailed in Tab. 7.

Table 7. Simulated radar sensor measurement noise.

σAz σEl σR σṘ
0.4 deg 0.4 deg 20 m 650 mm/s

Station 1 is inspired by the the Spanish S3T Surveillance
Radar (S3TSR) that is a radar system developed by Indra
within a project funded by Spanish Administration and
technically managed by ESA [18].

The manoeuvre history of Sentinel-3A has been retrieved
from the International Laser Ranging Service (ILRS)
public data [17]. The most typical manoeuvres are either
impulsive, with duration in the order of a few seconds,
or long, with duration between 12 and 15 minutes. Im-
pulsive manoeuvres are usually in the along-track com-
ponent while long manoeuvres have a major cross-track
component and a minor along-track component. Some
manoeuvres with higher ∆v in the along-track direc-
tion and of longer duration occur exceptionally (e.g., on
07/01/2022). An in-track impulsive manoeuvre case and
an out-of-plane long manoeuvre case will be considered
in this section.

The simulation begins with a high covariance, reflecting
the initial uncertainty in the state. As the filter processes
subsequent tracks, the covariance gradually decreases, in-
dicating improved confidence in the estimated state. In
both cases, the fourth track was intentionally selected as

an outlier to assess its impact on the MDF. This track cor-
responds to a vertical pass, where the elevation reaches 90
deg and therefore the azimuth exhibits discontinuities.

3.2.1. Impulsive manoeuvre

The MDF is put to the test with an impulsive low-thrust
manoeuvre with a major in-track component.

Table 8. Impulsive manoeuvre characteristics.

Epoch tM September 5th, 2018 19:21:10 (UTC)

Components (RTN) [0.19472, -3.05837, 0.02038] mm/s

Magnitude 3.06463 mm/s

Arrival time of next track tM + 1h

This in-track manoeuvre is taken from a real Sentinel-3A
[17] that occurred on February 27th, 2019, 09:15:37. It
typically corresponds to an orbit raising operation needed
to correct the semi-major axis decay caused by the atmo-
spheric drag [19].

As shown in Fig. 8, impulsive manoeuvres are not de-
tected immediately but typically after 3 to 4 tracks. Due
to their low ∆v nature, the filter struggles to identify
anomalies from the first post-manoeuvre track, making
immediate detection challenging. Nonetheless, immedi-
ate detection is not critical for this method. The filter
can still effectively converge and handle the manoeuvre,
ensuring accurate tracking despite the delayed detection.
Additionally, the outlier is detected as a manoeuvre and
incorrectly inflates the covariance; nonetheless, it is not
critical for the filter that gets the covariance reduced from
the subsequent tracks.

Figure 8. Mahalanobis distance MD and PRmd for im-
pulsive manoeuvre test case.

The filter residuals are depicted in Fig. 9 During filter ini-
tialization, the disparity between pre-fit and post-fit resid-
uals is expected. However, as the filter progresses, it con-
verges. From the manoeuvre epoch onward, range and
range-rate pre-fit and post-fit residuals begin to diverge.
In this case of an impulsive low-thrust manoeuvre, con-
vergence is slower, but the covariance inflation mecha-
nism still enables the filter to adapt over time, eventually



leading both pre-fit and post-fit residuals to align, as ex-
pected.

Figure 9. Filter residuals for impulsive manoeuvre test
case. Symlog scale. Pre-fit residuals (blue circle). Post-
fit residuals (red cross). Green dashed vertical line cor-
respond to real manoeuvre epoch.

While it is often possible to maintain tracking of an
object undergoing a low-thrust manoeuvre, the primary
difficulty lies in precisely detecting that the manoeuvre
has occurred and distinguishing it from unmodeled non-
conservative perturbation effects [20]. They may go un-
detected or detected with a significant delay if residuals
are used as the primary means for detection, like here.
Fortunately, the detection of the manoeuvre is not cru-
cial for catalogue maintenance and this is the reason why
a Manoeuvre Detection Filter is well suited for this sce-
nario.

An alternative to detect small manoeuvres is to perform a
smoothing process using the Rauch-Tung-Striebel (RTS)
fixed-interval smoother [21]. The McReynolds filter-
smoother consistency test [15] is initially thought for de-
termining if the process noise is correctly tuned when
un-modeled perturbations are present, like in the case
of real observations. Therefore, an unknown manoeuvre
might leverage this consistency statistic and provide an
additional metric that can be used to detect the manoeu-
vre, provided that the filter/smoother process is properly
”tuned” to the specific object and its associated data [20].

The backward smoothing process is applied to refine the
post-manoeuvre region, where covariance inflation has
been introduced to accommodate the uncertainty induced
by the manoeuvre. This process enhances state estima-
tion by incorporating future observations, allowing for
a more accurate reconstruction of the trajectory. The
smoothing procedure terminates when the consistency
test fails, effectively serving as a redundant detection
metric. The manoeuvre detection threshold is set such
that a manoeuvre is identified when the absolute value of
any element exceeds the predefined threshold |Ri| > 4.5
[22].

The failure of the consistency test often occurs near the
actual manoeuvre onset epoch, making it a valuable indi-
cator of state deviations. However, this approach is most

effective when the manoeuvre takes place while the satel-
lite is within the field of view of a ground station, where
frequent observations improve detection accuracy [22].
Despite this limitation, the estimated manoeuvre epoch
remains sufficiently close to the true event, providing a
useful reference for a subsequent filter-smoother itera-
tion. These iterations should enable further refinement
of the state estimate, improving the accuracy of the tra-
jectory reconstruction. Additionally, they should bring
the detected manoeuvre epoch closer to the actual event,
enhancing the reliability of the detection process.

Figure 10. McReynolds consistency for impulsive ma-
noeuvre test case.

Additionally, the consistency test provides a strong indi-
cation of a potential manoeuvre occurring in the tangen-
tial direction, reinforcing its role as a valuable diagnos-
tic tool. By identifying discrepancies between the esti-
mated and actual trajectory, this test serves as an effective
means of post-event confirmation, allowing to retrospec-
tively validate manoeuvre occurrences with a high degree
of confidence.

Moreover, this information can be leveraged for pattern-
of-life analyses as it offers insights into recurrent ma-
noeuvre behaviors and operational strategies of the satel-
lite. By systematically monitoring these consistency fail-
ures over time, it becomes possible to infer manoeuvring
trends and anticipate future orbital adjustments. This ca-
pability is particularly crucial for catalogue maintenance
and conjunction assessment, ensuring a more accurate
and long-term orbit maintenance.

3.2.2. Long manoeuvre

The MDF is put to the test with a long hybrid manoeu-
vre with a major cross-track and a minor in-track compo-
nent. The simulated manoeuvre takes place on Septem-
ber 5, 2018, 19:21:10 (UTC), with a duration of 13.82
minutes and a magnitude of 2.13 m/s in out-of-plane di-
rection. This manoeuvre is taken from a real Sentinel-3A
[17] that occurred on March 13th, 2019, 08:15:15. It typ-
ically corresponds to inclination drift corrections mainly
caused by the luni-solar perturbation.



Figure 11. Orbital difference (TNW) between the estimated/smoothed trajectory and the ground truth. 3σ covariance
envelope. Impulsive manoeuvre test case. Green dashed vertical line corresponds to the real manoeuvre epoch and pink
dashed line corresponds to the detected manoeuvre epoch by the smoother. EKF (blue) vs RTS (violet).

During filter initialization, the disparity between pre-fit
and post-fit residuals is expected. However, as the filter
progresses, it converges effectively. From the manoeuvre
epoch onward, range and range-rate pre-fit and post-fit
residuals begin to diverge. In this case, the covariance in-
flation mechanism ensures the filter to quickly converge
to the true trajectory after detecting the manoeuvre, al-
lowing that both pre-fit and post-fit residuals ultimately
align, as expected. Again, a backward smoothing process
is applied to refine the post-manoeuvre region, where the
covariance has been inflated. The smoothing procedure
terminates when the consistency exceeds |Ri| > 4.5.

Figure 12. McReynolds consistency for long manoeuvre
test case. Symlog scale.

In Fig. 12 the results for McReynolds consistency for
this case can be found. As observed again, this addi-
tional detection method successfully identifies the ma-
noeuvre at the post-manoeuvre epoch. Furthermore, it
provides valuable insight into the manoeuvre ∆v compo-
nents, suggesting the presence of both a dominant cross-
track and minor in-track contributions, which accurately
reflects the actual manoeuvre characteristics. This further
validates the method’s ability to not only detect manoeu-
vres but also infer key dynamical properties, enhancing
its applicability for catalogue maintenance. The final or-
bital differences are displayed in Fig. 13.

Figure 13. Orbital difference (TNW) between the esti-
mated/smoothed trajectory and the ground truth. 3σ co-
variance envelope. Long manoeuvre test case. Green
dashed vertical line corresponds to the real manoeuvre
epoch and pink dashed line corresponds to the detected
manoeuvre epoch by the smoother. EKF (blue) vs RTS
(violet).

4. MULTIPLE HYPOTHESIS TRACKING WITH
MANOEUVRE ESTIMATION

To address the survey problem previously defined, we in-
troduce a Multiple Hypotheses Tracking (MHT) method-
ology that jointly tackles the track-to-orbit (T2O) associ-
ation and manoeuvre estimation problems. The proposed
methodology is based on the work [23] and provides
a robust framework for associating uncorrelated tracks
with known catalogued objects by explicitly accounting
for dynamic changes induced by significant manoeuvres.
This approach systematically evaluates multiple hypothe-
ses to determine the most likely source object of the ob-
served tracks while inferring the manoeuvre parameters,
specifically the epoch as well as the magnitude and direc-
tion of the applied ∆v. By incorporating these dynamic
changes into the association process, this methodology
enhances the effectiveness of SSA systems in maintain-
ing accurate and continuously updated catalogues while
minimizing the likelihood of miscorrelations.



Figure 14. Track-to-Orbit with manoeuvres processing chain.

4.1. Methodology

This section provides an overview of the proposed
methodology, highlighting its key features and outlining
the main processing steps.

The first step in catalogue maintenance is to determine
whether an observed track corresponds to an already cata-
logued space object. This is done during the T2O process
that attempts to associate new observations with the pre-
dicted positions of already catalogued objects. Here, the
likelihood of an association is determined by evaluating
the observational residuals between the actual observa-
tions and their predicted counterparts. If the correlation
is successful, the track is confirmed to have originated
from an existing object, and its data is subsequently used
to update the object’s trajectory through an orbit determi-
nation. However, this process may fail if the track orig-
inates from an uncatalogued object or if a known object
has altered its trajectory, possibly due to a manoeuvre.

The objective of the proposed methodology is to process
these uncorrelated tracks (UCT), where the conventional
T2O algorithm failed due to a manoeuvre. This approach
follows the processing steps outlined in Fig. 14, which
will be described in more detail in the subsequent para-
graphs.

1. Track-to-Track (T2T) Association: First, UCTs are
grouped into clusters that are likely to originate from
the same space object. This is achieved using multi-
target, multi-sensor algorithms that systematically
assess observational similarity and orbital consis-
tency among individual tracks, facilitating robust
and reliable associations. [9] [10]

2. Generate Hypotheses: In this context, a hypothe-
sis represents a potential association between a set
of previously uncorrelated tracks and a known cat-
alogued space object. Specifically, it seeks to de-
termine whether a plausible manoeuvre can account
for the observed deviation from the expected trajec-
tory. This is achieved by estimating the manoeu-
vre parameters necessary to align the observed post-
manoeuvre tracks with the predicted orbit of the can-
didate satellite. Theoretically, the number of gener-
ated hypotheses L is equivalent to L = n ·m, where
n refers to the number of catalogued objects and

m to the number of T2T associations (i.e., groups
of tracks originating from the same object). Since
there are currently more than forty thousand cata-
logued objects, the number of manoeuvre estima-
tions grows rapidly when employing a brute-force
approach. To mitigate this computational burden,
the observed object’s Keplerian elements are ap-
proximated based on the T2T associations and sub-
sequently compared with those of all catalogued ob-
jects. If the differences in Keplerian elements ex-
ceed predefined thresholds, the corresponding ob-
jects are eliminated from the list of hypotheses, sig-
nificantly reducing computation time. Depending
on the orbital regime, additional filtering criteria,
such as geocentric longitude for GEO objects, can
be incorporated to further enhance computational ef-
ficiency.

3. Manoeuvre estimation: Once the potential candi-
dates are filtered, the manoeuvre estimation for each
remaining hypothesis is triggered. During this pro-
cess, the manoeuvre parameters, including its mag-
nitude, direction, and execution time are estimated
using a weighted least-squares approach. This is ac-
complished by fitting post-manoeuvre observations
to the object’s pre-manoeuvre orbit, utilizing an it-
erative approach to refine these estimates until they
closely align with the observed data. Here, the post-
manoeuvre tracks refer to the set of tracks grouped
through T2T, while the pre-manoeuvre orbit corre-
sponds to the candidate object’s catalogued orbit.
For a more comprehensive description of the under-
lying manoeuvre estimation algorithms, refer to [4]
and [5].

4. Prune Hypotheses: After completion of the manoeu-
vre estimation for each hypothesis, unlikely can-
didates are eliminated. For this pruning process,
two metrics are used: the estimated ∆v and the
WRMS of the residuals. Here, the WRMS quanti-
fies how closely the predicted post-manoeuvre or-
bit aligns with the actual sensor observations, in-
dicating the accuracy of the estimated manoeuvre.
Excessively large WRMS values therefore indicate
that the investigated tracks are unlikely to have orig-
inated from the candidate object. Similarly, if the
∆v exceeds a predefined threshold, the manoeuvre
is deemed unfeasible, leading to the elimination of
the corresponding hypothesis from the list of poten-



tial candidates.

5. Compute Scores: The most likely candidate is not
selected solely based on the hypothesis with the low-
est ∆v. Instead, the selection process incorporates
two distinct scoring metrics to ensure a more robust
and accurate determination. The WRMS and ∆v of
the hypotheses that remain after the pruning process
are first normalised using a min-max normalisation
according to

X∗
i =

Xmax −Xi

Xmax −Xmin
. (16)

being, X , the variable to be normalize. This is done
to ease comparison between values of different or-
ders of magnitude, scaling them to a range between
0 and 1. The normalized values, combined with their
respective weights W∆v and WWRMS are then used
to compute the weighted sum score as follows:

Si = W∆v ·∆vi +WWRMS ·WRMSi. (17)

The weights are constrained to sum to one and can
be determined either through Principal Component
Analysis or manual tuning to optimize performance.
As a second metric, the SoftMax score, Pi, is used to
transform the weighted sum scores of competing hy-
potheses into normalized probabilities. It quantifies
the confidence level for each hypothesis, enhancing
the decision-making process by rewarding higher
scores and penalising lower ones. The hypothe-
sis with the highest SoftMax score is promoted, at-
tempting to resolve ambiguities among closely com-
peting options. The score can be computed based on
Eq. 18, where β refers to the ratio between the max-
imum and minimum values of the weighted sum Si.

Pi =
eβSi

ΣieβSi
(18)

6. Promote Hypotheses: Finally, after scoring all re-
maining hypotheses, the best-performing ones are
selected for promotion. To qualify for promotion,
they must surpass a predefined threshold. The pro-
moted hypotheses represent the candidates with the
highest likelihood of being the source objects from
which the tracks originated.

4.2. Use Cases

To evaluate the proposed methodology, simulated obser-
vation scenarios are designed, incorporating both nomi-
nal satellite tracking and manoeuvre events. The satel-
lites considered in this study are modelled based on Star-
link satellites, reflecting their orbital elements as well as
key properties such as mass, area, and drag coefficients.
However, unlike actual Starlink satellites, the simulated
manoeuvres are modelled as impulsive, meaning the ∆v

is applied instantaneously. Additionally, only manoeu-
vres with thrust applied in the along-track direction are
considered. Four distinct satellites are considered, with
their Keplerian elements listed in Tab. 9, differing only in
their true anomaly ∆Θ. The suffixes A1, A2, A3, and A4
in the results correspond to the respective Starlink satel-
lites.

For the sake of simplicity, all observations in this study
are simulated using the spanish radar described in Sec-
tion 2.2 as reference, incorporating its location and sensor
noise characteristics.

Table 9. Keplerian elements of the observed satellites.

a e i Ω ω

6928.14km 1.5 · 10−4 53◦ 188◦ 10◦

As a baseline, a case is constructed based on the assump-
tion of ∆v = 10 cm/s and a phasing of ∆Θ = 15◦ be-
tween each of the satellites. For this reference case, the
initial T2T process achieves a 100% success rate, mean-
ing that all post-manoeuvre tracks are correctly grouped
with the remaining tracks of the same object. Subse-
quently, each set of grouped tracks is successfully asso-
ciated with its corresponding source object, while accu-
rately recovering the manoeuvre parameters during the
estimation. However, real-world scenarios are often sig-
nificantly more challenging due to factors such as the
close proximity of satellites or high manoeuvre magni-
tudes. Additionally, adverse observation conditions, re-
sulting from high sensor noise or limited track availability
for a given object, can further degrade association perfor-
mance. To examine the impact of these factors, several
test cases are investigated. For additional test cases, an
analysis of the entropy scoring metric, and a more com-
prehensive evaluation of the presented studies, refer to
[23].

Many satellites, particularly those in constellations, are
often clustered into groups where multiple satellites
share the same orbital plane, differing only in their true
anomaly. As a result, distinguishing between individual
satellites based on noisy observations can be challenging.
Therefore, it is crucial to assess how satellite proximity
affects the performance of association algorithms.

Now, considering a more challenging scenario with
∆Θ = 5◦, 88% of the post-manoeuvre tracks are suc-
cessfully grouped through T2T association. Fig. 15 de-
picts a subset of the generated hypotheses along with
the corresponding relative errors of the estimated ∆v and
manoeuvre epoch. The heatmap colouring represents the
scores assigned to each hypothesis, with higher scores
indicating greater likelihood, while the hypotheses ulti-
mately promoted are highlighted with red borders. It is
evident that hypotheses with larger errors, particularly in
∆v, receive significantly lower scores, as indicated by
the purple colouring. Tab. 10 provides a detailed break-



down of these results, including the score S, the clas-
sification as a true positive TP , and the relative errors
of the estimated manoeuvre magnitudes and epochs for
each of the satellites. Although the manoeuvre epoch for
A4 is estimated to be one orbital period earlier than the
actual manoeuvre occurrence, all tracks are successfully
associated with the respective candidate object. Further-
more, since the primary objective is to reliably predict the
post-manoeuvre orbit rather than precisely infer the ma-
noeuvre parameters themselves, this deviation does not
adversely impact the cataloguing process.

Table 10. Statistics of the performance metrics for pro-
moted hypotheses in the test case with a satellite spacing
of ∆Θ = 5◦

S ε∆v[%] εtM [min] WRMS TP
A1 0.96 3.64 -1.06 1.025 ✓
A2 0.964 4.02 -1.77 0.965 ✓
A3 0.967 1.1 1.85 1.091 ✓
A4 0.955 -0.17 -88.64 1.274 ✓

A clear relationship between satellite separation and al-
gorithm accuracy emerges when the spacing is reduced to
∆Θ = 1◦. In this scenario, only 62% of post-manoeuvre
tracks are successfully correlated during T2T. However,
after the manoeuvre estimation, all of these tracks are
correctly associated with their respective objects while
avoiding false positives through the use of the SoftMax
score. When satellites are relatively distant, the associa-
tion process remains highly reliable, yielding accurately
estimated manoeuvre with minimal ambiguity. However,
as satellite separation decreases, distinguishing individ-
ual objects becomes increasingly challenging. This is re-
flected in higher WRMS values and reduced confidence
in the generated hypotheses

When considering a spacing of ∆Θ = 5◦ while dou-
bling the ∆v to 20 cm/s, the results for T2T associa-
tion, manoeuvre estimation and subsequent scoring re-
main nearly identical to those observed in the case with
∆v = 10 cm/s. This suggests that the association
algorithms are less sensitive to manoeuvre magnitude
compared to changes in satellite proximity. However,
when analysing the combined effect of a close spacing of
∆Θ = 1◦ and an increased ∆v of 20 cm/s, the results pre-
sented in Tab. 11 are obtained. All of the promoted hy-
potheses exhibit low errors, with both WRMS and scor-
ing values close to the optimum. As expected, the T2T
association rate further declines due to the increased ma-
noeuvre magnitude, leading to a reduced T2T success
rate of only 50% and a notable increase in false positives
during the T2T process. However, with a single excep-
tion, all miscorrelated tracks are successfully discarded
after the manoeuvre estimation, during the WRMS and
∆v pruning stage.

In the following scenario, the impact of doubled radar
noise on association performance is examined. Using the
previously discussed case as a baseline, this scenario in-

Table 11. Statistics of the performance metrics for pro-
moted hypotheses in the test case with a satellite spacing
of ∆Θ = 1◦ and ∆v = 20 cm/s.

S ε∆v[%] εtM [min] WRMS TP
A1 0.996 0.62 -0.36 1.025 ✓
A2 0.992 4.3 -2.54 0.975 ✓
A3 0.991 1.5 2.18 1.069 ✓
A4 0.99 0.78 1.24 1.099 ✓

troduces additional complexity due to close satellite prox-
imity, high manoeuvre magnitude, and increased sensor
noise. While the T2T association rate remains around
62%, the accuracy of T2O correlation and manoeuvre es-
timation is significantly degraded, leading to eight false
positives and multiple ambiguous cases. To identify and
discard these false positives, it is essential to prune the
hypotheses and subsequently employ the SoftMax score.
As shown in Tab. 12, the estimation errors are consid-
erably larger than in the previous cases. The WRMS on
the other hand remains around one, as the increased noise
is accounted for when computing the residuals. Despite
these challenges, the pipeline successfully promotes most
of the optimal hypotheses, albeit with a notable reduction
in overall accuracy compared to less noisy scenarios.

Table 12. Statistics of the performance metrics for pro-
moted hypotheses in the test case with a satellite spacing
of ∆Θ = 1◦, ∆v = 20 cm/s and doubled radar noise.

S ε∆v[%] εtM [min] WRMS TP
A1 0.959 17.26 -109.97 1.166 ✓
A2 0.994 2.42 -0.25 1.067 ✓
A3 0.998 3.05 1.5 0.991 ✓
A4 0.976 9.09 26.02 1.147 ✓

Finally, we evaluate the impact of using fewer tracks
during the association on its performance. In all previ-
ously presented cases, each T2T association consisted of
four distinct tracks, whereas in the following results, only
three tracks were used. Reducing the number of tracks
inherently limits the information available in the T2T as-
sociation, leading to degraded manoeuvre estimation and
a subsequent decline in the accuracy of correlations with
known objects. For this scenario, the T2T association
rate is approximately 54%, with the association results
detailed in Tab. 13. Compared to the previously anal-
ysed case with four tracks, the number of false positives
increases by nearly 60% due to the heightened uncer-
tainty introduced when relying on only three tracks. As
the manoeuvre estimation process relies on the residuals
of observations to accurately determine manoeuvre pa-
rameters, the reduction in available information increases
uncertainty, leading to less precise estimation. Despite
this, the correlation process remains effective, success-
fully promoting the correct hypotheses. However, the re-
duction in track count introduces significant errors, par-



Figure 15. Hypotheses with the corresponding relative errors of the estimated ∆v and manoeuvre epochs tM , for the test
case with a satellite spacing of ∆Θ = 5◦.

ticularly in the estimated manoeuvre epoch and magni-
tude. A comparison between Tab. 11 and the promoted
hypotheses in the current scenario clearly demonstrates
this degradation, with the most pronounced discrepancy
observed in the manoeuvre epoch estimation.

Table 13. Statistics of the performance metrics for pro-
moted hypotheses in the test case with a satellite spacing
of ∆Θ = 1◦, ∆v = 20 cm/s and three tracks per T2T.

S ε∆v[%] εtM [min] WRMS TP
A1 0.992 0.35 -0.45 1.116 ✓
A2 0.994 3.36 2.02 0.919 ✓
A3 0.99 3.35 19.89 1.028 ✓
A4 0.946 22.8 -109.42 1.207 ✓

5. CONCLUSIONS

This paper has presented three promising strategies de-
veloped to improve cataloguing capabilities of tracking
and survey. All of them have in common the develop-
ment of simplified algorithms for propagation to fit op-
erational requirements and their focus on the catalogu-
ing processes. A series of use cases have been defined
to prove their validity, specifying the assumptions and
their limitations. Thus, future works will be conducted
aiming to cover the identified missing points, which in-
clude: the use of real instead of simulated data for val-
idation, expand the considered test cases with different
scenarios and orbital regimes, and adapt the methodolo-
gies to more complex conditions such as low-thrust ma-
noeuvring, which was covered in the sequential filter-
ing method but not in the rest. Nevertheless, the use
cases presented in this paper show the potential of these
methodologies to improve the reliability, availability and
accuracy of the space object catalogues. In fact, these ap-

proaches have served as a starting point for the develop-
ment of more complex solutions within different projects,
which try to solve these gaps and are expected to be im-
plemented in the future in operational services.
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