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ABSTRACT

Pulsed radars, such as the German Experimental Space
Surveillance and Tracking Radar (GESTRA), can be a
helpful tool for the improvement of Space Situational
Awareness (SSA) required for sustainability and safety
of satellite missions. However, their Doppler estima-
tion may loose accuracy due to an ambiguity equal to the
Pulse Repetition Frequency (PRF). In this study, we ana-
lyze three algorithms that resolve this ambiguity through
tracking, two of which are novel, while the third one al-
ready exists in literature. One method only propagates the
radial motion, while the others perform Initial Orbit De-
termination (IOD). We evaluate the algorithms’ perfor-
mance – and their ability to self-assess correctness of the
result – using real experiments from GESTRA as bench-
marks. A method using a Gaussian Sum Filter (GSF) for
IOD gives the correct results in almost all examples. The
use of such algorithms can significantly enhance the esti-
mation accuracy for radar systems such as GESTRA.

Keywords: Doppler; Ambiguity; SSA; Space Surveil-
lance; Radar; GESTRA; Space Debris.

1. INTRODUCTION

Many parts of modern infrastructure and research depend
on space flight and satellites. However, the increasing
number of satellites and debris objects also increases the
probability of collisions. Due to high orbit velocities, a
collision is typically fatal when the impacting object is
larger than 1 cm, creating a new debris cloud. If no active
action is performed to prevent collisions, this could result
in a chain reaction called Kessler syndrome [5], which
could potentially render e.g. the Low Earth Orbit (LEO)
too dangerous for further space missions [8]. Maintain-
ing a catalog of space objects is a first step to prevent
this risk as it allows for evasion maneuvers of operational
satellites.

Apart from telescopes and lasers, radars are employed to
track space objects, as they operate independent of local
weather and daylight conditions. However, radars operat-

ing on ranges as high as the distance from earth to a satel-
lite require a high amount of energy. Hence, in monos-
tatic configuration, the receiver is likely to be saturated by
the transmitter. This motivates the use of pulsed radars,
i.e. radars that transmit energy for a short time and then
wait for the echo before transmitting again.

Depending on the radar system, different estimation pa-
rameters can be affected by ambiguities. While coher-
ent radar networks can have a Direction-of-Arrival (DoA)
ambiguity [10], it is well known that a single pulsed radar
can already have an ambiguity in range and/or Doppler.
This typically depends on the Pulse Repetition Frequency
(PRF): while a high PRF produces range ambiguities, a
low PRF typically gives rise to Doppler ambiguities [12,
Chapter 4]. Depending on the radar frequency and the
scenery, it may not be possible to avoid both of them.
However, such ambiguities can be resolved by several
techniques, of which there are mainly two categories:
Methods in the tracking stage and modifications in the
system design. For the latter, a prominent example is a
variable or staggered PRF [13, 14]. In many cases, this is
not desired, because it requires adaptation of many com-
ponents of a radar system; these adaptations usually need
a significant amount of work. Hence, from a practical
point of view it is often easier to resolve ambiguities a
posteriori at tracking stage. There, the exact algorithm
usually depends on the application, because it is neces-
sary to have some knowledge about the target motion.
The case for constant velocity in 2D is treated in [11]. In
space surveillance, one can search for the most likely Ke-
pler orbit for a set of given detections, assuming a suitable
noise model [18]. For this optimization, [18] leaves out
the Doppler information because of its ambiguity. How-
ever, it is also possible to treat the noise probability distri-
bution in Doppler as a weighted sum of shifted Gaussians
[19]. One of the novelties of this paper is the application
of such a Gaussian Sum (GS) for Doppler ambiguity res-
olution in the space surveillance domain utilizing Initial
Orbit Determination (IOD) and the full detection infor-
mation. Another novelty is the introduction of the Radial
Velocity Propagation (RVP) as an alternative ambiguity
resolution method.

These methods are compared in the context of the
German Experimental Space Surveillance and Tracking
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Radar (GESTRA) [17, 16, 6, 7], which observes the LEO
using search and tracking modes. As we will see in the
next section, it is affected by a Doppler ambiguity.

The paper is organized as follows. Section 2 presents the
Doppler ambiguity challenge specifically in the context
of GESTRA. Section 3 introduces two new Doppler am-
biguity resolution methods using radial acceleration, as
well outlining the method from [18]. Section 4 tests all of
these methods on several selected experiments performed
by GESTRA. Section 5 concludes the results and gives an
outlook of possible future work.

2. SCENARIO

In this section, we will give an overview over GESTRA
and the problem of Doppler ambiguities in this context.

2.1. GESTRA working principle

GESTRA [17] is a quasi-monostatic pulsed phased ar-
ray radar featuring a separate transmitter and receiver lo-
cated approximately 100m apart. Its primary objective is
the detection and tracking of objects in LEO. The sys-
tem offers several search modes, as well as a tracking
mode. Each search mode continuously monitors a spe-
cific volume in space, known as the Field of View (FoV),
which consists of multiple beam positions. GESTRA
employs electronic beam steering to periodically cycle
through them. The duration of a complete scan cycle,
or revisit time, is less than approximately 5.5 s. In track-
ing mode, the operator inputs a Two Line Element (TLE)
dataset describing an orbit, allowing GESTRA to follow
the object along its propagated trajectory as long as it re-
mains within an angle accessible to electronic beamsteer-
ing. This results in a higher number of detections for this
particular object with shorter temporal intervals between
them. In each instance, GESTRA transmits multiple con-
secutive pulses in the same direction, which are then in-
tegrated to form a Coherent Processing Interval (CPI).

2.2. The Doppler ambiguity issue

In this paper, range ρ, radial velocity ρ̇ and radial accel-
eration ρ̈ will refer to the round-trip ranges (the full dis-
tance transmitter-object-receiver) and its derivatives. It is
well known that standard pulsed radars have a range am-
biguity of ρamb = c0/fpr and a radial velocity ambiguity
of vamb = fprc0/f0, where c0 denotes the speed of light.
Typical values for GESTRA are shown in Table 1. The
PRF is chosen low enough to prevent range ambiguity.
However, such a low PRF results in a very severe Doppler
ambiguity: Since the round-trip radial velocities in this
scenario can easily reach ±14 km/s, standard radar the-
ory would suggest the existence of thousands of candi-
dates for the correct radial velocity. However, the long

Table 1. Parameters of GESTRA in this study.
symb. parameter name approx. value

f0 Transmit frequency L band
B Bandwidth 2MHz

d dutycycle 16%

Tp pulse length 2, 4.5ms

fpr PRF 83, 37Hz

vamb rad. vel. ambiguity 19, 8.5, 6m/s

Np no. of pulses to integrate 3− 40

TCPI CPI length: fpr ·Np 0.2− 0.8s

pulses require compensation of Doppler frequency even
within a single pulse, not only across pulses. Hence, for
every radial velocity under test, the reference function is
Doppler-transformed, before the correlation is computed.
While within a single pulse, a compensation for Doppler
(i.e. radial velocity) is required, the interpulse phase cor-
rection even requires compensation for radial accelera-
tion. This allows estimation of the radial acceleration,
which is unambiguous by design.

As a result, the single-pulse Doppler compensation pro-
vides an unambiguous but inaccurate Doppler estimate,
while the estimate due to compensation across pulses is
accurate but ambiguous. An overall accurate estimate
would require the single pulse accuracy to be sufficient
to resolve the interpulse ambiguities. Since the ambigu-
ity in Doppler is equal to the PRF and the accuracy of
the single pulse estimate scales with the pulse length Tp,
this depends on the dutycycle fpr ·Tp. Figure 1 shows the
noise-free ambiguity function for this case. We see that
the sidelobes at the first ambiguity are closer than 0.5 dB
to the maximum. This means that even low noise levels
might be able to push the sidelobe over the maximum,
which would result in a radial velocity error of one am-
biguity. Figure 2 shows the consequence of it: The plot
depicts the error in radial velocity of a tracking mode ex-
periment performed with the Sentinel-3A satellite, com-
pared to accurate orbit data [2]. We see that the error is
always close to the multiple of some number, which is the
ambiguity caused by the chosen PRF.

There is one immediate strategy to improve the perfor-
mance and increase the number of detections at the cor-
rect ambiguity: A refinement in the radial velocity grid.
For the sake of a small computing time, the grid in all
search directions is initially set up in a way such that the
grid value closest to the true maximum gives a power that
is closer than 3 dB to the maximum. We found that the
sidelobes amplitude can be much closer than that to the
real maximum. Whenever the first sidelobe is closer to
a grid point than the true maximum, the detector may
choose this sidelobe over the true maximum even at high
Signal to Noise Ratio (SNR). Hence, it makes sense to
employ a finer radial velocity grid in order to reduce
ambiguity-induced errors. In order to prevent a signifi-
cant increase in processing time, this refinement is per-
formed a posteriori for each detection in a small radial
velocity environment. A comparison of the two plots of
Figure 2 shows a significant improvement even though
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Figure 1. Ambiguity function in radial velocity: Corre-
lation result for an artificial target without noise around
the correct radial velocity of zero; the maximum is scaled
to 0 dB. The top plot shows the full function, the bottom
plot zooms into the upper part of the y axis. Scenario: 24
pulses, fpr = 37Hz, Tp = 4.5ms.

the ambiguity effect is still clearly visible in case of a re-
fined radial velocity grid.

Moreover, these plots illustrate that a resolution of the
ambiguity could significantly reduce the radial velocity
error. The algorithms presented here shall change each
radial velocity of a tracklet by a multiple of vamb, such
that we ideally always get the correct ambiguity. They
shall not use any external knowledge of the satellite’s
orbit.

The radial parameters estimated by GESTRA are range
ρ, ambiguous radial velocity ρ̇a and range acceleration
ρ̈. As seen before, ambiguous radial velocity means that
the value might differ from the true value by a small inte-
ger times vamb,k. There is also an estimation of the DoA
parameters u and v, which parametrize the components
tangential to the antenna plate of the normalized vector
from the antenna to the target. The DoA estimation is
performed using multiple receive channels steered in dif-
ferent directions and their differences in measured phase
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Figure 2. Error in radial velocity for a tracking mode
experiment with the Sentinel 3A satellite. Top: without
refinement of the radial velocity grid. Bottom: with 10x
refinement of the velocity grid.

and amplitude. The standard deviation of the observed
parameters is estimated as well, which will be denoted by
σρ, σρ̈, σu, σv and σρ̇,una, where σρ̇,una means the stan-
dard deviation of the unambiguous radial velocity, i.e. the
standard deviation we would have if we could resolve all
ambiguities perfectly.

Hence let us assume that we have a tracklet of N detec-
tions, i.e. for k = 1, . . . , N , we are given tk (i.e. the time
of the detection), ρk, ρ̇a,k, ρ̈k, uk, vk, σρ,k, σρ̇,una,k, σρ̈,k,
σu,k and σv,k. This is the input data for the algorithms
presented in the next section.

3. AMBIGUITY RESOLUTION METHODS

In this section, we will present three methods: It will start
with the Radial Velocity Propagation (RVP) method that
is easy to implement, because it does not require any orbit
determination but uses basic quadratic equations of mo-
tion. Next, we will shortly present a method introduced
in [18] based on Initial Orbit Determination (IOD) and
Weighted Least Squares (WLS). Finally, we will present



an original method using a Gaussian Sum Filter (GSF)
for the IOD.

3.1. Radial Velocity Propagation (RVP)

This approach uses the assumption that on small time
scales between detections, the radial motion of an object
in LEO is approximately quadratic. Since GESTRA mea-
sures radial acceleration, this allows the prediction of the
next radial velocity from the previous one.

The algorithm is constructed as follows. We assume that
the true radial velocity value of the first detection lies
within an interval of b ∈ {−3, . . . , 3} ambiguities. While
we have seen a distance of at most two ambiguities in
these experiments, this leaves some room for outliers.
Hence, the corrected first radial velocity value, dependent
on b, is

ρ̇b,1 := ρ̇a,1 + bvamb. (1)

Now, for each of these start hypotheses, we try to re-
solve the whole tracklet, one detection at a time: Con-
sider ρ̇b,k−1, then let

ϱ̇b,k := ρ̇b,k−1 + (tk − tk−1) ·
1

2
(ρ̈k−1 + ρ̈k) (2)

be the reference radial velocity, propagated from the pre-
vious one and the observed radial accelerations. Then,
define the resolved ambiguity by

ρ̇b,k = argmin
v∈ρ̇a,k+vambZ

|ϱ̇b,k − v| (3)

as the ambiguity that is closest to the reference radial ve-
locity. Completing this for the whole tracklet results in
one corrected tracklet for each value of b, among which
we have to choose. For this choice, we exploit that on av-
erage over the signed velocity error, we are closer to the
correct ambiguity than to any other ambiguity. Hence, we
define the average correction to be

Sb :=
1

N

N∑
k=1

(ρ̇b,k − ρ̇a,k). (4)

Then, we choose the value of b that minimizes |Sb|.
Note that the average is taken over the signed differences,
meaning that if the upper and lower ambiguity is chosen
equally often, Sb will be close to zero.

The method relies on two crucial assumptions, which
might lead to failures in case they are not fulfilled. On
the one hand, it assumes that the motion from one detec-
tion to the next is approximately quadratic. If the varia-
tion of the radial acceleration is high enough, such that it
causes the argmin in (3) not to choose the correct value,
the method will fail in the sense that either the detection
before or the detection after can be resolved correctly, but
not both. This problem may arise whenever the tempo-
ral distance between two consecutive detections becomes
too high. In this case, most likely some corrected radial

velocities in the resulting tracklet will be correct, while
others will be wrong. The other assumption is that the
choice of minimizing |Sb| actually gives the correct am-
biguity. This may break if the distribution of ambiguities
is strongly biased, e.g. if more detections are one ambi-
guity above than in the correct one. It is most likely to
happen, when we have a small number of detections, be-
cause then it is statistically more likely. In that case, all
results are wrong.

The minimum value in (3) is an indication for the res-
olution success: By definition, this is less than 1

2vamb,
so dividing it by 1

2vamb gives a number between 0 and
1. The maximum of this value over the whole experiment
for the chosen value of b will be called uncertainty. When
this is always close to zero, the choice for the ambiguity
was very clear. When it is close to 1, there were cases
in which almost another ambiguity would have been cho-
sen. As well as the uncertainty for this choice, we can
define the uncertainty for the choice of b: When dividing
the minimum |Sb| by the second smallest |Sb| value, we
get a number between 0 and 1 that is close to 0 when the
minimum was very clear and close to 1 if it was unclear.
In the end, the total uncertainty is chosen as the maximum
of all the individual uncertainties.

3.2. Herrick-Gibbs and iterative nonlinear
Weighted Least Squares (WLS)

The method from [18] is based on IOD with a refinement
step using an iterative nonlinear WLS algorithm. As in-
put the DoA as well as the range estimation is used. The
required steps are [18]

1. Calculate initial state x0 using Herrick-Gibbs IOD

2. Propagate x0 to all observation times and get the Ja-
cobian matrix H

3. Iterative WLS: ∆x0,lsq =
(
HTWH

)−1
HTW∆z,

with the weighting matrix W calculated using the
measurement noise variances

4. Repeat steps 2 and 3 until convergence

5. Propagate the orbit to get the radial velocity and cor-
rect the radial velocity measurements

The Herrick-Gibbs IOD algorithm is described in [15],
utilizing their provided code.

3.3. Initial Orbit Determination using Gaussian
Sum Filter (GSF)

Similarly to the previous one, this method uses IOD.
In contrast to the previous one, it does not only use
DoA and range but the full information of the de-
tection. Instead of an iterative nonlinear WLS algo-
rithm this method uses a Particle Swarm Optimization



(PSO) approach to determine the orbit θ. The parame-
ter yk,1:4 = [uk, vk, ρk, ρ̈k] with its covariance Rk,1:4 =

diag
([

σ2
u,k, σ

2
v,k, σ

2
ρ,k, σ

2
ρ̈,k

])
are given by the tracklet

and are assumed to follow a multivariate normal distribu-
tion

fN4

(
yk,1:4 | y−

k,1:4, Rk,1:4

)
=

1

(2π)2
√
|Rk,1:4|

·

exp

(
−1

2

(
yk,1:4 − y−

k,1:4

)⊤
R−1

k,1:4

(
yk,1:4 − y−

k,1:4

))
,

(5)

where y−
k,1:4 is the propagated and transformed orbit at

time k. The ambiguous radial velocity is modeled as
weighted GS with J components such that

J∑
j=1

wjfN

(
yk,5 | y−k,j,5, Rk,5

)
=

J∑
j=1

wj
1√

2πRk,5

exp

(
−
(yk,5 − y−k,j,5)

2

2Rk,5

)
, (6)

with the GS weights

J∑
j=1

wj = 1, with wj ≥ 0, (7)

using the measured radial velocity yk,5 = ρ̇a,k and the
unambiguous variance Rk,5 = σ2

ρ̇,una,k. The propagated
and shifted radial velocity is denoted by y−k,j,5. The com-
bined total likelihood of N measurements is

L(θ; {y(k)}Nk=1) =

N∏
k=1

[
fN4

(
yk,1:4 | y−

k,1:4, Rk,1:4

)
· J∑

j=1

wjfN

(
yk,5 | y−k,j,5, Rk,5

)],
(8)

which should be maximized to get a parameter estimation
of θ. By taking the logarithm and swap the sign, we can
formulate a minimization task, which is solved by using
a PSO algorithm.

The tracklet duration is limited to a couple of min-
utes and the purpose is to observe satellites in orbit,
thus we assume that the object follows the Keplerian
motion model. Theoretically there are many possible
parametrizations of a Kepler orbit like classical Keple-
rian elements θg,Kepler = [a, e, i,Ω, ω, ν] or a state vector
θg,state = [x, y, z, ẋ, ẏ, ż] at the time g. Since we are us-
ing detections with the structure of [uk, vk, ρk, ρ̇k, ρ̈k] we
can create a Mixed Orbital Elements (MOE) parametriza-
tion using modified equations from [9]. This parame-
ter set contains the detection and an additional variable,
the Semi-Major Axis (SMA) a, resulting in θg,MOE =
[u, v, ρ, ρ̇, ρ̈, a] at the time g. As reference time g we

choose the middle epoch of the tracklet. This parame-
terization has the advantage that we can easily find upper
and lower bounds of the search space for the orbit estima-
tion. The upper and lower bounds are passed to the PSO
algorithm which tries to minimize the negative log likeli-
hood. After convergence or a maximum number of iter-
ations the PSO provides an estimation of the orbit. This
is propagated to all detection times and the ambiguity is
resolved analog to the previous method.

We have used the PSO implementation from [4]. In the-
ory there is no guarantee that the PSO converges to the
global minimum. In practical studies we have seen that
the PSO sometimes converged to a local minimum since
we are using randomly placed initial particles inside the
search space. To overcome this problem we use a number
of dPSO parallel runs and take the result with the lowest
cost, hoping that this will give the global minimum. In
the following analyses we have set dPSO = 40. The num-
ber of Gaussians is set to J = 5. Another important point
is to determine the weights wj . As we will present later
in this paper we can see empirically that with increasing
SNR the probability of having a wrong ambiguity is re-
duced. Hence, the weights are set, dependent on the SNR,
to the relative frequency at which the respective ambi-
guity appeared in the analyzed experiments. Overall the
method can be summarized as follows:

1. Determine search space [u, v, ρ, ρ̇, ρ̈, a] based on de-
tection at time g

2. Run dPSO parallel PSO

3. Calculate minimum cost of dPSO runs and get the
corresponding orbit

4. Propagate the orbit to get the radial velocity and cor-
rect the radial velocity measurements

4. EXPERIMENTS

This section will present and evaluate five experi-
ments performed with GESTRA: Both a search mode
and a tracking mode are presented for Sentinel-3A
and Swarm-C, as well as a single tracking mode for
Sentinel-3B. All of these satellites have a high SNR
of over 40 dB in zenith. Since a high SNR usually
means that the correct ambiguity will appear more of-
ten, this might not be an appropriate test. Hence, five
more artificial experiments were created by adding noise
to the aforementioned experiments, such that the result-
ing tracklet had a maximum SNR between 21 dB and
26 dB, yielding a total of ten experiments. The precise
orbit reference data for the Sentinel satellites was down-
loaded from the Copernicus project website [2], while the
Swarm reference data was taken from [3]. In each case,
the further analysis was restricted to those detections that
are sufficiently close to the object of interest, removing
outliers and detections of other objects.
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Figure 3. Percentage of detections in each ambiguity,
grouped by SNR. This combines the correlated detections
from all ten experiments. The value 0 means that the cor-
rect ambiguity is found, the value +1 means that the es-
timated radial velocity is one ambiguity higher than the
reference one etc.

Figure 3 shows how many detections with a certain SNR
lie on which ambiguity. As expected, a high SNR helps to
avoid getting the wrong ambiguities, since even the small
difference in the local maxima of the ambiguity function
will be clearly visible with a sufficiently high SNR. This
illustrates that resolving the ambiguities may be more dif-
ficult for low SNR targets.

4.1. Performance of the methods

Further analysis is about the results of the different meth-
ods. All three methods – the RVP, the WLS and the GSF
method – were applied to all ten experiments. In addition,
they were not only applied to the full tracklet, but start-
ing from the first three detections to the complete tracklet
length in steps of two detections. Since a lower detection
count impedes ambiguity resolution, this can show the
relative performance of the algorithms in a better way.

Figure 4 shows the percentage of incorrectly resolved de-
tections for each of these scenarios. We see that the GSF
method clearly shows the best results. The RVP method
performs well in most tracking mode experiments, while
it fails in the search mode experiments. This is most
likely due to the long temporal gaps between the detec-
tions: Since there can be more than 5 s between two con-
secutive detections, the radial motion may not be suffi-
ciently approximated by a quadratic function. Moreover,
small errors in the estimation of the radial acceleration
can have a large effect – and radial acceleration errors are
generally larger in search modes because of the reduced
CPI length. In that case, a failure of the RVP method is
expected. Here, the WLS method usually outperforms the
RVP method. However, especially in the tracking mode
experiments without noise, the WLS method needs many

detections to achieve correct resolution of all the detec-
tions. This is surprising, because in these experiments,
the SNR is usually high and hence, most detections will
lie on the correct ambiguity already.

There are numerous possible reasons for the rather poor
performance of the WLS. One aspect is that the method
relies on a Herrick-Gibbs initialization which might lead
to large errors for such small angles between the detec-
tions due to low time differences. It should be noted
that the begin of the tracklets especially during tracking
modes is at low elevation and might therefore lead to a
reduced SNR and DoA estimation accuracy and conse-
quently less accurate initial states. Since the GSF do not
use the Herrick-Gibbs initialization technique but con-
sider the whole search space of the orbit, an improvement
would be expected here. Another improvement of perfor-
mance of the GSF with respect to the WLS should be
expected resulting from the aspect of using not only DoA
and range, but the full information of the detections, in-
cluding radial velocity and acceleration.

4.2. Self-assessment of the results

The next question is, whether the methods can indicate
themselves, how likely it is that their result is correct.
The RVP method provides the uncertainty value for this,
described in the section 3.1. For the other two methods,
we can use the NIS [1], which is supposed to be a good
indicator. We determine the residuals between propaga-
tion and measurement in all parameter dimensions and
utilize the measurement noise variances to get the NIS.
Basically, this is small if an orbit is found that fits the
data relatively well. If no orbit fits the data, then this is
larger. It should be noted that we are using uncertainties
based on theoretical assumptions and not empirical ones,
which also leads to an increase in this metric if they are
too optimistic. Moreover, the number of detections in a
tracklet can be an indication, since for a low number of
detections, many methods fail. Figure 5 shows the uncer-
tainty/NIS for all methods, indicating whether they were
successful – all ambiguities were resolved correctly – or
not. We see that the proposed measures work relatively
well for the RVP and the WLS method, even though they
are not perfect. It might be difficult to be entirely sure that
the result is correct, but it is certainly possible to detect
the vast majority of failed resolution attempts by filter-
ing out high uncertainty/NIS. For the GSF method, there
are not enough such failed attempts in total to allow an
assessment whether the NIS is suitable.

4.3. Computational costs

Even though a thorough analysis of computing time is be-
yond the scope of this work, we will give a brief picture
of the computational costs required. The times noted here
are the computation times on a notebook workstation for
resolution of a single tracklet. Because of its simplic-
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Figure 4. Percentage of incorrectly resolved detections by method by experiment. White means that the experiment did
not have as many detections.
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Figure 5. The methods’ confidence in the results. These plots combine all ten experiments and all tracklet lengths.
Left: RVP method, y axis shows uncertainty defined in section 3.1. Middle: WLS method, y axis shows NIS. Right: GSF
method, y axis also shows NIS.

ity, the RVP method is by far the fastest, as no optimiza-
tion or orbit determination is required. In the tests pre-
sented here, all examples took less than 0.2 s. It should be
noted that this was the only method implemented in C++,
while the other methods were implemented in MATLAB,
which might also have contributed to high difference in
computational cost. The WLS method was considerably
slower, maximum runtimes were about 10 s. However,
by far the slowest method was the GSF method because
of two reasons: On the one hand the PSO algorithm is
slower than the WLS, because it needs more iterations
for convergence. On the other hand, the need for multi-
ple attempts in the GSF method to prevent convergence
to local minima increases the runtime. The maximum

runtime of this method was about 20min. Hence, the
realization of the GSF method on a real-time radar sys-
tem would require some form of speed-up, either through
more efficient code or parallelization.

5. CONCLUSION

In this work, we have investigated three methods to
resolve Doppler ambiguities in pulsed radar systems,
among which two were introduced here. They show
different complexities and have shown their performance
using data from the GESTRA system. The second



method developed here using a GSF in combination
with a PSO to do IOD performed best in the analyzed
experiments. Among the others, RVP is usually better in
tracking modes, while WLS is superior in search modes.

An essential next step is to implement the proposed con-
cepts on the radar system and analyze a larger amount
of experiments. Besides, there is room for improvement
in the GSF method. Tuning the parameters of the PSO
or even change the numerical optimization algorithm to
one which is more stable in terms of finding the global
optimum for this kind of likelihood functions. With the
upcoming extension of the GESTRA system with a sec-
ond receiver, the proposed methods need to be extended
to a multistatic radar network.
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