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ABSTRACT 

Space Debris Light Curves (LCs) are temporal variations 

of object brightness and allow to retrieve characterizing 

information about the target by e.g., applying methods of 

Machine Learning (ML). So far, only LCs obtained from 

non-resolved, CCD-based images have been analysed 

using ML.  In this paper, we successfully classify LCs 

from IWF SPARC, a LC catalogue captured on single 

photon basis, thereby showing this type of LC is an 

alternative to its CCD-based counterpart. A key finding 

of our experiments is that a pre-processing step called 

feature extraction can significantly boost the 

performance of ML classifiers (e.g., Random Forest). 

This insight can be used to tackle tasks for which a 

limited amount of training data is available. 

1 INTRODUCTION 

The ever-growing number of space debris [1] in Earth’s 

orbit is source of concern for ongoing as well as future 

satellite missions due to risk of collision. Characterizing 

debris (i.e., inferring information such as attitude motion, 

shape and material [2]) is of high interest to mitigate this 

threat, however, the retrieval of object properties is 

challenging. Due to their small size paired with 

atmospheric effects, not all space debris are optically 

resolvable, making the analysis of unknown targets 

difficult. 

Unresolved optical measurements, however, still allow 

the retrieval of object brightness (i.e., the fraction of 

sunlight reflected from the target towards the observer). 

Light Curves (LCs) describe the variations of object 

brightness over time and have been shown to hold key 

information such as object shape [3], attitude [4], and 

rotational state [5].  LCs are either obtained through 

extracting pixel brightness from a sequence of CCD 

based telescope images (e.g., [4, 5]) or counting the 

incoming photons directly using a Single Photon 

Avalanche Diode (SPAD) detector [6]. SPADs in 

particular permit high sampling frequencies (e.g., 100 

Hz), while file sizes remain relatively low compared to 

images (a few kB per measurement).  

With a growing number of LCs available, Machine 

Learning (ML) has been identified as a possible 

technique for space debris characterization. So far, 

promising results have been achieved by applying Neural 

Networks (NNs) (e.g., [7]) using LCs from CCD-based 

catalogues as input. NN-architectures, however, might 

comprise millions of parameters, and hence require 

significant amounts of data for training, which can be 

difficult to provide. Obtaining ground truth labels for 

space debris remains a core challenge of the field [8], 

since prior knowledge about objects is necessary. Efforts 

have been made to address this issue by including 

simulated LCs in the training process [7, 8, 9]. 

In this paper, we successfully classify space debris LCs, 

using deep as well as traditional ML models. Our 

contribution to the field is two-fold: first, rather than 

relying on CCD-based LCs for our experiments, we train 

our models using LCs captured on single photon basis, 

thereby showing this type of LC can be an alternative 

type of input for ML models. Second, we found that a 

pre-processing step called feature extraction can 

significantly boost the performance of classifiers such as 

Random Forests.  

The rest of the paper is structured as follows: Section 2 

will outline our approach. We introduce the study dataset 

and explain the ML framework. Section 3 will provide 

details on the feature extraction step. In Section 4, we will 

present our results and document details on 

implementation. This is followed by a discussion in 

Section 5. Section 6 concludes the paper. 

2 APPROACH 

The objective of this work is to classify space debris light 

curves captured on single photon basis using machine 

learning, thereby showing that this type of data is an 

alternative to CCD based measurements. This section 

provides information on the study dataset, explains the 

logic of the employed labelling schemes and gives details 

on the ML framework. 

2.1 Study Dataset 

The dataset used in this paper is a subset of the IWF 

SPARC [10], a catalogue of space debris light curves 

curated by the Space Research Institute (IWF) Graz, 

Austria. IWF SPARC includes more than 6500 LCs 

representing 700 individual targets. The number of LCs 

available per object varies between 1 and 243, with 60% 

of objects being represented by 3 or less LCs. Space 

objects in this catalogue can be broadly categorized into 

active satellites (e.g., geodetic satellites [11]), defunct 
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satellites (e.g., ENVISAT), and debris (e.g., rocket 

bodies). Fig. 1 depicts a LC measurement of 

TOPEX/Poseidon (NORAD 22076), which is a defunct 

satellite with a known spin period of 10.73 s (2016) [12]. 

In addition to the pattern consisting of a primary and 

secondary peak, we observe what we call glints. Glints 

are narrow, steep spikes in photon count and only 

comprise a couple of datapoints. We interpret these to be 

moments of specular reflection, which occurs on smooth, 

shiny surfaces (e.g., solar panels) for the case when the 

light source and observer angles are equal relative to the 

surface normal. Lastly, we observe a change in overall 

signal amplitude (in this case, a continuous increase 

towards the 230 s mark, and a decrease after that). These 

changes are related to observation geometry. 

The observed variation in object brightness is a function 

of the target’s shape, attitude and rotational behaviour as 

well as the observation geometry. It follows that LCs of 

rotating objects are of special interest, since they hold 

more relevant information. With a spin period of around 

10 s, TOPEX/Poseidon is one of the fastest rotating 

objects in the catalogue. Most objects rotate significantly 

slower (e.g., GLONASS satellites in our catalogue have 

been associated with rotation periods between 8 s and 400 

s [13]). This has implications for the desired 

measurement length (e.g., [14] found a measurement 

length of at least six times the rotation period to be 

necessary for proper spectral analysis). The mean 

duration of LC measurements in the IWF SPARC is 269 

s, the median duration is 187 s. 

For this study, we used a well-behaved subset of the IWF 

SPARC. Based on visual quality inspection, we selected 

852 LCs representing 150 individual objects. We focused 

on targets that show clear rotational behaviour and 

included LCs with a measurement length of at least 100 

s. ML algorithms generally require the input data to be of 

uniform shape (i.e., same length). For this reason, we 

further sliced the data into segments of 100 s, extracting 

multiple slices from one LC where possible. This 

method, also referred to as window slicing, is considered 

a form of data augmentation [15]. This leaves us with a 

total of 1141 LCs available for our experiments. 

2.2 Light Curve Categories 

Supervised ML models require a labelled dataset for 

training, meaning each input must be associated with a 

target variable. In this study, we adopt three labelling 

schemes, which are summarized in Tab. 1.  

Table 1. Summary of the three data subsets employed in 

this study. All subsets draw from the initial set of 1141 

LCs selected for this study. 

Subset Classes Unique Objects Total LCs 

Uniques 8 8 675 

Families 5 22 752 

Types 3 97 510 

 

The LCs are either labelled according to the unique object 

they represent (e.g., TOPEX/Poseidon or Jason-2), object 

families they are associated with (e.g., satellites from the 

GLONASS constellation, or ATLAS 5 rocket bodies), or 

their general type (rocket bodies, geodetic satellites, or 

active satellites). This results in three classification tasks 

that aim to represent our data at different levels of 

abstraction. The notable difference between the schemes 

lies in the number of unique objects contributing to 

classes. The Uniques task is characterized by highly 

homogenous classes (i.e., LCs within a class stem from 

the same object) at the cost of having a relatively low 

number of samples per class available (29 LCs for the 

smallest, 214 LCs for the largest class). The Types set on 

the other hand is more heterogenous (i.e., LCs of 97 

unique objects are assigned to just 3 classes). The 

Families set provides a midpoint between the other two 

Figure 1. A light curve of TOPEX/Poseidon (NORAD 22076) on 2015/07/18. The first third of the measurement (up to 

120 s) shows so-called glint patterns, which are narrow spikes in photon count. They correspond to moments of specular 

reflection. The pattern in the zoomed-in panel (length 46 s) depicts 4 full rotations. 



representations. It allows us to include objects into 

training that have not been considered for the Uniques set 

due to a low number of LCs available while still 

preserving information about what makes objects in a 

class similar to each other (in this case, shape).  

In the following, we refer to the process of classifying 

one of the three subsets (Unqiues, Families, Types) as a 

task. 

2.3 Machine Learning Framework 

The standard procedure of ML involves the selection, 

training, validation, and testing of models in order to 

classify data. For this, the available data is partitioned 

into subsets used for training, validation and testing, 

typically using a predefined ratio for splitting (e.g., 80% 

training, 10% validation, 10% testing). The model is first 

trained, which involves the optimization of parameters 

with the goal to minimize a chosen loss function. The 

validation set is used to evaluate performance during 

training and tune model hyperparameters, which are 

model parameters that cannot change during training. 

The final performance is assessed through a test set. In 

case of a classification task, the performance can be 

quantified through an accuracy score. 

Before training can begin, a suitable ML model needs to 

be selected and build. For space debris classification, 

promising results have been achieved using Neural 

Networks (NNs). This study, however, has a limited 

amount of data available, which might not allow a NN to 

unfold its full potential. We therefore decided to employ 

an ensemble-based ML method (Random Forest 

Classifier) in addition to a deep learning method 

(Convolutional Neural Network). 

A Random Forest Classifier (RDF) [16] is an ensemble 

learning method consisting of individual decision trees. 

A decision tree classifies the data by recursively splitting 

it into subsets with the aim to minimize impurity. Each 

tree is trained using a random subset of data and input 

features; hence, individual trees may produce different 

predictions.  The final prediction of the RDF is obtained 

through a majority voting scheme.  

A Convolutional Neural Network (CNN) [17] is a deep 

learning model that is especially suited for classifying 

structured data (e.g., images). CNNs consist of multiple 

layers that have varying functions. Convolutional layers 

aim to learn spatial hierarchies of the input by capturing 

local patterns (e.g., edges, textures) by applying filters. 

Pooling layers are generally employed after 

convolutional layers and help extract dominant features 

as well as reduce special dimensions. Predictions are 

made at so-called fully connected layers, which integrate 

the features learned from convolution and make the final 

prediction.  

To assess classifier performance, we use a method called 

k-fold cross validation. The training data is split into k 

subsets (folds). One subset is held back for validation 

while the model is trained on the remaining data. 

Repeating this process k times allows to retrieve an 

average accuracy score, which is more robust than a score 

achieved on a single validation set. Further, we utilize the 

confusion matrix (CM) representation, which is a visual 

tool for understanding prediction outcomes. In case of 

multi-class classification with p classes, each row and 

column of a 𝐶𝑝×𝑝 confusion matrix represents the actual 

and predicted classes, respectively. A matrix cell (𝐶𝑖𝑗) 

represents the number of instances of class i that were 

predicted as class j. A well-performing classifier should 

yield high values across the matrix diagonal (𝐶𝑖=𝑗), 

indicating correct classification, and low values on the 

off-diagonal (𝐶𝑖≠𝑗) (i.e., predicted and actual class do not 

agree).  

3 FEATURE EXTRACTION 

LC classification has seen promising results using CNNs. 

However, algorithms such as RDFs can obtain similar 

accuracy by passing feature-engineered data as input 

instead of training on the raw data. Feature extraction is 

a well-established technique within the domain of time 

series classification [18]. The approach aims to capture 

relevant characteristics of data and hence find a new 

representation by selecting its most representative 

features. Trivial examples for features are the mean or 

variance of a time series. For a time series consisting of 

n ordered, real-valued datapoints, a feature vector can be 

constructed by applying a feature mapping.   Feature 

vectors can then be used as training input for classifiers 

(e.g., RDF). The approach described above is general, it 

becomes problem-specific with the choice of features.  

This work utilizes the TSFresh feature extraction 

pipeline, which is a python package designed for 

automated extraction of statistical features from time 

series data [19]. TSFresh presents its features in three 

groups: features from summary statistics (e.g., mean or 

variance), characteristics of sample distribution (e.g., 

number of datapoints above mean), and features derived 

from observed dynamics (e.g., Fourier transformation 

coefficient). 

4 RESULTS 

For computational reasons, we downsampled the LC data 

through photon count binning (hereafter referred to as 

decimated data). Tests showed that classifier 

performance begins to suffer significantly for sampling 

rates of 1 Hz or lower, hence, we chose a sampling rate 

of 10 Hz for our decimated data. Next, we extracted 

features from the decimated data using the TSFresh 

feature extraction pipeline, which provided us with 342 

important features. 

As our first step, we trained a RDF classifier on the 



decimated data to obtain a baseline performance. Next, 

we trained a RDF using the feature vectors as input for 

training (Features+RDF) instead of the decimated data. 

We repeated our experiments for all three data subsets 

(Uniques, Families, Types), which results in 6 possible 

model-task combinations. We evaluated the performance 

of all classifiers using 10-fold-cross validation. The 

average accuracy scores for the baseline RDF are 

compared to the Features+RDF approach are listed in 

Tab. 2. Further, Fig. 3 and Fig. 4 depict the aggregated 

(i.e., averaged across all 10 runs) confusion matrices 

(CM) on the Families dataset. 

Table 2. Average 10-fold cross validation accuracy 

scores on the RDF-related model-task combinations. 

Classifier Uniques Families Types 

RDF 65 % 69 % 67 % 

Features + RDF 88 % 91 % 87 % 

 

Next, we investigated the performance of CNN. Fig. 2 

represents the architecture of the network build for this 

study. We use a fixed kernel size of 64, a filter size of 3 

and the tanh activation function for the convolutional 

layers. The output layer uses the sofmax activation 

function. Batch normalization is used between the 

convolution and max pooling layers.  

 

Figure 2. Schematic of the CNN architecture used in 

this study. Three convolutional and max-pooling layers 

are used between the input and output layers [10]. 

For our CNN experiments, we focused on the Families 

subset and tested three possible cases: classification on 

original resolution LCs, training on decimated data, and 

training on features obtained through TSFresh. For these 

cases, we achieve accuracies of 80%, 83%, and 88% 

respectively. To allow comparison with Features+RDF, 

Fig. 5 depicts the CM results using TSFresh features as 

input. 

 

Figure 3. Aggregated CM for the RDF classifier on the 

Families subset. 

 

Figure 4. Aggregated CM for the Features+RDF 

classifier on the Families subset [10]. 

 

Figure 5. Aggregated CM for the CNN trained on 

features extracted using TSFresh [10]. 

 

 



5 DISCUSSION 

The RDF classifier trained on decimated data yields 

baseline accuracies between 65% and 69% across the 

three proposed tasks. The CM in Fig. 3 shows that the 

baseline RDF model has trouble differentiating between 

the majority classes JASON and TOPEX. Further, the 

classes SPHERE (geodetic satellites) and ATLAS (rocket 

bodies) are frequently misclassified. Lastly, the model 

tends to confuse SPHERE and GLONASS.  

When introducing a feature extraction step, however, the 

performance of the RDF is boosted significantly. The 

Features+RDF model achieves accuracies between 87-

91%, with the highest result being achieved on the 

Families subset.  

In our experiments, we observed that a CNN trained on 

features extracted from TSFresh performs better than a 

CNN trained on raw data or decimated data. CNN 

thereby outperforms RDF on the Families subset, but 

could not beat the Features+RDF approach. CNN 

extracts features automatically using convolutional 

filters; the lower performance indicates that CNN 

struggles to capture important key aspects of the input 

data. Imbalanced classes combined with a lack of training 

data are likely the reason why CNN could not outperform 

Features+RDF in this specific experiment. 

As the CMs show, both Features+RDF (Fig. 4) and CNN 

(Fig. 5) do not suffer from most of the inaccuracies 

observed in the baseline RDF model (Fig. 3). The 

difficulties between classes ATLAS and GLONASS, 

however, remain. ATLAS is a minority class 

(contributing only 7.6% of samples to the Families 

subset), and visual inspection has shown that LCs in this 

class are very similar to those in the GLONASS class. It 

is possible that the features provided by TSFresh might 

not be enough to capture the more subtle differences 

between the LCs of these classes. The visual similarity 

paired with the low number of training samples available 

for ATLAS could be the reason this specific type of 

misclassification occurs.  

6 CONCLUSION 

This work presents the classification of single photon 

space debris LCs using multiple ML approaches. We 

employ three different schemes for labelling our data in 

order to allow comparability with existing studies and 

classify the sets using an ensemble-learning (RDF) as 

well as a deep learning (CNN) method. Combining RDF 

with a feature extraction step, we achieve high 

classification accuracies across all three data subsets (88-

91%). Our results compare well to results reported in 

related literature and show that space debris LCs captured 

on single photon basis are suitable as input for ML 

models. 

Further, our experiments indicate that a feature extraction 

step can significantly boost the performance of 

classifiers. By using features extracted from LCs for 

training, we were able to boost the accuracy of a RDF 

classifier by ~21% compared to a baseline model trained 

on raw data. Further, the classifier trained on LC features 

was able to outperform a CNN, which was likely not able 

to unfold its full potential due to limited amounts of data 

available. From this we conclude that methods such as 

RDF, if combined with feature extraction, can be an 

alternative to NNs for cases in which well-labelled, high-

quality training data is not readily available and therefore 

scarce. 

We recognize that this paper has two limitations. First, 

we did not perform experiments on data with original 

resolution (100 Hz), thereby not fully capitalizing on 

potential advantages of the high sampling frequencies. 

Second, we conducted our experiments on a well-

behaved subset of LCs. However, we have to anticipate 

cases in which we might not be able to capture a high-

quality LC of an unknown object. Therefore, training 

models to work with less-than-ideal data is desirable. 

Future work will explore the utilization of full-resolution 

LCs as well as the inclusion of a larger data quantities 

from IWF SPARC. 
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