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ABSTRACT

The problem revolving around the status of the near-Earth
environment is complex and ever-changing, requiring a
collective effort to monitor the evolution of the resident
space object population from both institutions and indus-
try. Reaching a comprehensive Space Situational Aware-
ness has thus become of utmost importance, due to the
immediate effects on every phase of a space mission,
from its design to the operations foreseen after its deploy-
ment. A fundamental aspect involved in the surveillance
and tracking of space objects is taking operational ones
into account in terms of their manoeuvring capabilities.
Actively controlled objects can, in fact, hamper the cor-
relation of new tracks, leading to false or missed associa-
tions, and reduce orbit determination accuracy, introduc-
ing unmodeled contributions to the assumed dynamics.
One way of addressing the problem consists in charac-
terising the pattern of life of operative objects in terms
of manoeuvres in order to understand how likely it is for
a target to be actively controlled within a specific time
frame. The main showstopper identified in the literature
is the shortage of manoeuvre histories used to generate
labels for supervised learning algorithms. This severely
reduces a method’s generalization capability. The cur-
rent work aims to overcome this limitation by resorting
to unsupervised learning techniques commonly used for
anomaly detection purposes to identify manoeuvres with
no prior information on the target’s control history via a
sequential autoencoder. The proposed application con-
siders ballistic motion as the ‘normal behaviour’ while
identifying manoeuvring arcs as out-of-nominal samples.

Keywords: Maneuver detection; Space Surveillance and
Tracking; Machine Learning; Autoencoder.

1. INTRODUCTION

With the wide availability of services for humanity and
scientific research that rely on near-Earth space, the num-
ber of space objects, both operational and debris, has
significantly grown in recent years. A key actor in this
framework is represented by satellite constellations, par-
ticularly focusing on the Low Earth Orbit (LEO) region
to provide everyday large-scale services, such as a ro-
bust Internet connection. These space objects are usually
able to manoeuvre routinely to ensure proper orbit main-
tenance and collision avoidance. Given that manoeuvres
plans are often not available to the public, space traffic
becomes increasingly complex to manage and coordinate.
Preserving space safety is, in fact, one of the most chal-
lenging and critical current objectives of the space tech-
nology field, as evidenced by the presence of various pro-
grams aimed at ensuring complete and responsive Space
Situational Awareness (SSA). One of the most effective
ways to achieve this is represented by Space Surveillance
and Tracking (SST) activities for Resident Space Object
(RSO) catalogue maintenance. Among them, the accu-
rate and timely recognition of maneuvers performed by
uncooperative objects in orbit around Earth is key to sup-
porting the increasing population of active targets. An
inevitable consequence of this kind of activities is that
large amounts of structured data at different refinement
stages are stored as by-product of SST measurement pro-
cessing pipelines. This tendency has allowed data-driven
algorithms, and machine learning in particular, to play
a significant role in this branch of research, enabling
the automation of several steps composing the detection
and tracking process. This category of methods comes
into play whenever model-based techniques are not vi-
able to describe a phenomenon, the reason often being
some key information is missing (i.e. anomaly detec-
tion, manoeuvre estimation), or whenever they are not
convenient in terms of computational costs. This work
investigates the former case, elaborating on how machine
learning techniques can be applied to detect active con-
trol from a target orbital history. Leveraging the target’s
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past behaviour provides critical context for assessing its
maneuvering probability within a given time frame. Sev-
eral studies have performed statistical analyses on or-
bital data histories to identify events indicative of ma-
neuvers. Traditional approaches often rely on statistical
techniques and combinations or transformations of Ke-
plerian osculating elements, using deviations from a lo-
cally fitted curve or their time derivatives as maneuver
detection metrics [20][14]. However, these methods typi-
cally require case-dependent threshold tuning, necessitat-
ing continuous monitoring. An alternative approach pro-
posed in [17] attempts to address this limitation through
automated threshold adaptation. Machine learning tech-
niques try to address this very limitation, emerging as a
promising solution by leveraging large datasets of cata-
loged RSO information to encode maneuver-related vari-
ations and patterns for classification. Both unsupervised
learning methods, such as clustering based on variation
magnitudes [3], [19], and supervised techniques, includ-
ing Support Vector Machines and Random Forests [25],
[7], as well as deep learning architectures like Convolu-
tional [6], [23] and Recurrent Neural Networks (RNNs)
[5], have demonstrated significant potential. Notably,
RNNSs show promising results when their predictive ca-
pabilities are integrated with detection or classification
mechanisms to anticipate maneuvers within a specified
time horizon. In contrast to standard neural networks
handling a single sample of features per training itera-
tion, RNNs have the capability to take sequentiality into
account via a hidden state, allowing them to process
and interpret input time series more effectively. In or-
der to determine which RNN variant best fits maneuver
detection, an example of model comparison is reported
in [1], assessing LSTM, Bi-LSTM, and GRU-based ar-
chitectures in terms of control action identification from
Cassini’s trajectory. In general, a significant limitation
to this set of methods is the fact that they are based on
labeled data, meaning that the history of past manoeu-
vring events must be available for them to start a train-
ing process. This is not always the case, and while some
manoeuvre databases are available online (such as the In-
ternational Laser Ranging System (ILRS) ') they cover
a restrained subset of targets. Therefore, a lot of trust is
put on the model capability to generalise on such com-
plex and regime-dependent phenomenon. A workaround
to this shortcoming comes from a different approach to
the topic stemming from anomaly detection literature. As
stated in [18], there are several criteria which the identifi-
cation of out-of-nominal behaviour can be based on, from
clustering and density estimation to reconstruction and
distance-based techniques. Among them, reconstruction
error can surely benefit from data-driven models trained
on a given past nominal behaviour, and autoencoders in
particular prove to be a suitable solution for a wide range
of tasks [8] [29]. An application of this concept to ma-
noeuvre detection is reported in [13], where this architec-
ture is exploited to recognize manoeuvres as anomalies in
orbital data. The main limitation characterising this class
of methods is the choice for a threshold to flag a sample as
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anomalous. Building on this research direction, this work
explores the use of a Long Short-Term Memory (LSTM)
autoencoder, specifically designed to process sequential
data and capture temporal dependencies as a data-driven
way of reconstructing the ballistic motion of a target. A
manoeuvre is identified whenever an anomaly is detected.
The combination of data-driven modelling and unsuper-
vised thresholding, and the decoupling between training
and testing targets (a debris and an active satellite respec-
tively) represent the main contributions of the work. The
analysis reported in this paper is constrained to typical
maneuvers performed by Low Earth Orbit (LEO) objects,
primarily aiming at orbit-raising and plane-preservation.
This focus is driven by the limited availability of publicly
accessible maneuvering records, sourced from the Inter-
national Laser Ranging System (ILRS) database, with
which the proposed method is tested.

2. FUNDAMENTALS

This section details the mathematical principles and tools
that are employed to build the proposed manoeuvre de-
tection method, starting from a description of the TLE
data format to the unsupervised learning architecture cho-
sen for the application.

2.1. Two-Line Element Set

The TLE is a data format consisting of orbital elements
and information about an RSO at a given epoch. It usu-
ally consists of two 69-character lines of data that can
be properly processed to extract the orbital state (posi-
tion and velocity) of the target. A typical TLE (Time and
Location Ephemeris) consists of two lines of data, each
containing 69 characters. These lines can be processed to
calculate the RSO’s mean orbital parameters in the geo-
centric coordinate system True Equator Mean Equinox
(TEME). Additionally, this file format provides the value
of B* (BSTAR), which is an adjusted value of the ballis-
tic coefficient based on the reference atmospheric density
value, at one Earth radius. It’s important to note that B*
is not a physical quantity and typically includes all contri-
butions that are not accurately modeled by the dynamics.
As reported in [27], TLE files originate from an Orbit De-
termination (OD) process that utilizes observations from
various sensors belonging to a known RSO. These ob-
servations are typically collected multiple times daily to
update the target orbit in the catalog. This process neces-
sitates the use of a specific propagator and a dynamical
model selection to propagate a reference state, which en-
capsulates the latest orbital information about the object,
to the observation epochs. Among the catalog mainte-
nance activities, the Simplified General Perturbations-4
(SGP4) [12][28] is the most commonly employed propa-
gator.



2.2. Manoeuvres and Orbital parameters

Any adjustment to the orbit that is due to active control
can be achieved by altering a satellite’s velocity [26]. As
a result, analysing changes in orbital parameters can pro-
vide insights on the occurrence of maneuvers, and if there
are noticeable variations in the orbital elements across
time, a detection can be performed. Following a per-
turbed orbital dynamics [26], when a sudden velocity
change Av is applied at any firing point during a near-
circular orbit, it simultaneously alters the orbital elements
of the satellite, as reported in the following set of equa-
tions.

Aa = %Avr
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Where q, €, i, w, 2 represent, in order, semi-major axis,
eccentricity, inclination, argument of pericentre and the
right ascension of the ascending node; f stands for any
chosen point along the orbit in terms of true anomaly
while n is the mean motion, and Awv,,, Av,., Av, denote
the impulsive velocity in the transverse, radial, and nor-
mal directions, respectively.

2.3. Machine Learning Algorithms

When dealing with large, structured datasets character-
ized by complex feature interactions and intricate distri-
butions, machine learning provides an effective approach
for extracting underlying patterns and insights. Most ma-
chine learning techniques rely on an optimization pro-
cess, commonly referred to as training, where a model’s
parameters are iteratively adjusted to best fit the avail-
able data. Once trained on a sufficiently representative
dataset, the model can generalize and infer information
about unseen data from the same distribution.

This work specifically focuses on the application of Neu-
ral Networks (NN), a class of machine learning mod-
els that construct modular functions composed of inter-
connected neurons organized in layers to approximate a
given data distribution. While neural networks are pri-
marily used for regression and classification, they en-
able a broad range of advanced tasks, from computer vi-
sion to anomaly detection and error prediction. At their
core, neural networks operate through individual neurons
(shown in Fig.1), which apply a weighted linear trans-
formation to the input, followed by a non-linear activa-
tion function, expressed as g(Wx + b). These neurons
are arranged into layers, each capturing features at vary-
ing levels of abstraction. As deeper architectures allow

for better modeling of complex, non-linear patterns, they
require increased computational resources, placing them
within the domain of Deep Learning.
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Figure 1. The figure shows a basic neuron architecture,
mapping a linear combination of weights w; and input
features x; through a non-linear activation function g

Given the sequential nature of orbital history data, this
study focuses on Recurrent Neural Networks (RNNs), a
specialized class of neural networks designed to capture
temporal dependencies by maintaining a hidden state that
propagates information through time [11]. RNNs pro-
cess input sequences by updating their hidden state h;
based on both the current input x; and the hidden state
h;_; from the previous time step. RNNs are known to
have one main limitation concerning their inability to en-
code long-term time dependencies due to vanishing errors
used to build the loss function during back-propagation
across time steps. With their information content fading
progressively, the associated training times increase. A
widely used solution to this issue is represented by the
LSTM cell, an alternative basic unit to build an RNN, en-
abling selective preservation of the long and short-term
information content that affects the current time step by
using different gates (with corresponding weights and bi-
ases) and a memory cell c to filter and modulate the infor-
mation according to its source and distance in time [10].
The internal structure of the LSTM cell is made up of 3
gates with different roles, interacting with each other:

* the input gate i, taking information from the previ-
ous hidden state h;_; and current input x;;

* the output gate o4, with a similar structure but inde-
pendent weight and bias terms;

* forget gate f;, modulating information according to
hidden state distance in time.

The above-mentioned sequential model is thus used as
building block for an autoencoder. This architecture con-
sists of a specific structure designed for unsupervised
learning tasks. It aims at two main objectives: encod-
ing the input data into a concise, understandable latent
representation, and then decode it to restore the original
input. Autoencoders are thus trained to identify hidden



combination of variables derived from the input data that
effectively represent the distribution of the data, but are
not readily observable. This is what the latent space is:
a summarised representation composed of a collection
of latent variables tailored to a particular input dataset.
Throughout the training process, the autoencoder gains
knowledge about which latent variables work best for ac-
curately recreating the original data, following the typical
optimisation of a specific cost, usually the Mean Squared
Error (MSE) loss function. Only the most effective de-
tails are thereby filtered from the original input by this
latent space representation. Despite differing in code di-
mension, number of layers, number of nodes and the loss
function, all autoencoder variants share the core struc-
tural components displayed in Fig.2.
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Figure 2. The scheme shows the symmetrical architecture
of an autoencoder.

The application for which this network is used in the pro-
posed technique focuses on its reconstruction capabili-
ties so that a reliable check on anomalies can be set up
by analysing the reconstruction error magnitude. This
means that a a threshold has to be selected to distin-
guish between anomalous and nominal data. In this case,
this is done by means of an unsupervised clustering al-
gorithm, namely the K-Means. It is an unsupervised
machine learning algorithm designed to divide a dataset
into distinct groups, or clusters, based on the similari-
ties among data points [9]. The algorithm aims to group
points such that those within the same cluster are more
alike than those in different clusters. This approach is es-
pecially effective for uncovering hidden patterns or struc-
tures within the data.

The K-Means algorithm begins by selecting a fixed num-
ber of clusters, denoted by k. The main steps of the pro-
cess are as follows:

1. k initial centroids (or centers) are chosen, either ran-
domly or based on specific criteria, to represent the
starting point for each cluster.

2. every data point is allocated to the nearest centroid,

typically measured by Euclidean distance, conse-
quently grouping points.

3. for each cluster, a new centroid is computed by find-
ing the mean of all points assigned to that cluster.
This new point is used as updated centroid in the
next iteration.

4. the algorithm repeats steps 2 and 3 until the cen-
troids coordinates do not change significantly or a
maximum number of iterations is reached.

The final output is a partition of the dataset into k clusters,
each represented by a centroid that captures the average
or center of the points within that cluster.

3. DATA AND ALGORITHM

This section provides a thorough description of the data
employed to train and deploy the manoeuvre detection
models together with the processing pipeline involved to
achieve the results.

3.1. Data analysis and pre-processing

To identify spacecraft maneuvers based on their unla-
beled Pattern of Life, a preliminary analysis of the orbital
data extracted from TLEs is conducted. The objective is
to gain a preliminary understanding of the types of ma-
noeuvres performed and to identify correlation between
changes in orbital parameters and maneuver events. The
selected Keplerian elements for the study are a, e, 7, w,
chosen to provide comprehensive coverage of impulses
both in-plane and out-of-plane. Moreover, an unconven-
tional analysis of the B* parameter extracted from the
TLE data reveals the (expected) correlation between pe-
riods of heightened solar activity during solar cycles 24
and 25 [2] and increased B* values, as Fig. 3 shows.

This relationship underscores the role of B* as an indica-
tor of aerodynamic drag within the SGP4 orbital propaga-
tion model but rather it is able to reflect the environmen-
tal disturbances affecting an object. In the case at hand it
hints at the necessity for a satellite to perform maneuvers
more or less frequently to maintain its orbit, particularly
in LEO. For this reason it is included among the features
on which to train the network.

The data are retrieved from TLEs as a set of dictionaries
containing lists of epochs covering the observed period,
analysed orbital elements, and Cartesian states for each
object. A filtering phase is first carried out after extract-
ing orbital data from the TLEs. It consists of discard-
ing the Launch and Early Orbit Phase (LEOP) of the tar-
get’s history and then ensuring that duplicate values cor-
responding to the same orbit determination process (usu-
ally the latter being a correction of the former [17]) are
removed from the dataset. Next, the data sequence is
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Figure 3. Sen3A B* evolution
split into training, test, and validation sets, following a Layer O}ltPUt S.hape
70/20/10% rule. Each subset is then scaled via a Stan- InputLayer  (None, WindowSize, Features)
dard Scaler [21], ensuring that the features exhibited by B}-LSTM (None, WindowSize, 16)
every parameter span comparable ranges of values. The Bi-LSTM (None, 8)
final step of data pre-processing reshapes the data into z (None, 8) -
finite-size sequences and organize them into a 3-D for- RepeatVector (None, WindowsSize, 8)
mat. This enables the neural network to learn from the B}-LSTM (None, Wmdow&ze, 8)
temporal patterns within the data, which is crucial for de- Bi-LSTM (None, WindowSize, 16)
tecting maneuvers and anomalies in orbital parameters. OutputLayer  (None, WindowSize, Features)

The sequence length is set at 6, based on a trial and error
process, as this length has to balance the need for accu-
rate anomaly detection and the ability of the network lay-
ers to preserve sequential information. Each sequence is
thus defined by 6 consecutive sets of elements, that over-
lap for the most part across the entire dataset, following a
moving window algorithms with unitary stride. The input
shape is (IV, 6, 5), where N represents the total number of
sequences, 6 is the number of samples per sequence and
5 corresponds to the number of selected features a, e, i,
w, B*.

3.2. Network Design and Training

The procedure proposed for this work involves training
a Bidirectional LSTM (Bi-LSTM) autoencoder on a tar-
get set of nominal data, where the RSO under analysis
is expected to exhibit a purely ballistic behaviour. This
allows the model to learn how to accurately reconstruct
the input data as far as no active control is applied to the
target. The selected neural network design to accomplish
the task is based on Bi-LSTM layers, allowing for the
model to encode the same sequence both forwards and
backwards in time by doubling the weights associated to
a typical LSTM cell [24]. A single architecture, reported
in Tab.1, has proven to be a good fit for every scenario
composing the testing campaign.

As for the training process, it is based on the optimisa-
tion of an MSE loss function, minimising the residuals
between the reconstructed input and the actual one, as re-
ported in the following equation:

F

N
1 % 2
MSE = 575 2 2 2 (Xnes = Xnis)* @
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Table 1. Bi-LSTM autoencoder model. N one represents
the dynamic dimension of a batch

Where X, ; ; is the original input sample, X, ; ¢ is the
one reconstructed by the autoencoder, and N, 7', and F
are respectively the number of sequences, the number of
samples per sequence, and the number of considered fea-
tures.

The optimisation algorithm selected for the training
phase is Adam [15], representing the state of the art in
terms of gradient descent-based methods, with an expo-
nential decay law set on its learning rate.

3.3. Testing and Detection

Once the training phase is concluded, the models are
tested on data that contain a mix of manoeuvring and bal-
listic trends to assess the presence of anomalies in the
reconstruction error of the only semi-major axis. Since
the neural network is tasked with reconstructing the mul-
tivariate input sequences, the reconstruction error is mea-
sured for each sequence and for each feature as a MSE:

1 T

AS =) (X — Xi)?

t=1

3)

where X is the original sample, X, is the reconstructed
one, and 7" is the number of samples per sequence. AS is
therefore defined as Anomaly Score associated with the
central epoch of the specific sequence on which the MSE
is calculated, providing a figure for each time sample and



feature, and allowing for a temporal analysis of the recon-
struction error’s evolution. By examining the Anomaly
Score profiles for each test performed, their characteris-
tic jagged patterns are observed, with peaks correspond-
ing to intervals where the network struggles to reconstruct
the input. Among the compared curves, the one describ-
ing the semi-major axis is selected as the basis for a sub-
sequent data post-processing procedure. This is because
of the established one-to-one relationship between peaks
and maneuvers, making it evident even to the naked eye
the difference between normal data and anomalies. To
verify the detection capability of the autoencoder model
and to automate this process, thresholding is applied to
the AS curve referring to this parameter.

When it comes to the detection procedure adopted there
are 2 scenarios that have been applied to the same set of
known RSOs.

The first one consists in a semi-supervised scenario, ex-
ploiting objects with publicly available manoeuvres to
cherry-pick ballistic data between them and train the net-
work to recognise that kind of behaviour as the nominal
one. Once this is done, during the testing phase of the al-
gorithm, the original version of the dataset (including ma-
noeuvring arcs) is fed to the trained model in order to un-
derstand whether active control generates peaks in the re-
construction error trend. In this case, the model is trained
with data coming from an active satellite, Sentinle-3A
(Sen-3A)m while the testing phase is performed on both
Sen3A and Sentinel-3B (Sen3B) data to preliminarily as-
sess the network’s generalisation capabilities as well. In
order to automatically classify the reconstruction error
sequence of the semi-major axis, a threshold is set across
the entire test distribution, defined as three standard devi-
ations around the mean AS value (1 + 30) of the training
set (assumed nominal), corresponding to a 99.7% confi-
dence level on detecting anomalies. This simplified sce-
nario is conceived to assess the performance of the au-
toencoder architecture selected as well as the effective-
ness of the anomaly score formulation.

The second scenario, instead, represents the operative,
unsupervised version of the technique. In order to make
the training of the autoencoder independent of prior
knowledge about the occurrence of manoeuvres through-
out a target’s history, a set of debris is selected with orbits
that are as similar as possible to some pre-selected targets
so as to have a training set featuring purely ballistic mo-
tion only. The test set is thus performed on the active
satellites of interest in a way to obtain a background AS
related to the orbital difference and peaks correlated to
manoeuvring events. In this case, a set of quasi-polar de-
bris from the NOAA16, NOAA17, CZ-4, CZ-4B, CZ-4C,
Deltal, DMSP-5D and Fengyun-1C missions is selected
to train the model. The trained network is then tested
on Sen3A, Sen3B, Cryosat-2, Envisat and Saral. This
time, to guarantee anomaly classification, a different ap-
proach is required compared to the previously described
scenario. This is because the values of orbital parameters
used during training (related to debris) are significantly
different from those used to perform testing (belonging

to active satellites), and the fixed threshold defined by a o
factor-based method only would be too low to effectively
separate anomalies. To address this issue, a two-step ap-
proach is employed. First, a 1D K-Means clustering algo-
rithm is applied to the each test set to characterise the AS
(the reconstruction errors on the semi-major axis) corre-
sponding to nominal data. This selection is performed by
identifying the most populous cluster among those that
partition the set of AS. The reconstruction errors are in-
tended to be divided into 2 up to 4 clusters, in accordance
with the expected range of maneuver intensities that the
satellites under analysis can reach. Once the nominal
data are isolated, the o factor thresholding technique is
applied to the extracted distribution, and a boundary be-
tween nominal and anomalous is finally established.

4. RESULTS

This section delves into the details of the models perfor-
mance assessment, describing the scenarios employed to
establish how well the model is able to detect manoeu-
vres, starting from the semi-supervised scenario to the
unsupervised one. The presented results are based on
objects whose manoeuvres are publicly available, so by
knowing the ground truth epochs, the detection results
can be evaluated with the typical metrics used for clas-
sification tasks, being Precision (P), Recall (R) and F1
Score, defined as follow:

TP
P=_ " 4
TP+ FP @)
TP
R=TprFN ©®)
2PR
Fl=
P+R ©

Where TP, F'P and F'N are true positives and false pos-
itives and false negatives respectively.

4.1. Semi-supervised Manoeuvre Detection

Tab.2 summarises the results of the network configura-
tion associated to the first scenario of Sec.3.3. In this
case, the model is trained on ballistic-only Sen3A data
and tested on both the original Sen3A and Sen3B data se-
quence. The classification metrics values reported prove
a performance level that is deemed compatible with the
application, showing also encouraging results in terms of
generalisation.

By examining the peaks in Sen3A semi-major axis
Anomaly Score profiles caused by maneuvers displayed
in Fig. 4, it is clear how sensitive the model is to any phe-
nomenon that is not included in the ballistic subset of data
used during the training process. The spikes are well-
defined and localized, distinctly separated from nominal



Precision  Recall F1 Score nominal data (in blue) from the others is evident, clearly
Sen3A  0.9565 1.000  0.9778 helping the subsequent thresholding step in being as sen-
Sen3B  0.9200  0.9857  0.9517 sitive and precise as possible.

Table 2. Semi-supervised method classification metrics
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data, meaning that the adopted o-based thresholding rep-
resents a suitable solution.
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Figure 4. Sen3A semi-major axis Anomaly Scores and
classification

In a preliminary attempt to characterise various types of
maneuvers, at least distinguishing between in-plane and
out-of-plane ones, a comparison is proposed between the
AS of the semi-major axis and inclination, reported in
Fig.5. In this specific case, the approach proves effective
as the peaks in the inclination AS curve can clearly pro-
vide contextual information whenever the detected ma-
neuvers involve the out-of-plane direction.
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Figure 5. Sen3A semi-major axis Anomaly Scores and
classification
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4.2. Unsupervised Manoeuvre Detection

The results of the model referring to the second scenario
in Sec.3.3, trained on a set of debris characterised by or-
bits that are similar to the target ones prove to achieve
performance that are comparable to the semi-supervised
case when tested with Sen3A and Sen3B. This holds re-
gardless of the number of clusters selected to carry out the
post-processing phased on the semi-major axis AS and
the consequent thresholding applied to detect anomalies.
Looking at the example in Fig. 6, where the reconstruc-
tion errors are split into 4 clusters, the clear separation of
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Figure 6. Sen3A 1D K-Means clustering clusters=4

The classification metric values for the Sen3A and Sen3B
tests are reported in Tab.3, showing results that are
deemed satisfactory for the application.

Precision Recall F1 Score
Sen3A 0.9825 0.9333 0.9573
Sen3B 0.9718 0.9583 0.9650

Table 3. Unsupervised method classification metrics

Moving on to the tests conducted on Cryosat2 and En-
visat, maneuver detection capabilities are highly influ-
enced by the quality of the parameters extracted from
TLE data. These profiles exhibit a different maneuver
pattern and greater noise compared to the Sentinel satel-
lites. As a result, the maneuvers are less distinguishable
from the ballistic data. Thus, given this restrained level
of resolution in the manoeuvre-related peaks in the semi-
major axis AS trend, Selecting an optimal number of
cluster becomes crucial to achieve a suitable threshold-
ing process on the reconstruction error.

Precision Recall F1 Score
clusters=2 1 0.6311 0.7738
clusters=3 0.9667 0.8447 0.9016
clusters=4 0.9438 0.8485 0.8936

Table 4. Cryosat2 unsupervised method classification
metrics

The results in Tab. 4 demonstrate the model’s ability to
detect maneuvers for Cryosat2, with the best performance
achieved by subdividing the reconstruction errors into 3
clusters. As shown in Tab.5, anomaly detection for En-
visat is significantly worse compared to previous tests,
and the model cannot be considered reliable. This is pri-
marily due to the noise and significant irregularity char-
acterizing the evolution of the input parameters, as well
as a wider range of maneuver intensities. To highlight the
importance and the impact of input data quality on both
data reconstruction and subsequent anomaly detection, an
additional example is provided using test data from the
Saral satellite. In this case, as shown in Fig.7, there is a
clear and localized transition in the extracted parameters
going from noisy to smooth.
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Precision Recall F1 Score a preliminary maneuver characterisation assessments. As

clusters=2 0.8333 0.3529  0.4958 for the the semi-supervised testing campaign, employing

clusters=3 ~ 0.7273  0.4494  0.5555 Sen3A and Sen3B satellites, the main outcome consists

clusters=4  0.6835  0.6353  0.6585 in the fact that the Bi-LSTM autoencoders, trained on

Table 5. FEnvisat unsupervised method classification
metrics

This shift results in a corresponding variation in the abil-
ity of the model to reconstruct normal data, as shown in
Fig.g8.
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5. CONCLUSIONS AND FUTURE DEVELOP-
MENTS

The work described in this paper represents a first step
towards unsupervised manoeuvre identification, show-
ing how plugging clustering algorithms to the autoen-
coder architecture can lead to an almost completely au-
tonomous detection pipeline. The orbital data selected as
feature vector, [a, e, i,w, B*] prove to be well suited for
training the autoencoder, and the choice of short temporal
sequences as input proves useful in identifying maneu-
vers, distinguishing them from nominal data. The semi-
major axis, due to its step-like behavior when it comes to
LEO objects (mostly performing orbit maintenance ma-
noeuvres), proves as the most effective parameter for de-
tecting active control by analysing the reconstruction er-
ror trend. Meanwhile, inclination can complement it for

— Anomaly Scores [km~2]

ballistic data from operational satellites, perform excep-
tionally well in telling manoeuvres apart from nominal
data. Moreover, when paired with the reconstruction er-
ror post-processing step via clustering-based approaches,
training the autoencoder with data from debris of a family
of similar orbits proves effective to detect manoeuvres as
anomalies of a purely ballistic behaviour. As far as satel-
lites belonging to the same orbital family are concerned,
the outcomes on the proposed methodology generalisa-
tion capabilities are encouraging. Nevertheless, employ-
ing Keplerian element profiles obtained from TLE data
that contains errors or noise results in reconstruction in-
accuracies.

With these considerations, it is possible to identify ideas
for future developments. One area to work on is the de-
pendency of the results on the quality of the input data:
a possible workaround could be to investigate how noise
filtering techniques can interact with the rest of the pre-
processing pipeline in a way that the profiles do not lose
their distinguishing features. Additionally, it would be
useful to extend the number of satellites with known ma-
neuvers for the testing phase, evaluating the effectiveness
of the method even in cases involving objects from differ-
ent orbital regimes, implying different maneuver patterns
as well. Finally, an alternative advancement that would
change the way the autoencoder architecture is exploited,
could be to leverage the feature extraction capability of its
encoder section and train it on a large dataset, to use the
resulting latent space as input for a classification-aimed
neural network.
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