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ABSTRACT 

The Aerospace Corporation’s Aerospace Debris 

Environment Projection Tool (ADEPT) models the 

evolution of the on-orbit debris environment based on 

different levels of space traffic and debris mitigation 

practices. ADEPT’s unique modeling process allows for 

hundreds of future environment simulations to be run 

simultaneously. In 2019, Uncontrolled Mass per Year 

(UMPY) was developed to characterize the “level of 

activity” exhibited across these simulations and evaluate 

how certain behaviors might influence the future debris 

environment. Since then, UMPY has undergone multiple 

changes to improve the correlation between operational 

behaviors and their environmental impacts. 

This work explores the process of designing the UMPY 

index, starting from its initial implementation. The 

decision to use mass and lifetime as proxies for collision 

severity and risk comes after testing the use of other 

object parameters, including cross-sectional area and 

altitude. Later changes were made to better account for 

the environmental impact of successfully disposed 

objects and the non-linear effect of lifetime on collision 

probability. Results from over one thousand ADEPT 

simulations are used to compare how well different 

UMPY formulations correlate to different environmental 

metrics. Other commercial indices are also examined and 

compared to UMPY. 

1 INTRODUCTION 

Space activity has experienced significant growth over 

the past few years, driven by increasingly affordable 

access to Low-Earth Orbit. In response, new debris 

mitigation and space traffic management initiatives have 

been developed by multiple organizations worldwide. 

Evaluating these new propositions requires metrics to 

quantify their potential effectiveness; one approach is to 

directly use information present in observed or simulated 

data, such as object count or on-orbit mass. A more 

nuanced approach is to use an environmental index that 

simultaneously incorporates multiple aspects of the 

debris environment through a combination of various 

spacecraft, mission, and environmental parameters. 

Dozens of such indices have been published, each 

focused on different aspects of the space debris 

environment. Some characterize the stability of the 

environment [1] while others address the environmental 

risks posed by specific missions [2] or derelict objects 

[3,4]. 

One such environmental index is Uncontrolled Mass per 

Year (UMPY). UMPY was developed as a simple way to 

characterize and compare the results of future 

environment simulations. Previous studies [5,6,7,8,9] 

have shown strong correlations between UMPY and 

various environmental metrics, including population 

growth, collision rates, and conjunction frequencies. 

Through these correlations, UMPY can be used to predict 

how certain behaviors, such as post-mission disposal 

methods, might influence the future debris environment 

without the use of simulations. Furthermore, UMPY 

could serve as a target threshold for specific operators to 

ensure sustainable space operations. 

UMPY has evolved since its introduction in 2019 [5]. 

This work explains each design decision made when 

developing UMPY, starting with the initial parameter 

selection process. This work uses simulation results from 

The Aerospace Corporation’s Aerospace Debris 

Environment Projection Tool (ADEPT), which has 

previously been used to inform U.S. and International 

Space Traffic Management and debris mitigation policy. 

The results from over one thousand future environment 

simulations are used to determine how well each 

formulation correlates to different environmental 

metrics. Furthermore, two simple regulatory metrics and 

one orbital capacity index are studied to evaluate how 

effective each is relative to the simulation results. 

2 AEROSPACE DEBRIS ENVIRONMENT 

PROJECTION TOOL 

The ADEPT simulation process generates 

representations of the future on-orbit environment using 

a population model containing mass, size, and trajectory 

data for a complete set of Earth orbiting objects. Early 

versions of ADEPT are described in [10] and [11]. 

Recent enhancements to the Monte Carlo processing loop 

and details regarding the different components and flow 

of ADEPT are described in [7] and [12]. In brief: 
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1. An initial population model (IPM) is generated, 

containing known catalog objects and a future 

launch model (FLM). 

2. IPM object ephemerides are generated by the 

long-term, Draper Semi-Analytic mean-element 

propagator MEANPROP [13]. 

3. Future collisions are generated based on 

collision probability calculations from an orbit 

trace crossing method (OTC) [14]. 

4. The fragmentation modeling code IMPACT 

[15] is used to generate fragments from 

collisions and explosions. 

5. Fragments are fed back into the process as step 

2 to produce multiple generations of collisions 

and debris. 

Each pass through the ADEPT process produces a new 

generation of fragmentation debris. When a new 

generation of debris is fed back into the cycle, they 

interact with all other objects from previous generations, 

assuming they exist at the same simulation time. Event 

lists are created at the end of the process, containing 

information detailing interactions between each object. A 

“Schrödinger’s Cat” approach [16] is used in post-

processing to exclude any objects and breakups that don’t 

belong within the scope of a given scenario. 

2.1 Future Population Model 

The IPM and FLM used in this study were developed 

using the same methodology as previous ADEPT studies 

and are described in depth in [7]. The IPM includes all 

known catalog objects along with a set of emulated 

objects representing unknown and subtrackable (<10 cm) 

objects on orbit. The FLM included in the IPM replicates 

historical launch traffic for different orbital regimes, 

including continuously replenished constellations 

(CRCs), non-CRCs, and non-constellation objects. 

A future constellation model (FCM) containing multiple 

large LEO constellations (LLCs) is added to the FLM. 

These constellations represent future proposed systems 

gathered from public data, including Federal 

Communications Commission (FCC) filings. A 

comprehensive breakdown of the FCM model in 

presented in [9]. The constellations and launch traffic 

included in the FLM are consistently maintained 

throughout the simulation, creating a constant flux of 

satellite disposal and replenishment. 

2.2 Scenario Definitions 

Scenarios are used within ADEPT’s post-processing 

program to define the future traffic and debris mitigation 

behaviors modeled in each future environment 

simulation. The traffic level defines what subset of FCM 

are to be included in the simulation. At a given traffic 

level, scenario variants are made by modeling different 

debris mitigation behaviors such as post-mission disposal 

(PMD) success rate or control-to-reentry (C2R). PMD 

success rate affects the amount of future traffic that 

successfully reaches its disposal altitude or completes 

C2R. PMD success rate varies within the set {50, 60, 70, 

75, 80, 85, 90, 95, 99, 100}. C2R refers to a disposal 

method where operators continue to maintain control 

over satellites after disposal. This practice allows 

satellites to maintain the ability to perform collision 

avoidance (COLA) maneuvers during disposal, 

effectively eliminating the risk of collision for these 

objects. In this study, over 1,200 future environment 

scenarios are simulated, each with some unique 

combination of traffic level, PMD success rate, and C2R 

usage. Analyzing such an extensive scenario set is 

necessary to thoroughly examine the consequences that 

different operational behaviors have on the environment. 

The traffic levels used here have been described in depth 

in previous studies [7,8,9]. A detailed breakdown of the 

number and distribution of satellites for each traffic level 

is provided in Appendix A. The “Baseline” scenario set 

is defined to model a level of traffic comparable what is 

currently on orbit. “No-New” and “FCM-All” sit on the 

extreme ends of the future traffic spectrum, including 0% 

and 100% of all FCM constellations, respectively. 

“Intermediate” scenarios model incremental steps in 

activity level ranging from “Baseline” to “FCM-All” 

while maintaining a balanced distribution of traffic 

throughout LEO. The “Projection” scenarios behave 

similarly by successively adding FCM constellations by 

operator. Other traffic scenarios examine the effects of 

imbalanced traffic in high and low LEO. Finally, 

“Tiered-Deorbit” scenarios are used to evaluate the 

effectiveness of a varied ruleset for satellite disposal. 

3 UNCONTROLLED MASS PER YEAR 

UMPY was initially developed to characterize the “levels 

of activity” modeled in different future traffic scenarios. 

It was important for UMPY to create strong correlations 

between scenario activity levels and different 

environmental metrics while being computationally 

simple. By doing so, scenarios can easily be compared to 

each other in bulk to study the environmental 

consequences of different operational behaviors in a 

robust manner. 

In short, UMPY is the summation of each uncontrolled 

object’s mass after scaling by a factor related to the 

fraction of simulation time that the object exists on-orbit. 

This summation is divided by the simulation duration to 

calculate the average amount of uncontrolled mass left 

on-orbit per year throughout a simulation. Evaluating 

activity on a per-year basis also allows for studying the 

effects of continuous replenishment and disposal by large 

constellations. 

Fig. 1 shows the relationship between UMPY and the size 

of the total and trackable object population on orbit at the 
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end of the simulation. Each data point represents the 

average value across 100 Monte Carlo runs for an 

individual scenario. In total, the results of over 1,200 

scenarios are plotted in Fig. 1. UMPY values range from 

roughly 27,000 kg/yr to over 150,000 kg/yr across the full 

slate of future traffic scenarios. 

As seen in Fig. 1, UMPY and object count are strongly 

correlated. There is relatively little variation in 

population growth amongst scenarios with similar 

UMPY values. This means that given the UMPY value 

of a given scenario, the size of the debris population can 

be estimated through Fig. 1. For example, a scenario with 

an UMPY value of 90,000 kg/yr should roughly expect 

number of objects larger than 1 cm to reach 1 billion after 

100 years, with around 20 million of those objects being 

trackable. 

 

Figure 1. Object population sizes in 2120 as a function 

of UMPY4 across all scenarios 

Previous ADEPT studies [8] have shown similar 

correlations to other environmental metrics, including 

collision rates, conjunction frequencies, and launch 

window closures. Furthermore, these correlations have 

been leveraged to show that constellation operators can 

target specific UMPY values by modifying debris 

mitigation methods to achieve desired environmental 

effects [9]. 

The version of UMPY presented here was developed in 

2023 [8] as an improvement on previous versions. 

UMPY has changed significantly from its initial 

formulation [5], with each iteration improving upon the 

last. The following subsections will explore each of the 

different factors that shaped the current form of UMPY. 

3.1 Parameter Selection 

The first step of developing an environmental index is 

deciding which parameters to consider. Potential 

parameters should relate to various aspects affecting the 

debris environment, including physical spacecraft 

properties, orbital parameters, mission strategies, and 

mitigation behaviors. The best parameters to use will 

vary depending on the intended level of complexity and 

purpose behind the index.  

The goal of creating UMPY was to create a 

computationally simple index that can characterize the 

broad operational activity levels exhibited within a single 

future environment simulation. Working towards this 

goal, the simplest starting point is to consider the number 

of failed satellite disposals per year. Scenarios with the 

most future constellation activity should also have the 

highest number of satellite disposal failures, especially 

with low PMD success rates. Large amounts of debris in 

non-compliant disposal orbits should directly cause 

higher collision rates and increased debris growth. 

Satellite area and mass are also considered as candidate 

parameters. Both parameters have been shown to 

correlate with the degradation of the LEO environment 

[17,18] and are used in many different indices. The area 

of a failed satellite is directly related to its probability of 

being involved in a collision. Large amounts of 

undisposed mass should also lead to debris growth as 

mass is directly related to the number of fragments 

produced in an on-orbit breakup [19]. 

These three parameters are uncomplicated and should 

hold a lot of explanatory power. Size, mass, and area data 

are easily accessible for most constellations and does not 

require any additional modeling or estimation to 

incorporate. The parameter that best correlates with 

various environmental metrics can be identified by 

comparing each candidate across multiple future traffic 

scenarios.  

Eq. 1 describes the general form of the three Undisposed 

Parameter per Year (UPPY) indices examined in this 

subsection. tsim is the simulation duration (100 years), nfail 

is the number of failed satellites on orbit, and Pi is the 

respective value of each candidate parameter for a given 

satellite. In other words, Pi is equal to either the object’s 

count, area, or mass.  

 

𝑈𝑃𝑃𝑌 =
1

𝑡𝑠𝑖𝑚

∑ 𝑃𝑖

𝑛𝑓𝑎𝑖𝑙

𝑖=1

 (1) 

Fig. 2 shows the total object count after 100 years for 

each scenario. The “level of activity” in each scenario is 

measured through the UPPY index described by Eq. 1 for 

each candidate parameter: object count, area, and mass. 

The correlations between UPPY and total object count 

are very similar, regardless of the parameter used. The 

data suggests a quadratic relationship, as shown by each 

trendline; however, there is a significant amount of 

variance displayed in each plot. For example, scenarios 

that model roughly 2,000 undisposed satellites per year 
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Figure 2. Correlations between total (>1 cm) object count in 2120 and undisposed object candidate parameters

result in total object counts ranging from 10 million to 

over 3 billion. This level of variance makes it difficult to 

truly determine which parameter best correlates to total 

object count and must be resolved to properly identify the 

best candidate parameter. Through visual inspection, the 

variance seen throughout Fig. 2 does not appear to be 

randomly distributed. This suggests that there is some 

mechanism that is not considered in the UPPY 

formulation. 

Examining the outlier scenarios in Fig. 2 reveals the 

effect of altitude on the total object count. This effect is 

shown in Fig. 3, which highlights two sets of future 

traffic scenarios using the undisposed satellite data set 

plotted in Fig. 2. 

 

Figure 3. Effect of altitude distribution on total (>1 cm) 

object count in 2120 

The High-LEO and Low-LEO scenarios model the effect 

of having an imbalance in traffic in high-LEO (>800 km) 

and low-LEO (<600 km), respectively. Each data point 

within a scenario set uses the exact same future traffic 

model but differs in PMD success rate. A logarithmic 

scale is used on the y-axis to better display the effect of 

improving PMD success rate within a given scenario. 

The PMD trends within the High-LEO and Low-LEO 

scenarios appear to follow a curve somewhat resembling 

the trend across the full scenario set. This suggests that 

the UPPY formulation over-emphasizes the contribution 

of objects in low-LEO while under-emphasizing those in 

high-LEO.  

Eq. 2 was developed to improve on the UPPY 

formulation in Eq. 1 using these new insights. The 

UPPLY (Undisposed Parameter per Year - Lifetime) 

equation scales the value of each candidate parameter by 

the ratio of the object’s lifetime  lifei, to the simulation 

duration tsim. Note that lifetime here refers to the number 

of years an object spends on orbit within the simulation. 

This modification reduces the contribution of objects that 

fail at low altitudes and re-enter in a few years. These 

objects still pose a risk to the environment, but that risk 

is partially reduced due to the natural cleaning effect of 

the atmosphere. On the other hand, objects that fail at 

higher altitudes may remain on orbit for the full 

simulation. These objects pose a risk over a prolonged 

period fully and fully contribute to UPPLY. 

 𝑈𝑃𝑃𝐿𝑌 =
1

𝑡𝑠𝑖𝑚

∑ 𝑃𝑖

𝑙𝑖𝑓𝑒𝑖

𝑡𝑠𝑖𝑚

𝑛𝑓𝑎𝑖𝑙

𝑖=1

 (2) 

The correlations for each parameter can now be 

reassessed using the UPPLY formula. Fig. 4 displays the 

relationship between total object count and each of the 

three UPPLY indices. Introducing the lifetime scaling 

factor lifei/tsim dramatically reduces the variance in the 

object count trends compared to the results shown in Fig. 

2. A quadratic line of best fit is plotted for each index, 
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with their respective R2 and residual sum of squares 

(RSS) values listed. Of the three indices, the undisposed 

mass index has the lowest RSS value, which signifies that 

it has the strongest correlation to total object count. 

However, total object count is just one measure of the 

LEO debris environment. The best parameter should be 

strongly correlated to multiple environmental metrics. To 

do this, each of the three indices are re-evaluated using a 

new metric, trackable collision count. The trackable 

collision count measures the cumulative number of 

collisions between two trackable objects over the 100-

year simulation. Fig. 5 plots the relationship between 

trackable collision count and the three UPPLY metrics. 

Once again, undisposed mass has the strongest 

correlation as shown through comparing RSS values.   

Overall, UPPLY shows the strongest correlations when 

using mass as the candidate parameter. UMPLY 

(Undisposed Mass per Year - Lifetime) will therefore be 

used as the basis for comparison in the following 

sections.

 

Figure 4. Correlations between total (>1 cm) object count in 2120 and undisposed object candidate parameters after 

adjusting for object lifetime 

  

Figure 5. Correlations between cumulative trackable (>10 cm) collisions over 100 years and undisposed object 

candidate parameters after adjusting for object lifetime 

 

3.2 Lifetime vs. Altitude 

Results from the previous section demonstrated that 

considering the amount of time an object spends on orbit 

is a necessary to accurately measure the activity level of 

a given scenario. Scaling the contribution of each 

candidate parameter by the lifetime fraction lifei/tsim 

drastically improved the correlations between activity 

level and environmental impact.  

While there was a demonstrable benefit to incorporating 

lifetime into the UPPLY formulation, it is important to 

explore other parameters to validate this decision. Since 

lifetime was introduced to consider the effects of traffic 

imbalances in high and low LEO, an obvious choice for 

an alternate parameter is altitude. In this section, two new 

indices will be introduced and compared to the UMPLY 

index defined by Eq. 2. 
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UMPAY is defined by Eq. 3 as a modification to 

UMPLY. UMPAY scales the mass contribution of each 

undisposed object by the altitude factor Ai, given by Eq. 

4. The altitude scaling factor is equal to some fractional 

value for all satellites that fail between 340 km and 650 

km. Any failures above 650 km fully contribute to 

UMPAY while objects that fail below 340 km are ignored 

due to their rapid re-entry times.  

 𝑈𝑀𝑃𝐴𝑌 =
1

𝑡𝑠𝑖𝑚

∑ 𝑚𝑖𝐴𝑖

𝑛𝑓𝑎𝑖𝑙

𝑖=1

 (3) 

 𝐴𝑖 = {(
𝑎𝑙𝑡𝑖 − 340𝑘𝑚

310𝑘𝑚
)

2

, 340𝑘𝑚 ≤ 𝑎𝑙𝑡𝑖

              1                  ,         650𝑘𝑚 < 𝑎𝑙𝑡𝑖

 (4) 

 

Partial Uncontrolled Mass per Year (PUMPY) is 

described by Eq. 5 and does not incorporate any type of 

scaling factor. Instead, PUMPY only considers the mass 

of satellites that failed above 650 km. Failures below 650 

km are ignored.  

 𝑃𝑈𝑀𝑃𝑌 =
1

𝑡𝑠𝑖𝑚

∑ 𝑚𝑖

𝑛𝑓𝑎𝑖𝑙

𝑖=1

 (5) 

Fig. 6 compares the correlations between UMPLY, 

UMPAY, and PUMPY to total object count. Of the three 

indices, UMPAY displays the worst correlation. This is 

an interesting result considering the similarity between 

UMPAY and PUMPY. Both indices sum the full mass of 

each failed object above 650 km and completely ignore 

failures below 340 km. This indicates that the 

discrepancy between UMPAY and PUMPY altitude 

scaling factor is caused by the altitude scaling factor, Ai. 

Modifications to the altitude and exponent values in the 

Eq. 4 could likely improve the efficacy of the UMPAY 

formula; however, efforts to optimize the altitude scaling 

factor may not be worthwhile given the performance of 

the lifetime scaling factor. 

Overall, UMPLY outperforms the other two indices, as 

indicated the RSS values listed in each plot. This 

validates the decision in the previous section to 

incorporate lifetime as a parameter instead of altitude.

  

Figure 6. Effect of lifetime and altitude scaling on correlations with total (>1 cm) object count in 2120 

 

3.3 Accounting for Disposed Objects 

Each of the indices introduced in the previous sections 

only account for satellites in non-compliant disposal 

orbits. While failed objects do contribute significantly to 

the degradation of LEO, they are not the only objects that 

pose a risk to space traffic. Successful disposal does 

significantly reduce the collision risk of an object relative 

to being undisposed; however, the risk is not eliminated 

in its entirety. This difference is evident when comparing 

the effects of unsuccessful, successful, and C2R disposal 

methods on the environment. In ADEPT, objects using a 

C2R disposal method can perform COLA maneuvers and 

are treated as operational objects. 

The relationship between UMPLY and trackable 

collisions is shown in Fig. 7. New C2R copies of each 

scenario are added to the plot in addition to the scenario 

data shown previously. The uncontrolled and C2R 

disposal results for a single future traffic scenario are 

highlighted. Logarithmic axes are used to better display 

the difference in outcomes between the two disposal 

methods. 

As described for Eq. 2, the only objects included in the 

UMPLY summation are those left undisposed. This 

means that UMPLY is agnostic to the disposal method 

used by any properly disposed object. Therefore, any two 

scenarios using the same future traffic model and PMD 

success rate will always have equivalent UMPLY values, 
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regardless of disposal method. This behavior is depicted 

in Fig. 7 through the vertical pairs of uncontrolled and 

C2R disposal scenarios. Both scenarios in each pair have 

identical UMPLY values, despite resulting in different 

environmental outcomes. This difference between the 

two disposal methods is most evident at higher PMD 

success rates and thus generally lower UMPLY due to the 

larger number of objects performing COLA maneuvers. 

 

Figure 7. Effect of “control-to-reentry” disposal 

methods on the cumulative trackable (>10 cm) collision 

count after 100 years 

Rather than only considering the environmental impact 

of undisposed objects, UMPLY can be modified to 

instead consider all uncontrolled objects. The equation 

for UMPY0 is given by Eq. 6, where nobj is the number of 

uncontrolled objects on orbit. This simple modification 

adds the ability to evaluate the environmental impacts of 

different disposal methods.  

 𝑈𝑀𝑃𝑌0  =
1

𝑡𝑠𝑖𝑚

∑ 𝑚𝑖

𝑙𝑖𝑓𝑒𝑖

𝑡𝑠𝑖𝑚

𝑛𝑜𝑏𝑗

𝑖=1

 (6) 

An example is provided in Tab. 1 to illustrate the 

difference between UMPLY and UMPY0. Consider a 

constellation of 100 satellites with masses of 350 kg. 

Three different disposal methods are evaluated: a 25-year 

uncontrolled disposal, a 5-year uncontrolled disposal, 

and a 5-year C2R disposal. PMD success rate is set at 

90% for each method. Since UMPLY only accounts for 

undisposed objects, the constellation UMPLY is 17.5 

kg/yr regardless of disposal option. On the other hand, 

UMPY0 reveals the successive improvements made by 

each disposal method. The 5-year disposal method does 

not contribute as much to UMPY0 as the 25-year method 

due to the shorter lifetimes of uncontrolled objects. The 

C2R disposal method performs even better since all 

successfully objects remain controlled through reentry. 

Table. 1 Constellation disposal method comparison 

(nsats = 100, m = 350kg, PMD = 90%, lifefail = 50 yrs) 

Disposal 

Method 

UMPLY 

(kg/yr) 

UMPY0 

(kg/yr) 

25-Year Uncontrolled 

Disposal 
17.5 96.25 

5-Year Uncontrolled 

Disposal 
17.5 33.25 

5-Year Control to 

Reentry 
17.5 0 

 

The correlation between UMPY0 and trackable collisions 

is presented in Fig. 8. As expected, scenarios modeling 

C2R disposal methods have lower UMPY0 values 

compared to their uncontrolled equivalents. At lower 

PMD success rates, C2R provides only a marginal benefit 

over uncontrolled disposals. In these cases, the benefit of 

C2R is mostly overshadowed by the enormous negative 

consequence of having high failure rates. On the other 

hand, the benefits of C2R are clearly visible at higher 

PMD success rates. With uncontrolled disposals, the 

marginal benefit of improving PMD success rate sharply 

drops off above 90%. Employing C2R brings additional 

improvements to mitigation that cannot be reached 

through uncontrolled reentry alone. 

 

Figure 8. Relationship between UMPY0 and cumulative 

trackable (>10 cm) collision count after 100 years 

3.4 Non-Linear Lifetime Weighting Factor 

One consequence of accounting for all uncontrolled mass 

is the increase in variance between UMPY0 and various 

environmental metrics. This is seen in Fig. 9 where at an 

UMPY0 value of 100,000 kg/yr, the number of trackable 

objects ranges from 200 thousand to over 4 million. Once 

again, two scenario sets are highlighted to examine if 

there is some effect of lifetime that remains uncaptured. 

Re-examining the High-LEO and Low-LEO scenario sets 
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shows that improvements to PMD success rate reduces 

trackable object growth at a faster rate for constellations 

at higher altitudes than lower altitudes. This suggests that 

object lifetime has some higher order effect on the 

environment that is not currently captured by UMPY0. 

 

Figure 9. Trackable (>10 cm) object count in 2120 

compared to UMPY0 

A new lifetime scaling factor, given by Eq. 7, was 

developed to better capture the non-linear relationship 

between altitude, lifetime, and collision probability. The 

degree of non-linearity modeled in Yi is dependent on the 

exponential parameter X. As X increases, the contribution 

of objects with shorter lifetimes is increasingly 

diminished relative to those with longer lifetimes. Eq. 8 

defines the new equation for UMPY which replaces the 

linear scaling factor lifei/tsim with the new non-linear 

lifetime scaling factor. Note that as X approaches 0, Eq. 

8 approaches UMPY0. 

 
𝑌𝑖 =

𝑒
𝑋(

𝑙𝑖𝑓𝑒𝑖
𝑡𝑠𝑖𝑚

)
− 1

𝑒𝑋 − 1
,      𝑋 ≥ 0 

(7) 

 𝑈𝑀𝑃𝑌𝑋  =
1

𝑡𝑠𝑖𝑚

∑ 𝑚𝑖𝑌𝑖

𝑛𝑜𝑏𝑗

𝑖=1

 (8) 

The relationship between UMPYX and different 

environmental metrics is dependent on the selection of X. 

Too low of an X value will under account for the effect 

of lifetime, while a value that is too high will lead to an 

overcorrection. One method for selecting X is to 

statistically evaluate which value leads to the lowest 

amount of variance relative to some regression model; 

however, there are difficulties with that approach in this 

context. As X increases, the UMPYX value of each 

scenario decreases by some amount related to the number 

of uncontrolled, low-LEO objects being modeled. This 

causes the distribution of UMPYX values to become 

increasingly positively skewed with increasing X. 

Properly accounting for this requires using a statistical 

method that is more advanced than simply comparing 

RSS values, as done previously.  

Instead, a heuristic approach is taken to estimate the best 

exponential parameter value. At the ideal value of X, Yi 

will best account for the long-term environmental risk 

posed by an uncontrolled object. When this occurs, the 

variance between UMPYX and the given environmental 

metric will be at a minimum, resulting in the trends across 

different scenario sets to be aligned. The best value of X 

can then be approximated by visually comparing UMPYX 

plots for varying X. This process is depicted in Fig. 10. 

 

 

Figure 10. Effect of varying X on relationship between and UMPYX and total (>1 cm) object count in 2120 

 

The relationship between total object count and UMPYX 

is plotted in Fig. 10 for three values of X. Four sets of 

scenarios are highlighted to visualize the relative shift in 

scenario trends as X varies. While not depicted here, 10 

values of X were examined, using integers ranging from 

0 to 9. UMPY0 and UMPY9 are the boundary indices, 
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representing cases where the effect of lifetime is 

undercompensated and overcompensated, respectively. 

After examining each of the 10 other indices, UMPY4 

was found to correlate best to total object count. As X 

increases from 0 to 4, the trends across each set of 

scenarios begin to align, leading to a reduction in 

variance. Increasing X beyond a value of 4 causes the 

scenario trends to shift past alignment, increasing 

variance. This behavior is most evident when comparing 

the relative positions of the Inter-08 and FCM-All 

scenario sets across each subplot within Fig. 10. 

The same process was repeated to study whether different 

exponential parameter values work better for different 

metrics. Fig. 11 shows the relationship between trackable 

object count and UMPY4, which provides the strongest 

correlation compared to when using other values of X. 

Examining the relationship with cumulative trackable 

collisions in Fig. 12 presents a slightly different result, 

where an exponential parameter value of 3 provides the 

strongest correlation. 

 

Figure 11. Trackable (>10 cm) object count in 2120 

compared to UMPY4 

 

Figure 12. Cumulative trackable (>10 cm) collision 

counts over 100 years compared to UMPY3 

4 COMPARISON TO OTHER INDICIES 

Dozens of indices have been developed to quantify the 

impact that certain objects or constellations may have on 

the LEO environment. In this section, three indices will 

be evaluated to see how well they correlate behaviors to 

environmental outcomes compared to simulation results 

UMPY. The first two indices are simple composite 

metrics that quantify environmental risk by summing the 

number of object-years and kilogram-object-years on 

orbit. The third index measures orbital capacity based on 

the Collision Risk Balance Model developed by 

McKnight and Dale [20]. 

Unlike UMPY, which quantifies the level of activity in a 

future traffic scenario over time, these indices have been 

used to quantify the state of the environment at a single 

moment in time. While there are many potential ways to 

measure scenario activity across multiple years through 

these indices, this section takes the approach of 

calculating the average index value across the full 

simulation for each scenario. 

The goal of this section is to leverage the results of over 

1,200 ADEPT future environment simulations to 

examine how well each index captures the environmental 

consequences of different operational behaviors, as is 

done with UMPY. It is important to note that while done 

as faithfully as possible, the implementation of these 

indices may differ in scope from the original intentions 

of their respective creators. 

4.1 Regulatory Composite Metrics 

Object-years has been used by both the FCC [21] and the 

United States Government [22] in regulations requiring 

satellite operators to limit the production of uncontrolled 

or mission related debris in LEO. Related is the 

kilogram-object-year composite metric, which was 

developed due to concerns with the efficacy of the object-

years approach. Object-years and kilogram-object-years 

respectively sum the lifetime and the lifetime-mass 

product of each uncontrolled object on orbit. 

Fig. 13 compares the correlations that object-years, 

kilogram-object-years, and UMPY4 have with total 

object count. Fig. 14 shows a similar comparison using 

the cumulative number of trackable collisions as the 

environmental metric. The object-year and kilogram-

object-year values for each scenario represent the 

average index value throughout the simulation. For both 

environmental metrics, UMPY has the strongest 

correlation of the three indices. 

Comparing the kilogram-object-years plot in Fig. 13 to 

the UMPY0 plot in Fig. 10 shows that the two indices 

perform nearly identically. The reason for this is clear 

after revisiting Eq. 6. Both kilogram-object-years and 

UMPY0 multiply the mass contribution of each object by 

its lifetime; however, in the UMPY0 summation, lifetime 
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is divided by the simulation time. In other words, the 

UMPY0 value of a given scenario is simply the by 

average kilogram-object-years on-orbit divided by tsim. 

Given this knowledge, the improvement in correlation 

with UMPY4 over kilogram-object-years is therefore 

strictly due to the non-linear lifetime factor. This 

suggests that the kilogram-object-years approach does 

not capture the relationship between lifetime and 

collision likelihood as well as is done with UMPY4.

 

Figure 13. Comparing correlations for object-years, kilogram-object-years, and UMPY4 with total (>1 cm) object 

count in 2120 

 

Figure 14. Comparing correlations for object-years, kilogram-object-years, and UMPY3 with cumulative trackable 

(>10 cm) collision count 

 

4.2 Collision Risk Balance Model 

McKnight and Dale developed the Collision Risk 

Balance Model [20] as a method for quantifying orbital 

capacity by considering an object’s risk burden, capacity 

for risk reduction, and persistence on orbit.  

Risk burden posed (RBP) represents the collision risk 

posed by an object and is defined by Eq. 9 as the product 

of an object’s mass and area. 

 𝑅𝐵𝑃𝑖 = 𝑚𝑖𝐴𝑖 (9) 

Risk burden abated (RBA) is described by Eq. 10 and 

represents the ability of an operational satellite to reduce 

its collision risk. RBA is a function of an object’s 

maneuverability (MAN), risk reduction maneuver 

threshold (RMM/PC), and collision risk abatement goal 

(AbPC). Detailed definitions of those parameters are 

described in [20], along with a table of values. Note that 

RBA is 0 for all uncontrolled objects as, by definition, 

these objects have no maneuver capabilities. 

𝑅𝐵𝐴𝑖

= 2.15{0.33𝑀𝐴𝑁𝑖}

× 2.15 {1 − (
[6 + log10(𝑅𝑀𝑀/𝑃𝐶𝑖)]2

10
)}

× 2.15 {1 − (
[7 + log10(𝐴𝑏𝑃𝐶𝑖)]2

10
)} 

(10) 
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The values for MAN, RMM/PC, and AbPC used in this 

study are listed in Tab. 2. Operational satellites within the 

start catalog and non-CRC populations use the default 

parameter values suggested by McKnight and Dale. CRC 

satellites use different RMM/PC and AbPC values 

depending on the specific operators being modeled. 

Finally, all FCM satellites use the lowest RMM/PC and 

AbPC thresholds to reflect the high maneuver capabilities 

of modern LLC operators. 

 

Table. 2 Risk burden abatement parameters for 

operational satellites 

Population MAN RMM/PC AbPC 

Catalog 

Operational 
3 5E-4 1E-5 

Non-CRC 3 5E-4 1E-5 

CRC 1-3 3 1E-4 3.2E-6 

CRC 4-5 3 1E-5 1E-6 

FLM 3 1E-5 1E-6 

 

The altitude adjustment (AA) factor, given by Eq. 11, is 

used to scale the contribution of each object to correct for 

on-orbit persistence. 

 𝐴𝐴𝑖 = 1 + (
𝑎𝑙𝑡𝑖 − 300km

100km
)

3.85

 (11) 

Eqs. 9, 10, and 11, describe each of the three risk 

considerations used in the Collision Risk Balance Model. 

Eq. 12 defines orbital capacity (OC) through these 

considerations, where nobj is the total number of IPM 

objects within the scenario. Note that orbital capacity is 

treated as unitless. 

 𝑂𝐶 = ∑ 𝑅𝐵𝑃𝑖 ∗ (10 − 𝑅𝐵𝐴𝑖) ∗ 𝐴𝐴𝑖

𝑛𝑜𝑏𝑗

𝑖=1

 (12) 

Fig. 15 shows the correlation between orbital capacity 

and total object count. Here, orbital capacity is 

measured as the average orbital capacity over the full 

simulation. Overall, the correlation between total object 

count and orbital capacity is weak. At a given orbital 

capacity value, the total object count can vary by one to 

two orders of magnitude. 

Five different scenarios are highlighted to identify any 

hidden trends. Doing so reveals that each scenario 

appears to be horizontally aligned within the aggregate 

collection of scenarios. This is most evident when 

comparing the FCM-All and Inter-11 scenario sets. 

These two sets have very similar object count numbers 

for each pair of PMD scenarios. Despite this, the orbital 

capacity values differ by roughly 60 billion for each 

pair. Given the similarity in outcomes, the difference in 

orbital capacity values between the two scenario sets 

should ideally be much smaller. Similar behavior occurs 

when examining collision counts. 

 

Figure 15. Relationship between total (>1 cm) object 

count in 2120 and orbital capacity as measured through 

the Collision Risk Balance Model 

Appendix A details the number and distribution of 

objects at each traffic level. Examining these details 

reveals that orbital capacity values are heavily influenced 

by the specific combination of LLC traffic modeled. In 

particular, the LLC-07 constellation consumes a 

disproportionate amount of orbital capacity due to the 

large number of massive satellites in high-LEO. 

Examining Fig. 15 shows that the orbital capacity values 

of the Inter-08 scenarios are significantly lower than 

those of the LLC-07 scenarios, despite having more 

satellites in each region of LEO. This indicates that 

orbital capacity is more closely related to the specific 

LLC objects modeled in the scenario rather than the 

environmental impacts of the LLC objects. 

It is important to emphasize that differences in modeling 

assumptions between this work and the original source 

can significantly affect the results. Two instances of 

modeling differences are described here. 

The altitude adjustment factor, AAi, and the lifetime 

scaling factor, Yi, are both used to account for the non-

linear effect of on-orbit persistence on the environment. 

Despite this similarity, the two factors result in vastly 

different outcomes. In ADEPT, lifetime is determined by 

how long an object exists within the simulation. This 

means that the lifetime of an object may be truncated, 

depending on how late in the simulation the object exists. 

This is done to account for the reduced impact an object 

may have on the simulated environment due to the finite 

bounds of the simulation duration. This effect does not 
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apply to the Collision Risk Balance Model and is 

appropriately left unconsidered by the altitude adjustment 

factor. 

The Collision Risk Balance Model accounts for 

operational satellite risk abatement strategies through Eq. 

10. Operational satellites with high levels of 

maneuverability will consume less orbital capacity than 

their uncontrolled equivalents. Conversely, operational 

satellites in ADEPT do not contribute in any amount to 

the simulated environment as they are excluded from the 

collision generation process. Including these operational 

satellites overinflates the orbital capacity relative to the 

collision activity modeled within the scenario. Future 

modifications to ADEPT will examine the risk posed by 

operational satellites 

A modified orbital capacity formulation, given by Eq. 13, 

was developed to correct for the modeling differences 

between ADEPT and the original Collision Risk Balance 

Model. First, the altitude adjustment factor was replaced 

with the non-linear lifetime weighting factor, Yi, to better 

account for the simulation duration bounds of ADEPT 

while still capturing the non-linear effects of on-orbit 

persistence. Additionally, RBA was removed from the 

summation. Since operational satellites in ADEPT model 

perfect abatement and all uncontrolled objects have no 

abatement capabilities, risk abatement can effectively be 

modeled by only summing the contributions of 

uncontrolled objects. RBP remains unchanged within the 

new formulation. 

 𝑂𝐶mod = ∑ 𝑅𝐵𝑃𝑖 ∗ 𝑌𝑖

𝑛𝑜𝑏𝑗

𝑖=1

 (13) 

Note that there are multiple ways to adjust Eq. 12 to 

account for these modeling differences. The adjustments 

done to create Eq. 13 were selected through leveraging 

insights from previous sections of this work. Future work 

could be done to implement the Collision Risk Balance 

Model in a manner much closer to the original work. 

Fig. 16 shows the relationship between total object count 

and orbital capacity, after adjusting for modeling 

differences in ADEPT. The exponential parameter was 

set to a value of 4 based on the results shown in Fig. 10. 

Trends across each scenario set appear much more in-

family compared to the results in Fig. 15. The stronger 

correlation makes it much easier to relate the 

consumption of orbital capacity to its impacts on the 

environment. For example, at an average modified orbital 

capacity value of 700,000 per year, the number of objects 

larger than 1 cm should grow to roughly 100 to 200 

million after 100 years. In this way, the modified orbital 

capacity equation could be used to target specific 

environmental outcomes, similar to how UMPY can be 

used. 

 

 

Figure 16. Relationship between total (>1 cm) object 

count in 2120 and modified orbital capacity 

5 CONCLUSION 

UMPY was developed as an index to quickly 

characterize the operational activity exhibited in a future 

environment simulation. Through UMPY, different 

scenarios can easily be compared in bulk to study the 

effects that operational behaviors have on the LEO debris 

environment. UMPY has evolved over time to produce 

stronger correlations between scenario activity and 

various environmental metrics, such as debris population 

growth and collision rates. This work details the process 

of developing UMPY from its initial formulation to its 

current state. This development process can be generally 

applied to aid in designing other environmental indices. 

Mass was shown to better explain the environmental 

outcomes of future scenario traffic over area and number 

of failed satellites. To consider the effects of having 

traffic imbalances between high and low LEO, the mass 

of each object was scaled by the fraction of time each 

object exists within the simulation. Furthermore, it was 

found that the relationship between lifetime and collision 

likelihood is non-linear. This resulted in the introduction 

of a non-linear lifetime scaling factor which can be 

adjusted to improve the correlation between various 

environmental metrics and scenario activity. 

An additional change to UMPY was made to account for 

the contributions of all uncontrolled objects, rather than 

just those of undisposed objects. This change gave 

UMPY the ability to evaluate the environmental impact 

of different disposal strategies, including reduced 

disposal lifetimes and C2R methods. 

Other composite metric indices were examined to 

determine how well each index correlates to different 

environmental metrics compared to UMPY. Object-years 

and kilogram-object-years were shown to correlate 
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somewhat strongly to object count and collision rates but 

still exhibited more variance than with UMPY. UMPY 

was also compared to a modified formulation for orbital 

capacity, defined by the Collision Risk Balance Model. 

The modified orbital capacity formulation correlated very 

strongly with total object count, suggesting that the 

Collision Risk Balance Model may be very useful in 

relating orbital capacity consumption to specific 

environmental outcomes. Future work to improve the 

implementation of the Collision Risk Balance Model in 

ADEPT may provide more conclusive evidence of this 

result. 

The analysis completed in this work was made possible 

through leveraging the results of over 1,200 future 

environment simulations from ADEPT. Examining such 

a large collection of scenarios is necessary to properly 

quantify the relationships between environmental indices 

and environmental metrics. This ensures that the given 

index is robust and can account for the environmental 

impacts brought on by a wide range of operational 

behaviors. 
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APPENDIX A 

Scenario Name LLCs Included 
Total # 

FCM Sats 

Low LEO 

(<600 km) 

Mid LEO 

(600-800 km) 

High LEO 

(>800 km) 

no-new IPM 0 0 0 0 

background baseline minus some current systems 0 0 0 0 

no-llc baseline – with no replenishment 0 0 0 0 

baseline LO-I + HI-N 5124 3360 0 1764 

intermediate-0 baseline + 2 LO 11844 10080 0 1764 

intermediate-1 baseline + 4 LO, 3 MID, 3 HI 19135 12800 3060 3275 

intermediate-2 baseline + 4 LO, 1 MID, 1 HI 23172 18960 144 4068 

intermediate-3 baseline + 6 LO, 6 MID, 4 HI 31211 20772 5000 5439 

intermediate-4 baseline + 6 LO, 7 MID, 5 HI 31995 19840 5820 6335 

intermediate-5 baseline + 5 LO, 5 MID, 6 HI 32083 20068 5852 6163 

intermediate-6 baseline + 6 LO, 2 MID, 2 HI 36360 29520 468 6372 

intermediate-7 baseline + 8 LO, 8 MID, 7 HI 44163 28720 5964 9479 

intermediate-8 baseline + 9 LO, 7 MID, 7 HI 50206 34384 6222 9600 

intermediate-9 baseline + 10 LO, 9 MID, 10 HI 55415 35492 7416 12507 

intermediate-10 baseline + 9 LO, 9 MID, 10 HI 62760 40804 6386 15570 

intermediate-11 baseline + 10 LO, 14 MID, 14 HI 69038 39828 12140 17070 

fcm-all all proposed LLCs 76606 45668 12140 18798 

lo-leo baseline + all LO and MID LLCs 59572 45668 12140 1764 

lo-leo-half baseline + ½ of all LO & MID LLCs 36392 27812 6816 1764 

hi-leo baseline + all HI LLCs 28878 10080 0 18798 

hi-leo-half baseline + ½ of all HI LLCs 20672 10080 0 10592 

fcm-llc1 baseline + LO-ABCDJK + MID-AC 31752 29520 468 1764 

fcm-llc2 baseline + HI-LM 9732 3360 0 6372 

fcm-llc3 baseline + LO-L + MID-BDEF 9662 4144 3754 1764 

fcm-llc4 baseline + LO-EFG + MID-KL 18744 14644 2336 1764 

fcm-llc5 baseline + HI-ABQR 6912 3360 0 3552 

fcm-llc6 baseline + MID-GHJ + HI-DEF 10794 3360 3564 3870 

fcm-llc7 baseline + LO-HMN + HI-GHIJ 18116 9440 0 8676 

proj-   baseline + 3 L     MID  15080 10864 2452 1764 

proj-   proj-  +   HI  16868 10864 2452 3552 

proj-   proj-  + 3 MID  3 HI  22538 10864 6016 5658 

proj-3  proj-  +   L     MID  42446 30304 6484 5658 

proj-   proj-3 +   HI  47054 30304 6484 10266 

proj-   proj-  +   L     MID  53134 34384 8484 10266 

proj-6  proj-  +   HI  60046 34384 8484 17178 

proj-   proj-6 + 2 MID   61348 34384 9786 17178 

proj-8  proj-  +   HI  62788 34384 9786 18618 

proj-9  proj-8 +   MID    HI  62986 34384 9804 18798 

proj-10 proj-9 + 3 LO, 3 MID 76606 45668 12140 18798 

tiered-deorbit-lo portions of 6 LO, 3 MID, 6 HI 14147 9868 2304 1975 

tiered-deorbit-mid portions of 9 LO, 5 MID, 10 HI 26769 17800 3779 5190 

tiered-deorbit-hi portions of 13 LO, 10 MID, 12 HI 65210 45556 8558 11096 

 


