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ABSTRACT

Understanding the orientation and angular velocity
state of active or passive human-made space objects
is critical for many space situational awareness op-
erations like long-term orbit propagation, anomaly
resolution, determining mission status, and active
debris removal. Beyond low-Earth orbit, optical tele-
scopes are predominantly used to track space ob-
jects. Due to atmospheric distortion and aperture
size, it is generally impossible to resolve even large
satellites and rocket bodies in optical ground-based
imagery. As a result, shape and orientation informa-
tion is unavailable in individual images, but a mea-
surement of the object’s total brightness can still
be obtained. Even if the object’s shape and re-
flective properties are known, any given brightness
measurement will generally correspond to infinitely
many possible orientations. To constrain the solu-
tion space, the brightness can be tracked over time –
producing a sequence of measurements called a light
curve. If the object’s identity is known, its attitude
profile can be estimated from the light curve – up
to certain ambiguities – through a process known as
light curve attitude inversion. Due to symmetries
in the observation geometry and object shape, there
may be multiple attitude profiles that are equally
likely to produce any given light curve. Environ-
mental and instrumental measurement noise worsens
these ambiguities. To reliably identify these ambigu-
ous solutions, global attitude inversion methods must
thoroughly search the solution space.

In this work, we apply a BFGS-based multi-start
global attitude inversion algorithm to efficiently solve
the attitude inversion problem globally. Results for
synthetic observations are presented for a generic up-
per stage. Results for real observations taken by
the Purdue Optical Ground Station of Delta I up-
per stage and the ECHOSTAR II satellite are also
presented. Given a light curve with an estimate of
the shape and reflective properties of the object, our
procedure searches the space of initial orientations,
angular velocities, and inertia tensors to find initial
conditions that produce light curves with low error
compared to the observed values. Our formulation
inherently accounts for the aforementioned ambigui-

ties, the physical constraints of torque-free rigid body
motion, and the noise in the light curve.

Keywords: Light curve inversion; Atitude estima-
tion; Photometry; Inverse problems.

1. INTRODUCTION

Knowledge of spacecraft orientation and angular ve-
locity states is critical for many space situational
awareness (SSA) tasks. Understanding the evolu-
tion of high area-to-mass ratio objects [19] and de-
commissioned satellites [42], planning and executing
active debris removal [3], and recovering from mis-
sion anomalies [56] all require attitude information.

Methods for estimating the attitude state of un-
controlled space objects from light curves differ sig-
nificantly depending on the presence of an initial
guess. If prior knowledge is available, many filter-
based approaches have been developed to process
new photometry to update the guess orientation
and angular velocity. This class of methods in-
cludes single Kalman filters [5, 21, 62], and multi-
filter multiple-model adaptive estimation (MMAE)
schemes [33, 11]. These approaches can be very effec-
tive if the initial state estimate is close to the truth,
but have been reported to diverge even in cases when
the initial guess is within 5◦ of the ground truth ori-
entation and 0.03◦ · s−1 in angular velocity error [21]
due to measurement nonlinearity and ambiguities.

If no initial attitude guess is available, as in most
cases of passive debris observation, the inversion
problem must be solved globally. Filtering ap-
proaches can be applied here too; particle [32, 25] and
Bayesian Multi-Hypothesis filters [5, 57] have shown
promise in prior work, but still rely on high-quality
priors as with the single-hypothesis Kalman filters.
In the absence of any prior knowledge about the ob-
ject’s attitude state, simulated annealing [21, 8], ge-
netic algorithms [21, 39, 8], and particle swarm op-
timizers (PSOs) [8, 9, 6, 7, 21, 20] can be applied to
search the solution space exhaustively.

While much work has performed full state attitude

Proc. 9th European Conference on Space Debris, Bonn, Germany, 1–4 April 2025, published by the ESA Space Debris Office

Editors: S. Lemmens, T. Flohrer  & F. Schmitz, (http://conference.sdo.esoc.esa.int, April 2025)



inversion on simulated light curve data [6, 21, 46],
the applicability of many of these methods to real
observations is untested. Studies that do work with
real data often focus on estimating an assumed con-
stant spin rate and axis of rotation for the observed
object. These assumptions are made to simplify the
estimation process but can lead to misleading con-
clusions when the observed object has a complex ro-
tation state.

Frequency analysis in the form of periodograms,
Fourier transforms, or epoch folding, is often used
to determine the spin rate based on the light curve’s
frequency spectrum [52, 53, 26, 49, 41, 64, 28]. If
optical material properties are known, the width of
a single specular glint can provide sufficient informa-
tion to determine the rotation rate [24]. There has
also been interest in tracking the evolution of spin
rates over time for different classes of objects in dif-
ferent orbital regimes [28, 1, 27]. These spin rate
determination methods are designed for single-axis
rotations and can fail for tumbling objects.

The rotation axis is often estimated for diffusely re-
flecting objects that are well-approximated as ellip-
soids via the so-called amplitude method [63] which
has been extended for combined spin and precession
motion [64]. For light curves with strong specular
peaks, the timing of these glints can be used to deter-
mine the constant rotation axis given multiple passes
of observations [58, 28]. These approaches are not
applicable for generalized rigid body motion where
no simplifying assumptions about the location of the
spin axis are available.

The simplifying assumptions of constant, single-axis
rotation that are commonly made when working with
real data enable elegant solutions but break down
when the observed object is in a complex spin pro-
file. Methods for full attitude state solutions – time-
varying orientation and angular velocities – have
been developed [9, 6, 21, 32], but are seldom applied
to real data. Works that have been successful at esti-
mating a full rigid-body attitude state from real data
include genetic algorithms [40, 22] and brute-force
grid search [48]. Any full-state estimation method
must tackle the inherent computational complexity,
lack of knowledge of material reflectivities, and the
presence of measurement noise.

In this paper, we describe a global full-state attitude
solver inspired by recent PSO work [6] but is eas-
ier to tune, can be fully parallelized, and is robust
to significant measurement noise [46]. Further, our
method differs from other global estimation methods
in that we do not seek to find one optimal solution
and instead search for a collection of high-quality lo-
cal minima to directly study the many ambiguous
solutions for a given light curve. Our approach is de-
signed specifically for use with real data as we explic-
itly take time-varying measurement noise and uncer-
tainties in the body moments of inertia into account.

To solve the optimization problem, we sample many
candidate solutions scattered throughout the solu-
tion space and perform gradient-based optimiza-
tion on each using the BFGS algorithm. Our opti-
mization procedure reliably converges to high-quality
maximum likelihood estimates of the attitude state.
The final output of our method is an array of the
best solutions, ranked by their likelihood. Clusters
of low-error minima can be analyzed to identify fam-
ilies of solutions.

This work proceeds by describing the inversion
method, discussing efficient methods for comput-
ing the time-varying probability density of the light
curve, and reporting inversion test case results. We
present inversion results for a simulated rocket body
light curve where the ground truth is available to
demonstrate the efficacy of the method, followed
by results for real light curve data collected by
the Purdue Optical Ground Station for a derelict
ECHOSTAR satellite and Delta I rocket body. A
deeper treatment of our method and additional sim-
ulated light curve results can be found in [46].

2. INVERSION METHOD

2.1. State Definition and Dynamics

The state vector x is defined to be the concatena-
tion of the Modified Rodriguez Parameter (MRP)
p = [p1, p2, p3]

T , the principal body frame angular
velocity ω = [ω1, ω2, ω3] in radians per second, and
the ratios of the principal moments of inertia Jy/Jx
and Jz/Jx where the constant inertia tensor in prin-
cipal axes is J = diag ([Jx, Jy, Jz]):

x = [p1 p2 p3 ω1 ω2 ω3 Jy/Jx Jz/Jx]
T
.

(1)

The first six elements of the state vector are time-
varying with dynamics given by:

ṗ =
1

4
[(1− p · p) + 2p× ω + 2 (ω · p)p] , (2)

ω̇ = J−1 [(Jω)× ω +M ] . (3)

We use the Runge-Kutta 4 numerical integration al-
gorithm for all state propagation as it is computa-
tionally inexpensive and has low error – usually be-
low 1◦ over the course of a well-sampled light curve.

2.2. Objective Function

Our inversion method is based on the global min-
imization of a maximum-likelihood loss function



which computes the negative log-likelihood of the
observed light curve S being a sample from the nor-
mal distribution defined by the estimated light curve
mean Ŝ and the standard deviation at each kth
timestep σk:

f(x) =
1

m

m∑
k=1

[
1

2
ln 2π + lnσk

+
1

2

(
Sk − Ŝk(x)

σk

)2]
.

(4)

Note that the constant 0.5 ln 2π could be removed
from the objective function, but it is retained such
that exp (−f(x)) is a true likelihood. If the reflectiv-
ity of the object’s faces is not well-known, we rescale
the estimated light curve mean Ŝ(x) to have equal
`2 norm to the observations to resolve the inherent
albedo-area ambiguity:

Ŝ(x) =
‖S‖∥∥∥S̃(x)∥∥∥ S̃(x), (5)

where S̃(x) is the original, poorly scaled, estimated
light curve. In this work, the light curve and its stan-
dard deviation are always assumed to be expressed
in a linear unit, e.g., analog-to-digital units (ADU)
or irradiance proportional to W/m2.

2.3. Computing Local Minima

Our multi-start solution method begins by creating
nsample sampled states scattered throughout the so-
lution space – possibly sampled from a prior distri-
bution based on available knowledge. In the most
basic case, the initial states are drawn for sample i
at iteration k = 0:

x0,i(0) =


pi,0(0)
ωi,0(0)

(Jy/Jx)i,0
(Jz/Jx)i,0

 . (6)

In this work, initial state vectors are sampled from
a prior distribution, usually defined independently
for the MRP, angular velocity, and inertia tensor ra-
tios. If no information is available, as is usually the
case, a uniform distribution is sampled from the first
six components of the state. In particular, pi,0(0) is
uniformly randomly sampled from orientation space,
ωi,0(0) is randomly sampled from a uniform distribu-
tion of magnitudes up to ‖ω‖mid – the mean angular

rate at which to initialize state samples. We deter-
mine this value based on the maximum power posi-
tive frequency in the observed light curve f? in Hertz
as simply ‖ω‖mid = 2πfω. Uniformly sampling over
angular velocity directions, we can express the de-
fault sampling strategy for an angular velocity state
as:

ωi,0(0) =
m√

g21 + g22 + g23
· [g1 g2 g3]

T
, (7)

where g1:3 ∈ N (0, 1) and m =
U(c1 ‖ω‖mid , c2 ‖ω‖mid). The constants c1 < 1
and c2 > 1 are chosen to correct for the fact that
even for a well-chosen ‖ω‖mid, there can still be nu-
merous high-quality solutions at significantly lower
or higher angular velocities that possess equal f?

values. This is a result of object shape symmetries
or harmonics in spin and precession rates. We select
c1 = 0.5, c2 = 2 for this work.

For the MRP, we first sample a quaternion qi(0) =
[qx, qy, qz, qw]

T uniformly over orientation space:

qi(0) =
1√

g21 + g22 + g23 + g24
[g1 g2 g3 g4]

T
,

(8)

where g1:4 ∈ N (0, 1), and project the quaternion into
MRP space:

pi,0(0) =
1

1 + qw
[qx qy qz]

T
. (9)

Unlike the MRP and angular velocity, the default
sampling method for inertia ratios initial samples
(Jy/Jx)i,0 and (Jz/Jx)i,0 draws from independent,
identically distributed Gaussian prior distributions
with σJ centered at estimated values derived from
the known geometry of the object (Jy/Jx)est and
(Jz/Jx)est, such that:

[
(Jy/Jx)i,0
(Jz/Jx)i,0

]
∼ N

([
(Jy/Jx)est
(Jz/Jx)est

]
, σJI2

)
, (10)

where I2 is the 2× 2 identity matrix.

After sampling each initial state, we run the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm [4, 18, 23, 51] to optimize each sample to a
nearby local minimum xk,i(0) in the objective func-
tion such that:

xk,i(0) = argmin
x

f(x), (11)



producing a converged initial state xk,i(0) which is a
good local guess to have produced the observations.
In this way, we globally search the solution space
up to the density implied by n. Using a simpler
algorithm like gradient descent can still reach con-
vergence, but will take significantly more objective
function evaluations due to the high nonlinearity of
the attitude inversion problem.

In order to implement this optimization effectively
without constraints, it is often necessary to take the
absolute value of the intermediate inertia tensor val-
ues to maintain physical validity.

2.4. Classifying Candidate Solutions

Although all initial conditions will converge to some
nearby local minimum, many of these minima will
possess a low likelihood determined by −exp(f(x))
where f(x) is the objective function in Equation 4.
As we do not generally know how large the geometric
and material mismatch between the observed object
and the assumed model is, we cannot put a strict
bound on a likelihood level that constitutes a high-
quality candidate solution. In this work, we identify
candidate solutions by choosing a likelihood ratio tol-
erance 0 < ` < 1, such that all solutions xi,k(0) are
candidates for the truth if:

e−f(xi,k(0)) > `e−f(x?
k(0)). (12)

Here, x?
k(0) = argminxi,k(0)

f (xi,k(0)) is the highest
likelihood solution found after optimization.

3. COMPUTING THE LIGHT CURVE

The inversion method in this paper is not dependent
on a particular approach for computing light curves
and their expected standard deviations. Here, we
present the models used to produce the results in
Sections 4 and 5.

3.1. Object Geometry Definition

We choose to represent the surface geometry of space
objects as a polyhedral mesh composed of a collection
of flat facets. Each ith face has nv ≥ 3 or more ver-
tices {vi,1, vi,2, vi,nv} and an outward-pointing nor-
mal vector n̂i. The total facet area is computed for
an arbitrary planar polygon via:

A(P ) =
k−3∑
j=0

‖ (vj+1 − vj)× (vj+2 − vj) ‖2
2

. (13)

In any particular illumination and observation con-
dition, a fraction of the facet’s area ãi might be Sun
or observer-shadowed due to obstructing geometry
before or after light reaches the surface element, re-
spectively. The remainder of the facet’s area āi is
unshadowed and contributes to the total flux reach-
ing the observer from the object, such that the total
area of each facet is ai = ãi + āi. The geometry for
an individual facet is displayed in Figure 1.

Figure 1: Facet geometry including the observer di-
rection ô, Sun direction ŝ, normal vector n̂i, un-
shadowed area āi, shadowed area ãi, and counter-
clockwise vertex positions {vi,1,vi,2,vi,3}.

In this work, the Sun position is computed using a
SPICE ephemeris kernel [31] while space object posi-
tions are propagated with SGP4 TLEs obtained from
Space-Track [54].

3.2. Computing the Unshadowed Area

The unshadowed area ā can be computed in several
ways. For convex objects, ā = a as self-shadowing
is impossible. For highly nonconvex and detailed
models composed of thousands of faces, ā can be ap-
proximated on a pixel grid using shadow mapping
[44]. Self-shadowing can be efficiently solved semi-
analytically for lower-fidelity approximations of real
space object geometry by computing the mutual in-
tersections of the polygons Pk of other faces whose
projections overlap with the face in question. Up to
a maximum intersection depth d, selected for compu-
tation time, the unshadowed area can be computed
via:

ā = a−
n∑

d=1

∑
K∈comb(n,d)

(−1)d+1A

( ⋂
k∈K

Pk

)
. (14)

As the objects we investigate in this work
are well-approximated with relatively simple non-
convex meshes, we use the semi-analytic method
to efficiently compute unshadowed areas via the
Sutherland-Hodgeman algorithm [55] for each poly-
gon intersection. Further explanation of the polygon



clipping procedure for computing the total shadowed
area, and accelerating this computation during inver-
sion with the so-called shadow cache is available here
[46].

3.3. Surface Reflectivity

The bidirectional reflectance distribution function
(BRDF) defines the amount of incident radiation
from ŝ reflected per steradian in the observer’s di-
rection ô. We choose the Blinn-Phong [2] BRDF for
this work as it is efficient to compute and satisfies the
three main requirements for a physically meaningful
BRDF as it is nonnegative, energy-conserving, and
reciprocal [12]. We avoid microfacet models for com-
putational efficiency, and because in practice, the un-
certainty in the reflective properties of the observed
objects will often be larger than errors introduced
by the choice of reflection model. The Blinn-Phong
BRDF is parameterized by the coefficient of diffuse
reflectivity Cd, the coefficient of specular reflectivity
Cs, and the specular exponent n > 0 [12]:

fr(ŝ, ô) =
Cd

π
+

n+ 2

2π

Cs(n̂ · ĥ)n

4(n̂ · ŝ)(n̂ · ô)
. (15)

The coefficients of reflectivity implicity satisfy Ca +
Cs+Cd = 1 for energy conservation, where 0 ≤ Ca ≤
1 is the coefficient of absorption [16].

Here, the halfway vector ĥ bisects the illumination
and observation directions such that ĥ = ĥ = (ŝ +
ô)/ ‖ŝ+ ô‖ [12].

3.4. Computing the Mean Observed Signal

Given the observer ôk and illumination directions ŝk
at the kth observation epoch in the body frame B,
as well as the BRDF fr,i for each ith surface of the
object, the fraction of incident power reflected in the
direction of the observer is [16]:

fp(ŝk, ôk) =

n∑
i=1

B[āi(ŝk, ôk)fr,i(ŝk, ôk)

·(n̂i · ŝk)(n̂i · ôk)].

(16)

As many of the noise characteristics of the signal are
defined in the image sensor’s native unit of ADU, we
use fp(ŝk, ôk) to compute the light curve in ADU
via:

S̄SO,k =fp(ŝk, ôk)
A◦∆tkf�(r)

gR2
⊕r

2
k

·
∫ ∞

0

P (λ)Q(λ)Tk(λ)I�(λ)

(
λ

hc

)
dλ.

(17)

Here before the integral, A◦ is the unobstructed aper-
ture area in square meters, ∆tk is the exposure time
in seconds, f�(r) is the fraction of solar irradiance
reaching the space object at position r – account-
ing for the Earth’s shadow, g is the sensor gain in
ADU per photoelectron, R⊕ is the distance from the
Sun to the space object in AU, rk is the distance
from the observer to the space object in kilometers.
Within the integral, we account for the telescope’s
passband filter P (λ), the image sensor quantum ef-
ficiency Q(λ), the atmospheric absorption spectrum
Tk(λ), the solar irradiance spectrum I�(λ), and the
inverse energy of a photon with wavelength λ, λ/hc,
where h is Planck’s constant in Joule-seconds, and c
is the speed of light in vacuum in meters per second.
Taken together, the integral computes the fraction
of the energy reflected from the object absorbed into
the image sensor, while the outer factor dimensional-
izes the result to yield the mean total sensor response
in ADU across all pixels due to the object’s signal.

3.5. Approximating the Measurement Noise

This section summarizes an in-depth study of rele-
vant noise sources in CCD and CMOS sensor light
curves which can be found in [45].

The variance of a space object’s observed bright-
ness whose mean is determined by Equation 17 is
a combination of many independent stochastic pro-
cesses. These distributions have variances σ2

sensor due
to the sensor’s integration and readout effects, σ2

flat
from sensor flat-fielding effects, scintillation noise
S̄SO,kσ

2
Y,k [37], Poisson signal shot noise λshot,k, and

Poisson background noise λback,k. The sum of these
variances yields the total signal variance in ADU:

σ2
S,k =λback,k + S̄SO,kσ

2
Y,k + λshot,k

+σ2
flat + σ2

sensor.
(18)

The sensor noise is approximated by the independent
combination of Poisson dark current λdark and zero-
mean Gaussian readout noise σ2

read [29]:

σ2
sensor = npix

(
∆t · λdark + σ2

read
)
. (19)

The flat field noise is modeled as a zero-mean Gaus-
sian linearly scaling with the signal in each of the npix



pixels of the object signal Si and a constant fk fit to
the sensor from flat frame observations, yielding the
signal standard deviation [36]:

σ2
flat = f2

k

npix∑
i=1

S2
i . (20)

The background standard deviation is modeled by
the sum of six independent Poisson random processes
contributing to light entering the telescope optics
from environmental sources. These processes and
the sources of their respective models are: scattered
moonlight λmoon,k [10], integrated starlight λstar,k
[29], twilight λtwi,k [38], zodiacal light λzod,k [43],
airglow λair,k [29], and light pollution λpoll,k [15, 14].
In summation, the total Poisson background variance
is:

λback,k = npix,k(λmoon,k + λstar,k + λtwi,k

+λzod,k + λair,k + λpoll,k).
(21)

The fractional scintillation noise due to atmospheric
turbulence is modeled via Young’s approximation
[37]:

σ2
Y,k = 10−6D−4/3(∆t)−1

k cos−3 (γk) e
−2hobs

H . (22)

Here, the scintillation noise at timestep k as a func-
tion of the aperture diameter D in meters, the expo-
sure time (∆t)k in seconds, the zenith angle γk, the
observing station’s altitude hobs in meters, and the
turbulence scaleheight H ≈ 8000 meters [37].

The signal shot noise is a Poisson process as a func-
tion of the mean signal in ADU S̄SO,k and the image
sensor gain g in ADU per photoelectron:

λshot,k =
S̄SO,k√

g
. (23)

After summation in Equation 18, we can approx-
imate the observed light curve as Gaussian dis-
tributed via the mean S̄SO,k from Equation 17 and
the variance σ2

S,k in ADU2:

SSO,k ∼ N
(
S̄SO,k, σ

2
S,k

)
. (24)

4. ATTITUDE INVERSION RESULTS FOR
SYNTHETIC DATA

To demonstrate the effectiveness of our inversion
method, we first present results for a simulated light

curve where the ground truth attitude profile is avail-
able for comparison.

4.1. Generating the Simulated Light Curve

To make this simulated case realistic, we use the pre-
sented measurement noise models and introduce a
mismatch between the ground truth object used to
generate the measurements and the model used for
inversion. The selected object is a high-fidelity model
of the Saturn V second stage scaled down by a factor
10/3 to act as a template rocket body object, shown
on the right of Figure 3

Table 1 describes the simulated observation scenario
used to produce the noisy light curve observations,
placing the rocket body in the orbit of an SL-12 up-
per stage in geosynchronous orbit, observed by the
Purdue Optical Ground Station. Relevant geograph-
ical and optical properties of this ground station are
provided in the Appendix in Table 9. Table 2 lists
the material properties used in this test case.

Table 1: Simulated observation characteristics

Variable Value

Target COSPAR ID 1990-054D

First obs. (UTC) Mar 8, 2025 02:00:00.000

Light curve duration 5 minutes

Observations 100

Integration time 0.5 seconds

Table 2: Reflection properties of materials used in
the synthetic data test case. The white paint pa-
rameters are estimated qualitatively.

Material Cd Cs n

Aluminum [17] 0.34 0.40 8.9

White paint 0.9 0.1 1

The ground truth attitude profile and inertia tensor
ratios of the simulated object are listed in Table 3.



Table 3: True object attitude profile for all test cases

Variable Value

Initial p(0) − 1
3

[
1 1 1

]T
True ω(0) (rad · s−1) ω(0) =

[
0.03 0.06 0.03

]T
Inertia tensor ratios Jy/Jx = 1, Jz/Jx = 0.25

External torque M
[
0 0 0

]T

Simulating the mean light curve and its approximate
probability distribution via Equation 24 produces
the light curve displayed in V-band magnitude in
Figure 2.

Figure 2: Simulated mean and sampled observations
for the rocket body in black in V-band magnitude,
with the variance included in blue.

4.2. Case 1U and 1P: Synthetic Light Curve Opti-
mization Results

To emulate the reality that the precise geometry of
the observed object is usually uncertain, we use per-
form attitude inversion with a significantly simplified
rocket body model, shown in Figure 3.

Figure 3: Simplified rocket body model used for
inversion (left) and simulated ground truth model
(right).

Two distinct inversion cases are computed. Case 1U
presents inversion results given no attitude informa-
tion besides an estimate of the inertia tensor ratios
derived from the known geometry – hence requiring
a uniform search of the solution space. In contrast,
Case 1P presents results given good prior knowledge
of attitude state distributions. Table 4 summarizes
the initial condition sampling strategies employed for
each case. For Case 1P, the standard deviations σω

and σJ are for spherically-symmetric Gaussians cen-
tered on the ground truth. MRPs are sampled by ro-
tating by θ ∼ N (0, σp) degrees away from the ground
truth orientation around an axis uniformly sampled
on the sphere.

Table 4: Initial condition sampling parameters used
for inversion in Cases 1U (no attitude information)
and 1P (prior attitude knowledge)

Case 1U

State Sampling strategy

p Uniform, via Equation 9

ω ‖ω‖mid = 5.26 [deg · s−1], via Eq. 7

J σJ = 0.1, via Equation 10

Case 1P

State Sampling strategy

p Gaussian, σp = 20 [deg]

ω Gaussian, σω = 0.1 [deg · s−1]

J Gaussian, σJ = 0.05 [nondim]

For both cases, a total of nsample = 105 initial state
samples are created via the sampling schemes de-
scribed in their respective tables. BFGS minimiza-
tion is then performed for each initial state sample
to locally solve the optimization problem given by



Equation 11. Both cases ran to convergence on an
Apple M1 CPU in 3.2 hours.

Solutions are then classified as candidates for the
ground truth with ` = 1/2 via Equation 12. 2026 and
39683 candidate solutions were identified for Cases
1U and 1P, respectively. Figure 4 shows the mean
light curves produced by the identified candidate so-
lutions. There is good agreement between the can-
didate light curves and the observations, indicating
that high-quality local minima have been identified.

Figure 4: Candidate solution light curves found
through BFGS optimization.

Figures 5 and 6 display the candidate MRP and an-
gular velocity of the candidate solutions determined
via the procedure detailed in Section 2.4. In the
Case 1U figures on the left for orientation and an-
gular velocity, we notice that the ground truth in
red lies squarely on a surface containing numerous
candidate solutions. This indicates that the local
minima have correctly converged to the non-singular
subspace of states that approximate the observations
well for the assumed shape model. In angular veloc-
ity space, shown in Figure 6, most solutions fall onto
the surface of two open-ended cylinders – one with
half the radius of the larger cylinder containing the
truth. Similarly in orientation space, shown in Fig-
ure 5, the solutions fall on two distinct manifolds,
one containing the truth – likely resulting from a re-
flection of the object’s body frame about the bisector
between the Sun and observer vectors [34, 6]. These
additional families of solutions highlight the reality
that a wide variety of attitude profiles can produce
nearly identical observations.

The Case 1P results on the right within Figures 5
and 6 show that the majority of the initial states
sampled close to the truth have converged to a local
subset of the solution manifolds identified by Case
1U. We should not expect these solutions to have
shrunk down exponentially towards the ground truth
– the mismatch in the assumed shape model and the
measurement noise inherently limits the minimum
size of the feasible solution space.

(a) (b)

Figure 5: Candidate solution initial orientation MRP
vectors for Cases 1U (left) and 1P (right), with the
ground truth highlighted in red.

(a) (b)

Figure 6: Candidate solution initial body-frame an-
gular velocity vectors for Cases 1U (left) and 1P
(right), with the ground truth highlighted in red.
Note that each plot shows a unique perspective to
highlight the structured distribution of solutions.

Figure 7 displays the inertia tensor solutions for
Cases 1U and 1P. Notably, the majority of candidate
solutions remain within a few standard deviations of
the mean of their initial distribution, with the re-
maining minority exploring directions that maintain
the same precession rate. When a good prior for
the other attitude state components is available in
Case 1P, the inertia tensor solutions are more well-
clustered, although due to the low observability of
the rocket body’s spin rate in the observed light
curve, there are still ambiguous solutions with higher
or lower Jz/Jx values.

(a) (b)

Figure 7: Candidate solution inertia ratios for Cases
1U (left) and 1P (right), with the ground truth high-
lighted in red.



Figure 8 summarizes the distribution of candidate so-
lutions with respect to the ground truth by display-
ing the angular velocity magnitude error and angu-
lar orientation error compared to the ground truth.
Case 1U shows significant variability in angular ve-
locity magnitude, although this is almost entirely due
to the unobservability of the spin rate about the ob-
ject’s axis of symmetry in the light curve. The mean
precession rate error is low at 0.3%.

Due to the underdetermined orientation solution
space, there are far more solutions at high angular
offsets from the truth orientation, leading to a large
mean angular error of 126◦. For Case 1P, the mean
orientation error is much lower at 18◦, although con-
vergence here is still inherently limited by the noisy
measurements and model mismatch.

(a) (b)

Figure 8: Candidate solution angular orientation er-
ror and angular velocity magnitudes for Cases 1U
(left) and 1P (right) compared to the ground truth

While introducing a good prior in Case 1P does con-
strain the solution space, the ambiguities of the light
curve inversion problem are still present and lead to
the remaining variability we see in Figure 8b. Our
method respects this fact and resolves the structure
of these surfaces, while other approaches that con-
sider only one solution fail.

5. ATTITUDE INVERSION RESULTS FOR
REAL DATA

In this section, we provide inversion results for a
Delta I upper stage in Case 2D, and the ECHOSTAR
II satellite in Case 2E, both observed by the Purdue
Optical Ground Station.

5.1. Case 2D: Delta I Upper Stage

In Case 2D, we perform attitude inversion on real
data observed for a Delta I upper stage rocket body.
The chosen Delta I upper stage (COSPAR ID 1984-
115C) is a Star-37E [60] solid fuel apogee kick motor,

displayed in Figure 9a. It is d = 0.93 meters in diam-
eter and is approximately h = 1.7 meters in length
[61, 30].

(a) (b)

Figure 9: a) Star-37E upper stage [35], b) Simplified
model used for inversion.

We compute the inertia tensor of the Star-37E by
approximating its geometry as a hollow cylinder of
the same aspect ratio such that [50]:

Ja =
1

2
m
(
r2o + r2i

)
(25)

Jt =
1

12
m
(
3
(
r2o + r2i

)
+ h2

)
(26)

JR/B = diag (Ja, Jt, Jt) . (27)

Here, we choose the inner radius to be ri = 0.45d,
the outer radius to be ro = 0.5d, and m = 1 kilogram
– dividing each moment of inertia by a constant does
not change the dynamics – yielding Ja = 15.3[kg·m2]
and Jt = 27.9 [kg · m2]. Table 5 summarizes the
light curve observations that result in the extracted
measurements displayed in Figure 10.

Table 5: Delta I rocket body observation character-
istics

Variable Value

Target COSPAR ID 1984-115C

First obs. (UTC) Mar 2, 2025 01:53:30.251

Light curve duration 7.5 minutes

Observations 100 (92 extracted)

Obs. frequency 0.222 Hz

Integration time 3 seconds



Figure 10: Selected light curve for the Delta I (Star-
37E) rocket body, observed by the Purdue Optical
Ground Station

This light curve shows clear periodicity but has a
high measurement standard deviation and a rela-
tively low sampling rate due to the object’s low
brightness and the sensor readout time. Inversion is
performed using nsample = 104 samples in 2.4 hours
on an Apple M1 CPU. The material and angular ve-
locity assumptions are listed in Table 6. As in Case
1U, orientation, and angular velocity states are sam-
pled via Equations 9 and 7, respectively. All initial
inertia tensor samples are set to the estimated JR/B.
The 82 converged candidate solution results are pre-
sented in terms of their mean light curves in Figure
11, orientation MRPs and angular velocities in Fig-
ure 12, and inertia ratios in Figure 13.

Table 6: Delta I rocket body inversion assumptions

Variable Value

Uniform BRDF Cd = 0.2, Cs = 0.8, n = 30

‖ω‖mid 6.93 [deg · s−1]

` 1/100

Figure 11: Candidate solution light curves compared
to the real measurements in ADU for the Delta I
(Star-37E) rocket body.

(a) (b)

Figure 12: Candidate solution orientation MRPs
(left) and angular velocity vectors (right) for the
Delta I (Star-37E) rocket body

Figure 13: Candidate solution inertia ratio distribu-
tion for the Delta I (Star-37E) rocket body

The 82 candidate solutions identified by the inver-
sion process produce light curves that adequately ap-
proximate the measurements, although they do not
reach the lowest observed values. This indicates that
the true material is more dominated by specular re-
flections than our assumed coefficients. The candi-
dates show some rough clustering in both orienta-
tion and angular velocity space, although they vary
significantly in angular velocity magnitude. The in-
ertia tensor solutions display similar variability, al-
though the solutions are spread relatively uniformly
from the initial estimate, possibly indicating that the
geometry-driven estimate is approximately unbiased.
Taken together, these results indicate that the object
could be spinning in a number of attitude profiles,
although the light curve inversion process has signif-
icantly narrowed the search space to small subsets
of the original unconstrained eight-dimensional vol-
ume. These constraints can be combined with ad-
ditional light curves, information about the object’s
true mass distribution, or reflectivity to further re-
fine the solution set.

5.2. Case 2E: ECHOSTAR II

In Case 2E, we perform attitude inversion on real
data observed for a derelict satellite. ECHOSTAR



II (COSPAR ID 1996-055A) was a communications
satellite on the AS-7000 bus [59], shown in Figure
14a. It has an approximate total wingspan of s =
23.9 meters, individual solar panel length of lp = 8.5
meters, panel width of wp = 3.1 meters, and a mass
per panel of mp = 60 kilograms [13]. The spacecraft
bus is approximately cubic with a side length wb =
2.3 meters and a mass of mb = 1900 kilograms [13].

(a)

(b)

Figure 14: a) Artist’s rendition of ECHOSTAR II
[59], b) Simplified ECHOSTAR II box-wing model
used for inversion.

The contribution of the bus to the total inertia tensor
of ECHOSTAR II is spherically symmetric and given
by [47]:

Jbus =
1

6
mbw

2
bI3, (28)

assuming that the center of mass (COM) of the bus
coincides with the COM of the entire vehicle. By
the intermediate axis theorem, the contribution of
a panel to the inertia tensor is a function of the
displacement of the panel’s COM from the vehicle’s
overall COM rp = [0, s/2− lp/2, 0]

T :

Jpan =
mp

12
· diag

(
l2p, w

2
p,
(
l2p + w2

p

))
+

mp

[
(rp · rp) I3 − rpr

T
p

]
,

(29)

assuming that the panels have negligible thickness.
The overall inertia tensor for ECHOSTAR II is there-
fore:

JSAT = Jbus + 2Jpan (30)
= diag (9512, 1771, 9609) [kg ·m2] (31)

Table 5 summarizes the light curve observations that
result in the extracted measurements displayed in
Figure 10.

Table 7: ECHOSTAR II observation characteristics

Variable Value

Target COSPAR ID 1996-055A

First obs. (UTC) Feb 26, 2025 04:16:12.279

Light curve duration 19.5 minutes

Observations 456 (395 extracted)

Obs. frequency 0.388 Hz

Integration time 1 seconds

Figure 15: Selected light curve for ECHOSTAR II,
observed by the Purdue Optical Ground Station

This light curve is sampled more densely than the
Delta I observations and clearly has significantly
more intense specular peaks. Inversion is performed
using nsample = 104 samples in 48 minutes on an
Apple M1 CPU. The material and angular velocity
assumptions are listed in Table 8. Initial state sam-
pling is accomplished identically to Case 2D, with
a different mean angular velocity and initial inertia
ratios. The candidate solution results are presented
in terms of their mean light curves in Figure 16, ori-
entation MRPs and angular velocities in Figure 18,
and inertia ratios in Figure 17. Since the light curve
spans three orders of magnitude with a high signal-
to-noise ratio, the shape and material mismatch pro-
duces specular peaks that are good fits, but are
possibly hundreds of standard deviations away from
the computed measurement distribution. To com-
bat this, ` is selected to be much more permissive in
selecting candidate solutions compared to previous
cases.



Table 8: ECHOSTAR II inversion assumptions

Variable Value

Aluminum BRDF Cd = 0.22, Cs = 0.4, n = 5

MLI BRDF Cd = 0.05, Cs = 0.24, n = 20

Solar panel BRDF Cd = 0.05, Cs = 0.13, n = 10

‖ω‖mid 2.32 [deg · s−1]

` 1/1000

Figure 16: Candidate solution light curves compared
to the real measurements in ADU for ECHOSTAR
II.

Figure 17: Candidate solution inertia ratio distribu-
tion for ECHOSTAR II with the initial estimate in
red.

(a) (b)

Figure 18: Candidate solution orientation MRPs
(left) and angular velocity vectors (right) for
ECHOSTAR II

The 19 candidate solutions identified by the inversion
process are more sparse than those found in either

of the previous rocket body cases, with some vague
clustering in both angular velocity and orientation
space. The candidate solution light curves fit the
data well. Notably, the formulation of the negative
log-likelihood objective function in Equation 4 pro-
duces the behavior seen in the candidate solutions in
Figure 16, where even the smallest recurrent specular
peaks are well-estimated by most solutions. A simi-
lar effect – giving up some of the statistical robust-
ness of our formulation – can be achieved in an un-
weighted optimization over the observations in mag-
nitudes. The inertia tensor solutions are dispersed
throughout the solution space, with less symmetry
than the Delta I solutions.

As in the Delta I case, the attitude inversion solver
has successfully constrained the search space for later
optimization as more data about the mass and re-
flectivity of the object becomes available to continue
refining any of these candidates. To address the
unknown solar panel rotation angle at the time of
ECHOSTAR II’s retirement, a parametric model for
the glint timing of the bus and panels could be em-
ployed to build an a priori estimate of this angle for
more accurate full-state solutions.

6. CONCLUSIONS

Attitude information is critical for many tasks in-
forming space situational awareness. Orientation
and angular velocity data aid high-fidelity orbit
propagation, mission recovery efforts, and object se-
lection for active debris removal. Obtaining attitude
information is often difficult, especially for passive
debris objects. Due to atmospheric distortion and
diffraction-limited optics, ground-based telescopes
can only determine the total brightness received from
a space object. If a shape model is known, the light
curve – a sequence of these brightness measurements
– is one tool for attitude estimation in the far field.

We presented an approach for solving this highly
nonlinear and non-convex optimization problem with
a gradient-based multi-start method. We presented
attitude inversion results for one case with synthetic
data and two cases with real observations. Results
on synthetic data prove that our algorithm converges
well to the full set of ambiguous solutions, and that
performance improves as more prior information be-
comes available. Results on real data show that our
approach can produce viable clusters of potential
full-state solutions even when material properties are
unavailable and the assumed geometry is heavily sim-
plified, although convergence becomes less frequent.

Unlike other approaches, our method successfully
identifies the numerous ambiguous solution families
– originating from symmetries in the observation ge-
ometry and the object shape – which can produce the
same observations. These disparate candidate solu-



tions can serve as starting points for more detailed
exploration as additional light curves or further ob-
ject shape information is obtained.
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APPENDIX

Table 9: Telescope information for synthetic and real
data observations

Variable Value

CCD sensor KAF-16803

Aperture area (A◦) 0.076 m2

Observer location 32.900◦ N, −105.533◦ W

Observer altitude 2.24 km above MSL

Read noise (σread) 9 ADU/pixel

Dark current rate (λdark) 0.01 ADU/pixel/s

Flat field strength (fk) 0.01 (dimensionless)

Gain (g) 5.1 e−/ADU

Table 10: BFGS configuration for all results cases

Variable Value

Maximum function evaluations 1000

Maximum iterations 100

Finite difference step size 1 · 10−5

Gradient ∞-norm tolerance 1 · 10−5
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