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ABSTRACT 

Detecting and reconstructing manoeuvres from given 
data is one of the important topics in the field of space 
situational awareness. A novel formulation to estimate 
unknown manoeuvres from historical orbit data is 
presented. The manoeuvre is identified from orbital 
element change, based on least square estimation, which 
is widely used for orbit determination problems. By 
applying the proposed approach, a manoeuvre and its 
time information can be estimated from inverting Gauss’ 
planetary equations. The proposed method is validated 
against the TLE history from the Envisat spacecraft. 

1 INTRODUCTION 

Tracing unknown events in orbital environment from 
historical data is important, especially as the population 
in orbital regimes increases dramatically and as 
manoeuvre data are not publicly shared. Such data 
interpretation often provides useful information that is 
not necessarily shared, from which spacecraft is still 
active, to which behaviours can be expected and 
considered in the decision-making process. Manoeuvre 
detection and characterisation have been a key 
component in space situational awareness in that sense 
[1-5]. The estimation is possible from the orbit dynamics 
and observation history. If there are significant changes 
observed in the trajectory which cannot be explained by 
orbit propagation, an impulsive manoeuvre or a similar 
event can be assumed. 

Past works focused on space event detection from 
existing data based on statistical technique [1][2][3]. Two 
Line Elements (TLE) data is often used as database 
because of its public accessibility and regular update. 
Patera proposed the moving window method, to filter 
orbital anomalies from smaller variations due to 
perturbations or noise [1]. The approach was applied to 
detect various events, i.e. collision, manoeuvre, even 
atmosphere fluctuation due to increased solar activity. 
Focusing on the manoeuvre detection, orbital boost 
manoeuvres were detected from an orbital energy plot. 
Kelecy et al. focused on out-of-plane manoeuvres, i.e. 
inclination change, to aid area-to-mass ratio estimation 
[2]. Similar to [1], data difference detection from 
adjacent filtered segments is proposed, which smooths 
the data in a sliding interval. Polynomial fit is calculated 

both for the trailing segment and the leading segment, 
and the difference in the middle between the two data is 
examined. Both orbit raising and inclination change were 
detected from orbital energy plot and inclination history. 
Lemmens and Krag proposed TLE Consistency Check 
(TCC) as well as TLE Time Series Analysis (TTSA) [3]. 
TCC approach detects events by comparing a published 
state with a propagated state, while TTSA detects them 
by extrapolating the behaviour of the series to 
measurement epoch outside of the extrapolation window. 

There are relatively less literatures addressing manoeuvre 
reconstruction. While simply calculating delta-v 
magnitude from a jump in orbital energy or in inclination 
history is widely used, there are two studies estimating 
manoeuvre characteristics from historical data [4][5]. 
Both Pastor et al. [4] and Porcelli et al. [5] used raw 
measurements. Pastor et al. applied least square method 
to optical measurements [4]. Like the classical orbit 
determination, it provides manoeuvre estimation which 
minimises the residual between pre- and post-manoeuvre 
orbits. Two formulations were proposed for single burn 
and double burns cases, namely track-to-orbit and orbit-
to-orbit. Then Porcelli et al. applied the similar approach 
to the track-to-orbit approach to radar measurements [5]. 

We introduce here a new formulation for identification 
and characterisation of a manoeuvre from historical data 
in forms of Keplerian orbit elements, based on the least-
square optimisation. Compared to Cartesian coordinates, 
Keplerian elements are beneficial since they provide 
orbit’s shape and orientation instantaneously and most of 
the elements vary slowly over time. While previous 
literatures mainly focus on the manoeuvre detection from 
trajectory change, we attempt to extract more information 
about the manoeuvre from the orbit elements history 
itself. The Gauss’ planetary equations in the literature are 
used together with the Keplerian element formulation for 
manoeuvre identification, which lead to linear 
relationships with an impulse and the orbit elements 
difference, which then also can be propagated with the 
state transition matrix. This formulation can be 
transformed into a linear least square problem in terms of 
true anomaly of the manoeuvring point without loss of 
generality. A manoeuvre can be identified by searching 
the true anomaly i.e. the epoch of the manoeuvre, which 
minimises the difference between the orbit measurement 
and the propagation of the least-square solution delta-v to 
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the epoch of measurement. 

We also used TLE data for validation. Any outliers in the 
data are filtered first and then difference in orbit elements 
are calculated. Instead of six Keplerian elements, the 
argument of latitude replaces both the argument of 
perigee and the true anomaly, considering their accuracy 
in the measurements. The feasibility of the proposed 
approach is examined with the orbit history of the Envisat 
spacecraft, whose manoeuvre history is also available [6]. 
Simulations are performed for out-of-plane manoeuvres 
and in-plane manoeuvres separately, as the two 
manoeuvres are often not combined. Expected 
limitations from the TLE accuracy seen in the 
simulations are also addressed, together with a sensitivity 
analysis of the approach with synthetic orbit data. 

2 MANOEUVRE IDENTIFICATION VIA 
GAUSS’ PLANETARY EQUATION 

When there is a discontinuous change in a spacecraft 
trajectory caused by an impulsive manoeuvre, the linear 
relationship between a manoeuvre vector 

[ ]Tt n hv v vδ δ δ δ=v  and consequential changes in 

orbit elements [ ]Ta e i Mδ δ δ δ δ δω δ= Ωα  is 
given as Gauss’ Planetary Equation as a function of true 
anomaly f  [7]. 
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(1) 

where fθ ω= +  is the argument of latitude, b  is the 
semi-minor axis of the orbit, p  is the semilatus rectum, 
h  is the norm of the angular momentum, v  is the 
magnitude of the velocity, and r  is the radial distance. 

Assume that two states in Keplerian elements 0α  and 1α  
are available at the epoch 0t  and 1t  respectively, which 
makes 0 0( )t=α α  and 1 1( )t=α α , and the difference 
between two states cannot be explained by propagation. 
An impulsive manoeuvre within [ ]0 1,t t  can be expected, 
with its epoch 1t t t= − ∆  to be solved. As shown in 
Figure 1, it is equivalent to a Two-Point Boundary Value 
Problem (TPBVP) with unknown t∆ , 

1( ) ( ) ( ) ( )M vt t t tδ δ δ= ∆ = ∆α G G v G v  (2) 

where MG  is the State Transition Matrix (STM) to 
describe the changes in the error states δα  along the 
coasting arc. Assuming small error states, it is possible to 
simplify MG  as below by considering Keplerian motion 
only. 

1 4

4 1 4 4

1 45 2

1 0
0

( )
3 1
2

M t

t
a
µ

×

× ×

×

 
 
 ∆ =
 
 − ∆
 

0
0 I

G

0

 (3) 

Since the matrix ( )t∆G  is 6x3, solving δ v  is an over-
determined problem, meaning that there is no solution in 
general and therefore the problem should be dealt in a 
statistical way, i.e. regression analysis. In this regard, the 
problem in Eq. 2 can be converted to an optimal t∆  
searching in [ ]0 1,t t , which minimises 

1( ) ( ) LSQt tδ δ− ∆α G v  (4) 

 
Figure 1 Schematic problem definition of maneuver reconstruction 
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By assuming a fixed t∆ , a least-square solution is 
available as Eq. 5. 

( ) 1T T
LSQδ δ

−
=v G G G α  (5) 

when there is no perturbation or measurement noise 

present, Eq. 4 becomes zero with the correct t∆ . 

The formulation in Eq. 4 and Eq. 5 is validated with 
numerical simulations. At first, an initial orbit in Table 1 
is propagated with GMAT [8] from 21545 MJD, with an 
impulsive manoeuvre described in Table 2.  EGM-96 
gravity model with 0 degree and 0 order is used, i.e. no 
Earth oblation is considered. Atmospheric drag is also 
not included in the propagation. 

Table 1 Test case (1) – initial and final orbits 

Initial orbit @ modified Julian date 21545 
X (km) Y (km) Z (km) XV (km/sec) YV (km/sec) ZV (km/sec) 
7100 0 1300 0 7.35 1 

Final orbit @ modified Julian date 21545.486 
X (km) Y (km) Z (km) XV (km/sec) YV (km/sec) ZV (km/sec) 

6163.539 -3520.865 648.782 3.674 6.369 1.541 
 

Table 2 Test case (1) – impulsive manoeuvre to be solved 

0t  (MJD) 21545 

ft  (MJD) 21545.486 

t∆  30000 sec 
tδ v  0t  + 12000 sec 
δ v  (TNH) [ ]1.0 0 2.0 T  (m/sec) 

Figure 2 is a plot of the error magnitude with the least 
square solution in Eq. 4 for each t∆  candidates. As 
shown in Figure 2 and also as summarised in Table 3, t∆  
with the minimum error matches with the true value in 
Table 2, and also the manoeuvre vector is estimated quite 
well. 

Table 3 Test case (1) – manoeuvre estimation result 

LSQδ v  (m/sec) [ ]1.000 0.015 1.998 T−  

LSQδ δ δ−v v v  0.68 % 
t∆  30000 sec 

 

 
Figure 2 t∆  searching via least square estimation 

The same approach is extended to include J2. The final 
orbit changes under the Earth oblateness. As summarised 
in Table 5, the manoeuvre estimation is significantly 
degraded by assuming a Keplerian motion. To overcome 
this issue, (1) we switched from osculating orbit elements 
to Brouwer Long mean elements [9], (2) modified the 
STM in Eq. 3 to include secular drift, and (3) included 
the secular change in absolute orbit elements when 
calculating ( )t∆G . The modified STM is given in Eq. 6, 

2 2( ) ( ) ( )J J
M Mt t t∆ = ∆ + ∆G G Φ  (6) 

while the details of the additional matrix 2 ( )J t∆Φ  is 
available in [10]. The estimation gets much more 
accurate with the modified equation as in Table 6.

 Table 4 Test case (2) – final orbit 

Final orbit @ modified Julian date 21545.486 
X (km) Y (km) Z (km) XV (km/sec) YV (km/sec) ZV (km/sec) 

6466.935 -2887.862 866.385 3.010 6.726 1.422 
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Table 5 Test case (2) – manoeuvre estimation result 

LSQδ v  (m/sec) [ ]0.9806 0.6445 2.2604 T−  

LSQδ δ δ−v v v  31.10 % 
t∆  30000 sec 

Table 6 Test case (2) – manoeuvre estimation result 

LSQδ v  (m/sec) [ ]0.9946 0.0273 2.0293 T−  

LSQδ δ δ−v v v  1.81 % 
t∆  30000 sec 

A couple of notes should be added for the proposed 
manoeuvre reconstruction. First and foremost, there is an 
ambiguity in orbital revolution as shown in Figure 3 due 
to periodic ( )t∆G , unless there is a secular drift in along-
track direction.  For an orbit-normal case the ambiguity 
exists in every half orbit with a manoeuvre in the opposite 
direction. Second, the derivation includes the first order 
approximation for linearization. Therefore, it is expected 
that the estimation error gets larger when the propagation 
time is longer. 

 
Figure 3 Periodic ambiguity in least-square solution 

search 

3 MANOEUVRE RECONSTRUCTION 
FROM TLE DATA 

The proposed approach is now tested with the actual data, 
TLEs in this study, mainly because of its public 
availability. To apply the approach to the actual TLE 
history, TLE outlier removal in [8] is applied. We do not 
address the outlier filtering in details here, it can be 
summarised in five steps as follow. 

(1) Remove the TLEs corresponding to a correction 
of the immediately previous elements, 
according to a minimum threshold of the update 
time between two subsequent TLEs 

(2) Identify large gaps between TLEs to define time 
windows in which outliers will be searched 

(3) Remove the TLEs with values of inclination that 
are not coherent 

(4) Remove the TLEs with values of eccentricity 
that are not coherent 

(5) Remove the TLEs with negative values of B* 
drag term 

Once the filtered TLEs are obtained, the discontinuous 
changes in the values are selected as the initial and the 
final point of the problem. Please note that, we do not 
include the autonomous manoeuvre detection in this 
study, so once the outliers are filtered a peak in the TLE 
history is manually picked up for now. Figure 3 shows 
the simulation process. 

Actual manoeuvre history in orbit is available for specific 
satellites by the International DORIS Service (IDS) [6]. 
When applying the approach first, we witness the large 
δω  and Mδ  values with the opposite signs. It is 
suspected that the perigee direction in TLEs varies a lot 
due to the small eccentricity, so we reduced the 
dimension of the problem from (6x3) to (5x3), by using 
argument of latitude Mλ ω= +  instead of argument of 
perigee and mean anomaly separately. 

 
Figure 4 Manoeuvre identification process from TLE data 
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Figure 5 Envisat TLE history, year 2003 

The estimation result is summarised in Table 7. It is 
already mentioned in [2], that the post-manoeuvre TLE 
typically suffer a time lag on the order of days before 
showing the full effect of a known manoeuvre, which 
also can be observed in Figure 5. Therefore we do not 
include t∆  estimation study in the table, as a peak in the 
TLE plot does not match with the actual epoch of the 
orbit change.

Table 7 Envisat out-of-plane manoeuvre estimation, happened between 2002 to 2005 

Epoch 02252 02352 03135 03300 04034 04105 05006 05076 

δ v  happened 
(m/sec, TNH) 

0 
0 

1.6960 

0.0117 
0.0214 
1.4566 

0.0113 
0.0186 
1.8717 

0.0051 
0.0469 
2.0042 

0.0028 
0.0327 
1.7468 

0.0085 
0.0160 
1.7320 

0.0033 
0.0478 
1.9151 

0.0101 
0.0148 
2.0157 

δ v  estimated 
(m/sec, TNH) 

0.0251 
0.0491 
-1.715 

0.0384 
-0.1369 
-1.5168 

0.0230 
-0.3065 
1.2879 

0.0247 
-0.6596 
1.5225 

0.0043 
0.1413 
1.5523 

0.0195 
0.0168 
2.0196 

0.0194 
-0.0065 
2.0204 

0.0132 
0.0027 

-1.9571 
ˆh h hv v vδ δ δ−

 1.12 % 3.97 % 31.19 % 24.03 % 11.13 % 3.90 % 16.61 % 2.91 % 

Table 8 Envisat in-plane manoeuvre estimation, happened in 2003 

Epoch 03043 03063 03094 03135 03157 03227 03272 03304 03349 

δ v  happened 
(m/sec, TNH) 

0.0216 
-0.0001 
-0.0010 

0.0211 
0.0000 
0.0011 

0.0252 
-0.0001 
-0.0010 

0.0164 
0.0000 
0.0011 

0.0175 
0.0000 

-0.0002 

0.0154 
0.0000 

-0.0007 

0.0163 
0.0000 

-0.0009 

0.0348 
0.0001 

-0.0013 

0.0212 
0.0001 

-0.0011 

δ v  estimated 
(m/sec, TNH) 

0.0236 
0.6704 
0.3868 

0.0175 
1.4251 
0.6503 

0.0269 
-0.2248 
-0.8235 

0.0246 
0.2036 

-1.2781 

0.0250 
-1.9872 
0.6235 

0.0155 
0.4637 
0.2880 

0.0159 
0.3227 
0.4560 

0.0302 
0.1657 

-0.6776 

0.0288 
0.1310 

-0.0271 

T̂ T Tv v vδ δ δ−  9.26 % 17.06 % 6.75 % 50.00 % 42.86 % 0.65 % 2.45 % 13.22 % 35.85 % 

4 SENSITIVITY ANALYSIS 

A sensitivity analysis is conducted under two scenarios, 
(1) orbit plane change manoeuvre and (2) orbit raising 
manoeuvre. It is a tricky to perform a single, uniform 
analysis, as the estimation performance also depends on 
the magnitude and direction of the reference manoeuvre. 
Therefore, the case scenarios were divided into two cases, 
(1) when there is 1.0 m/sec out-of-plane manoeuvre 
happened and (2) 1.0 m/sec along-track manoeuvre 
happened. Then a position error up to 100 m in 
transverse/along-track/orbit-normal direction added for 
each case. 

First, it is obvious that the estimation is less affected by 
position error for orbit-normal manoeuvres. Second, 
transverse direction estimation often contains the largest 

error, compared to the other two axes. From these two 
observations, it is explained that why in-plane manoeuvre 
reconstruction contains large errors in the transverse 
direction. This behaviour is already expected from the 
Gauss’ planetary equation in Eq. 1. As relative semi-
major axis can be only changed by along-track 
manoeuvre, and so is relative inclination by orbit-normal 
manoeuvre only, the algorithm tends to compensate the 
residuals by estimating (or adding) transverse manoeuvre. 
Unless both the measurement and the propagation is 
highly accurate, it is recommended to discard along-track 
estimation. 

One possible way to overcome the high sensitivity is to 
reduce the dimension of the problem, especially as it is 
expected that the routine orbit maintenances are done 
separately for orbit raising and orbital plane change. If 
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one kind of maintenance is observed in the TLE history 
already, it is possible to extract out-of-plane manoeuvre 
part in the GVE in Eq. 1 and estimate an orbit-normal 
impulse only. Similar approach can be applied to in-plane 
cases. If it is expected that the unknown manoeuvre is a 
routine one, it is reasonable to assume that there was only 
an along-track manoeuvre, and a transverse delta-v is 
negligible. Of course, this approach is not valid for an 
unexpected event such as collision or explosion, it would 
not be possible to assume the direction of an impact. Then 
it is necessary to have both a propagator with high fidelity, 
as well as precise measurement. 

5 CONCLUSION 

A new approach to characterise an unknown impulsive 
manoeuvre is introduced, in a form of least-square 
estimation with reverse Gaussian planetary equation. The 
proposed method is applied both on simulated orbit and 

the actual TLE history. A couple of remarks can be made, 
focusing on the TLE data and the sensitivity analysis. 
First, despite the TLE accuracy and large search window 
up to more than 10 days, it was possible to reconstruct a 
manoeuvre with reasonable accuracy, especially for 
inclination changes. Second, due to the nature of TLE 
from batch orbit determination, the full effect of an 
impulse appears days after from the actual epoch, which 
adds delays in the estimation. Therefore, it is not 
meaningful to estimate time of manoeuvre with TLE data. 
Last but not least, considering its sensitivity, it is not 
recommended to use the in-track manoeuvre estimation 
when level of accuracy is low, and the propagation time 
is long. The second and the third points can be further 
investigated by using different measurements if 
applicable, which is more precise than TLE and reflect 
manoeuvres instantly. 

 

  
Figure 6 Error sensitivity analysis, transverse direction, out-of-plane (left) and in-plane (right) case 

 

  
Figure 7 Error sensitivity analysis, along-track direction, out-of-plane (left) and in-plane (right) case 
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Figure 8 Error sensitivity analysis, orbit-normal direction, out-of-plane (left) and in-plane (right) case 
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