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ABSTRACT

Recently, the importance of mitigating the proliferation
of near-Earth space debris has been internationally recog-
nised. As awareness is growing on space sustainability,
similar principles as for the Earth orbital environment are
being considered for cislunar space, with attention since
the early stages of the mission design. Cislunar space
offers great scientific opportunities but also poses chal-
lenges due to its highly non-linear dynamics. In this con-
text, it is necessary to develop mitigation strategies before
a space debris problem arises; the most effective of which
is end-of-life disposal. Among the four strategies usually
considered for disposal from periodic orbits, that of in-
sertion into Earth-Moon L2 escape no-return trajectories
is analysed here, thanks to an energetic approach com-
bined with manifold dynamics. This leads to a cost anal-
ysis for selected orbits of some periodic orbit families,
with results parametrised by various metrics, enabling the
definition of an early-stage disposal cost map of cislunar
space.

Keywords: Cislunar space; End-of-life; Escape no-return
trajectories; Parametric analysis.

1. INTRODUCTION

In the last few years, the importance of mitigating the
proliferation of near-Earth space debris has been interna-
tionally recognised. As the space sector has developed
and satellite production has increased, especially with
the introduction of CubeSats and large constellations, the
awareness of the importance of space sustainability has
also grown. At the same time, interest in cislunar space
is rising: the Moon is seen as the next target for scien-
tific and human exploration. This has been confirmed
by the planning of major programs, such as Artemis [1],
together with a lot of smaller, scientific missions. With
the growing awareness of the need for space sustainabil-
ity, the principles applied today to the overcrowded near-
Earth space [2] are also being considered for the cislunar

region.
To address this increasing demand, the literature is
proposing guidelines for End-of-Life (EoL) disposal
in cislunar space to ensure its long-term sustainability
[3][4]. In [4], ESA emphasises the importance of pro-
tecting Lunar orbits. To minimise the creation of space
debris, it is recommended to avoid debris generation,
to enhance space traffic coordination, and to implement
precise disposal measures for spacecraft operating in the
Earth-Moon (EM) region.
From the technical perspective, cislunar space offers
significant opportunities for scientific and technological
progress but also presents numerous challenges. Beyond
the operational difficulties posed by the large distance
from Earth [5], the dynamics of the region are strongly
influenced by the gravitational attraction between the
Moon, Earth and Sun, aggravated by the Moon’s irreg-
ular gravitational field, leading to highly non-linear be-
haviours. Also, “cislunar space” refers to a region extend-
ing from hyper-geostationary up to the Lagrangian points
of the EM system [5]. Within this region, many differ-
ent orbits can be identified, each with unique and com-
plex characteristics: High Elliptical Orbits (HEOs), La-
grangian Point Orbits (LPOs), quasi-satellite orbits, and
others.
Considering all of this, a space debris problem, similar
to that observed in near-Earth space, could also develop
in the EM region, intensified by its highly non-linear dy-
namics. It is essential to develop mitigation strategies,
the most effective being well-designed EoL disposal for
missions operating in that area.
According to ESA [4], disposal plans for spacecraft op-
erating in lunar orbits shall include one of the following
strategies “in order of preference: heliocentric disposal,
Lunar impact, Earth re-entry, or a Lunar graveyard orbit.”
The choice of one of these strategies must be justified by
orbit propagation analyses. Also, in the case of disposal
towards a Lunar graveyard orbit, it must be guaranteed
that the orbit remains bounded for at least 100 years. In
general, disposal trajectories should be assessed over a
minimum of 100 years to determine the probability of
Earth re-entry or Lunar impact, including the associated
impact zones.
Heliocentric disposal consists of designing a trajectory
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that moves from a periodic orbit in the EM system to a re-
gion outside L1 or, preferably, L2 of the Sun-Earth (SE)
system. In [6], an energetic approach based on three-
body dynamics is applied to LPOs in SE-L2 such that,
after the disposal trajectory passes through SE-L2, the
Zero Velocity Curves (ZVCs) are closed to prevent the
spacecraft from re-entering the SE vicinity. This strat-
egy is also applied in [7], [8] and [9] to the EoL design
for Herschel, SOHO and Gaia, operating on LPOs in SE-
L2, where disposal trajectories are also validated in an
n-body model. In [10], the effect of solar radiation pres-
sure is used to derive low-cost solutions, implemented via
solar sails. In the EM system, this strategy was applied
by [11] to the NRHO chosen as a baseline for the Lunar
Gateway.
In this paper, a preliminary parametric disposal cost-
analysis for EM-L2 escape no-return trajectories is pre-
sented, where no-return refers to trajectories that theo-
retically do not return inside the cislunar region after the
disposal phase. Orbits from the Halo and Lyapunov fam-
ilies around L1 and L2 are selected, and the disposal cost
is calculated for these orbits as the phase angle and the
time spent by the spacecraft on the manifold before the
disposal phase vary. The EoL phase is modelled as a two-
impulse manoeuvrer: the first impulse inserts the satellite
into the corresponding LPO unstable manifold, while the
second one causes the EM system’s ZVCs to close, pre-
venting the satellite from returning to the inner region of
cislunar space. Some disposal trajectories are verified to
remain outside the system for 100 years, both in a three-
body dynamics and in an n-body model.

2. MODELLING TECHNIQUES

2.1. Circular Restricted Three Body Problem

The Circular Restricted Three-Body Problem (CR3BP)
[12] describes the motion of a massless object subject to
the gravitational influence of two major bodies, e.g. the
Earth and the Moon, orbiting in a circular motion around
their common centre of mass. The position and veloc-
ity of the massless object are defined as r = [rx, ry, rz]
and v = [vx, vy, vz]. They are found in a rotating ref-
erence frame, where the primaries are located along the
x-axis, defined as the line connecting them, with the ori-
gin in their centre of mass and the positive direction to-
ward the smaller primary. The z-axis is perpendicular
to the primaries’ orbital plane, and the y-axis completes
the right-handed tern. The Equations of Motion (EoMs)
characterising the CR3BP are:


ṙ = v

v̇ = 2

[
vy
−vx
0

]
+∇rU

(1)

where the potential-like function U is defined as:

U(r) =
1

2
(r2x + r2y) +

1− µ

r1
+

µ

r2
+

1

2
µ(1− µ) (2)

The parameter µ is the dimensionless EM system gravi-
tational constant, equal to 0.01215; r1 and r2 are the dis-
tances between the third body and each of the primaries,
respectively. Since the major primary is at x = −µ and
the minor one at x = 1− µ, r1 and r2 are defined as:

r1 = ((rx + µ)2 + r2y + r2z)
1/2 (3)

r2 = ((rx − 1 + µ)2 + r2y + r2z)
1/2 (4)

All quantities are considered dimensionless: lengths are
scaled to the mean EM distance and times so that the
mean motion of the rotating reference frame is equal to
1. Accordingly, dimensionless lengths are denoted by
the unit ndL, non-dimensional length, and dimensionless
times by the unit ndT , non-dimensional time. In CR3BP,
only one integral of motion can be defined. A version
of this integral, known as Jacobi Constant (JC), is as fol-
lows:

JC(r,v) = 2Ū(r)− ||v||2 (5)

where

Ū(r) =
1

2
(r2x + r2y) +

(1− µ)

r1
+

µ

r2
(6)

The JC is a function of the state of the spacecraft
and it can be related to an energy-like constant. The
CR3BP is a Hamiltonian system and, when computing
its EoMs using a Hamiltonian approach, a constant
similar to the total mechanical energy is defined, such
that E = −JC/2. By this definition, an increase in JC
corresponds to a decrease in system energy and vice
versa.

2.2. Libration points and zero velocity curves

The CR3BP has five equilibrium points, the Libration
or Lagrange points L1 − L5. Of these, L1 − L3 lie on
the x-axis of the rotating reference frame and are called
collinear Lagrange points. Instead, L4 and L5 form the
vertices of an equilateral triangle with the major primary
and are called triangular Lagrange points.
The possible motion of a massless particle can be clas-
sified according to its energy. In the spatial CR3BP, for
a fixed energy level E0, a five-dimensional energy sur-
face embedded in a six-dimensional phase space can be



defined. The regions of possible motion for a massless
object with energy E0 in a system with gravitational con-
stant µ are defined by projecting the energy surface into
position space in the rotating frame. This region is his-
torically known as the Hill region and its boundaries as
ZVCs, which are identified as the locus of points where
the kinetic energy of the massless particle equals zero.
Considering a fixed JC level, JC0, which corresponds
to the fixed energy level E0, and since JC(r,v) is de-
fined as in Equation (5), we find that 2Ū(r) ≥ JC0. The
boundary condition 2Ū(r) = JC0 is required for v = 0
and identifies the ZVCs. Instead, regions in space where
the inequality does not hold are called forbidden regions,
i.e. areas where the motion of the third body is not al-
lowed. If we consider the motion restricted to the plane
of the primaries, the ZVCs result in a curve that forms a
barrier that the massless third body can not cross in the
planar position space. In Figure 1, the location of the
five Libration points of the EM system is shown, together
with the planar ZVCs as a function of the JC considered.

Figure 1: Libration points and ZVCs as a function of the
Jacobi Constant in the EM system.

In Figure 2, ZVCs are shown for three different increas-
ing values of JC, and forbidden regions are highlighted.
Near the Moon, a bottleneck region is present and closes
as the JC of the system increases, i.e. as the energy be-
longing to the massless third body decreases. When the
JC of a trajectory is equal to that of L2, JCL2

, the ZVCs
of the EM system close. For a particle with JC > JCL2

that moves outside the forbidden area, it is not possible
to return to the interior region without changing its en-
ergy, e.g. performing manoeuvres. Conversely, a particle
in the inner region must reach a certain energy for the
bottleneck region to open and reach the outer region.

2.3. Periodic orbits

In a three-body system, several families of periodic orbits
can be identified [13]. In this paper, a subset of such or-
bits is selected as the starting point for the analysis. Peri-

odic orbits are generated thanks to a Newton-like differ-
ential correction method. Periodicity and orthogonality
are enforced, which means that

• periodic orbits must be symmetric about the xz-
plane (or the x-axis in the planar case) and intersect
this plane perpendicularly,

• a state x = [r,v] must repeat itself after one period.

These properties enable a given initial state to be linked
to an ideal final state, the desired characteristics of which
are known, and the differential correction algorithm al-
lows for the adjustment of the initial state so that the fi-
nal one is as desired [14]. This leads to the definition of
initial conditions generating a periodic orbit when propa-
gated in CR3BP over a period. After finding a first orbit
belonging to a certain family, the procedure is iterated to
find other members of that same family. Knowing the
first solution obtained, initial guesses are derived thanks
to continuation methods, such as the natural parameter
continuation or the pseudo arclength method.
Numerous families of periodic orbits bifurcating from Li-
bration points can be defined in the EM system. The anal-
ysis presented here considers four families of LPOs with
similar characteristics: the Halo and Lyapunov families
in L1 and L2. For Halo orbits, the southern branch of
the family is considered. These families were chosen for
their relevance to future missions and for the linear in-
stability that characterises almost all their members: as
it will be detailed in Section 3, the method used to de-
sign EoL solutions is based on the inherent instability of
these orbits. The orbits considered in the analysis are 12
in total, 3 for each of the 4 families considered, and are
represented in Figure 4 and Figure 3.

In the Figures, the blue dot represents L1, and the red dot
represents L2. The orbits considered are represented both
as a function of the phase angle and the distance from the
Moon. The phase angle, which is a relevant parameter
also in the analysis presented later, is defined as:

θ =
2πt

T
(7)

It is interesting to note that, for the Halo orbits selected,
the evolution of the distance from the Moon follows a
pattern similar to that of the phase angle. In the case con-
sidered in this paper, when θ approaches 180◦, the dis-
tance between the orbit and the Moon reaches its min-
imum, while it is maximised when the phase angle is
0◦. A similar behaviour is observed in Lyapunov orbits
in L1, although the relationship between these two vari-
ables appears slightly different for orbits far from the La-
grangian point generating them, as the distance from the
Moon decreases slightly at 0◦ before reaching its maxi-
mum around 90◦. The minimum distance is reached, as
in the spatial case, for θ = 180◦. For Lyapunov orbits
in L2, the phase angle trend as a function of the distance
from the Moon is shifted by 180◦ compared to what is



Figure 2: ZVCs in the EM system for different values of Jacobi Constant. From left to right: JC = 3.1671; JC = 3.1721,
corresponding to the Jacobi Constant relative to L2; JC = 3.1883, corresponding to the Jacobi Constant relative to L1.

Figure 3: LPOs around EM-L2 selected for the analysis, as a function of the phase angle and the distance from the Moon.

Figure 4: LPOs around EM-L1 selected for the analysis, as a function of the phase angle and the distance from the Moon.



observed for Lyapunov orbits in L1. This is simply due
to the choice made for the definition of a point such that
θ = 0◦.
In Table 1, some other characteristics of the LPOs con-
sidered are listed. For each LPO, three parameters are
recorded: the JC of the periodic orbit, which remains
constant along the entire trajectory since no external per-
turbations to CR3BP are considered; the Stability Index
(SI) of the periodic orbits, which defines their linear sta-
bility; and rp, the perilune radius, defined as the mini-
mum distance between the orbit and the Moon along one
orbital period. Note that periodic orbits are considered
stable if with an SI < 1 [15].

Table 1: Some relevant parameters of the LPOs consid-
ered.

Orbit type JC SI rp [km]

Halo L2

3.1383 473.55 48813.79
3.0988 210.03 42870.44
3.0289 1.69 7302.42

Lyapunov L2

3.1612 659.02 54880.68
3.1161 426.52 39526.96
2.9867 88.66 11025.32

Halo L1

3.1525 800.62 49184.21
3.1239 458.88 46790.89
3.0025 2.03 9705.18

Lyapunov L1

3.0804 442.29 32383.20
2.9370 58.97 9264.38
2.8968 54.76 6125.12

2.4. Ephemeris model

The CR3BP is a good approximation of the dynamics of a
particle moving in cislunar space. However, to verify the
effectiveness of the disposal trajectories found, it is worth
assessing what the effect of the gravitational influence
of celestial bodies other than the Earth and Moon might
be in the system. An n-body dynamical model is im-
plemented [16], based on celestial bodies’ ephemerides
retrieved via the DE442 kernel of NASA’s SPICE toolkit
[17]. In addition to the Earth and the Moon, the influence
of the Sun has the greatest impact on the system. How-
ever, for a comprehensive analysis, the Earth, Moon, Sun,
Mercury, Venus, Mars and Jupiter are included in the dy-
namical model, resulting in an 8-body model (7 celestial
bodies plus the spacecraft). Since this is a preliminary
study, March 8, 2025, at 22:31 is selected as the starting
date for the propagation. This choice is made because, on
that date, the position of the Moon is very similar to what
it would be in the approximation used in the EM rotating
frame, which means we are in a condition such that the
EM distance is similar to its mean value. The EoMs for
the n-body model in an Earth-centred J2000 inertial ref-
erence frame are governed by the evolution of the inertial
position vector s = [sx, sy, sz], defined as the distance

between the spacecraft and the Earth in the inertial refer-
ence frame:

s̈ = − µ1

||s||3
s−

n∑
j=2

µj

(
dj

||dj ||3
+

ρj

||ρj ||3

)
(8)

where µj are the standard gravitational constants of the j-
th bodies. Since the dynamics are propagated in an Earth-
centred reference frame, the subscript 1 refers to Earth.
Earth is chosen as the centre of the reference system be-
cause the n-body model will only be used to validate that
the spacecraft, after disposal, does not re-enter cislunar
space. In this context, we are working within a system
whose centre can be roughly defined as Earth. The vec-
tors ρj and dj are respectively defined as the positions of
other solar system bodies with respect to the Earth and as
the positions of the spacecraft with respect to each per-
turbing body, resulting in dj = s− ρj .
For propagation with the n-body dynamics, the state of a
point in the EM rotating frame must be properly scaled
and transformed into an Earth-centred inertial frame. To
do so:

s = R (r − pErot) (9)
ṡ = Rv + ωrot × s (10)

where pErot is the position of the Earth in the EM rotat-
ing frame, ωrot is the angular velocity of the EM rotating
frame and R is the time-dependent rotation matrix that
connects the two frames. Then, s and ṡ are appropriately
scaled.

3. ESCAPE NO-RETURN DISPOSAL TRAJEC-
TORIES

The objective of the escape no-return disposal trajectories
is to move a spacecraft from an LPO defined in the EM
CR3BP to the external regions of cislunar space. This
is achieved by designing two-impulse disposal trajecto-
ries, closing the ZVCs once outside EM-L2 to prevent
the spacecraft from returning to the EM vicinity. Simu-
lations will be performed in CR3BP, and then validation
will be carried out with an n-body model for some of the
disposal trajectories to remain outside cislunar space for
100 years. It is important to specify that, according to the
lunar space debris mitigation guidelines defined in, for
example, [4], the disposal phase is completed only when
the spacecraft is in the exterior region of the SE system,
not just the EM one. However, it is considered worth-
while to study the dynamics that characterise L2 escape
no-return trajectories to better understand which parame-
ters influence the disposal dynamics and costs. In a sec-
ond phase, the analysis will be extended to trajectories
escaping from SE L2 that do not re-enter the inner region



of the SE system for 100 years. L2 escape no-return tra-
jectories are designed following the schema illustrated in
Figure 5.

The first impulse is given in the unstable manifold direc-
tion. Manifolds are sets of trajectories that asymptoti-
cally approach or depart from an LPO in CR3BP, in for-
ward time. Their directions can be estimated numerically
thanks to the State Transition Matrix (STM) of an LPO.
First, the eigenvalues and eigenvectors of the monodromy
matrix, i.e. the STM evaluated at a time equal to one
orbital period, are evaluated. In the spatial CR3BP, the
STM has six eigenvalues. As LPOs are considered, a pair
of eigenvalues is always equal to unity since energy along
unperturbed trajectories in CR3BP is conserved. Among
the remaining two pairs, one consists of complex con-
jugate eigenvalues, while the other consists of real and
reciprocal eigenvalues. This pair, λs,u, will be such that
|λs| < 1 and |λu| > 1. The eigenvalue λu is associated
with the eigenvector Λu(θ0) which is tangent to the direc-
tion that asymptotically leaves the LPO, i.e. the unstable
manifold. This direction is a function of the phase an-
gle of the orbit. When the eigenvector is computed from
the monodromy matrix, it corresponds to the direction of
the unstable manifold for θ = 0◦, equivalent to t = t0.
To compute the direction of the unstable manifold at a
generic time t, and so at the generic phase angle θ, it is
necessary to know that:

Λu(θ) = Φ(t0, t)Λ
u(θ0) (11)

where Φ(t0, t) and θ are the STM and the phase angle
evaluated at time t respectively. Thanks to the STM, the
unstable manifold directions are mapped along the over-
all LPO. The directions are then normalised such that:

Λ̂u(θ) =
Λu(θ)

||Λu(θ)||
(12)

To approximate an initial condition on the unstable man-
ifold, a perturbation is given to a state on an LPO along
the normalised direction found:

xu
0 (θ) = x0(θ)± ε Λ̂u(θ) (13)

The perturbation ε needs to be sufficiently large to en-
able the trajectory to depart from the LPO naturally, yet
sufficiently small to avoid violating linearity. In the SE
system, this value is typically set to result in a position
displacement of 200 km [6]. When scaled for the EM
system, this corresponds to a position displacement of
250 m, which results in a perturbation ε of the order of
magnitude of 10−7 when appropriately scaled. The value
of ∆v1 is computed as the norm of the velocity variation
necessary to insert the spacecraft in the manifold.
The sign of ε influences which branch of the unstable
manifold is considered. The unstable manifold splits into
two branches, the first one heading towards the smaller

primary, and the second one away from it. Given the
application analysed, the branch heading away from the
Moon must be selected. It has been noted that, along
a single LPO family, the branch heading away from the
Moon is not always characterised by a positive or neg-
ative value of ε, meaning that, as θ varies along an or-
bit, the sign of ε that leads the unstable manifold away
from the smaller primary is always the same, either pos-
itive or negative, but it is not always the same along
an entire family of orbits. Since we do not know be-
fore the analysis if the branch we are interested in is
defined by a positive or a negative perturbation, both
branches of the manifold are initially propagated for 6
months. The manifold branch is selected as the one di-
rected toward L2. Propagation is performed thanks to a
variable-step, variable-order Adams-Bashforth-Moulton
predictor-corrector solver of orders 1 to 13. Relative tol-
erances are set to 2.22045 · 10−14, absolute tolerances to
10−16.
Once the proper sign of ε is found, the selected branch
of the unstable manifold is propagated forward for up to
6 months. As θ varies, trajectories that impact the Moon
or Earth before exiting EM-L2 are identified and consid-
ered infeasible as a disposal option. The same applies
to trajectories that remain in the inner region of cislunar
space for the entire 6 month time span, since it is pre-
ferred to rapidly exit from EM-L2. The cislunar space is
characterised by highly non-linear dynamics and, as a re-
sult, trajectories orbiting the inner region of the ZVCs for
a long period before leaving it are not a good option for
EoL disposal, as the probability of an uncontrolled im-
pact on Earth or the Moon is very high. All remaining
trajectories are considered for the following analysis.
Once a condition is reached such that the position of the
spacecraft on the trajectory is beyond EM-L2, a second
impulse must be given to change its energy and close the
ZVCs of the EM system. To do so, it is sufficient to mod-
ify the JC of the trajectory, from JC ′ to JC ′′, such that
JC ′′ ≥ JCL2

[7][8] [9]. If this condition is met, the
ZVCs of the EM system close, as also shown by Figure 2,
and it would be impossible for an object outside them to
return to their inner region, at least with a CR3BP dynam-
ics. This strategy is referred to as energetic approach: the
change in the energy of the system will result in a change
in the velocity of the particle, i.e., a manoeuvre. Since
the JC of a particle is defined as in Equation (5) and its
position is not a parameter that can be varied, the rela-
tionship between JC ′ and JC ′′, where the superscript ′

refers to the trajectory state immediately before the ma-
noeuvre and ′′ to the state immediately following it, is:

JC ′′ = JC ′ + ||v′|| − ||v′′|| (14)

Let’s consider a manoeuvre tangent to the velocity direc-
tion, being v′′ = v′ +∆v2. Substituting this relationship
in Equation (14) and considering the limit case such that
JC ′′ = JCL2

, it can be found that:

∆v2 = −||v′|| ±
√
||v′|| −∆JC (15)



Figure 5: EM L2 escape no-return disposal trajectories, schematic representation.

where ∆JC = JCL2−JC ′. The minus sign in the equa-
tion is not considered in this analysis, as it usually relates
to retrograde orbits. Note that the manoeuvre contributes
to increasing the JC of the trajectory, i.e. decreasing its
energy. Consequently, the manoeuvre to close the ZVC
is tangent to the velocity direction but has the opposite
sign, which means that all ∆v2 computed thanks to Equa-
tion (15) will be negative.

4. RESULTS

The analysis described in the previous Section is applied
to all orbits defined in Table 1. The first orbit considered
belongs to the Halo family at L2, and is reported as first
in the Table. In Figure 6, the results of the cost analysis,
in terms of total ∆V budget for the two manoeuvres, are
shown.

Figure 6: Disposal ∆V as a function of the phase an-
gle and the time the satellite spends on the manifold be-
fore performing the second disposal manoeuvre. Halo
L2, JC = 3.1383.

To get a comprehensive view of the cost evolution, the
graph in Figure 6 is reproduced as a three-dimensional
surface in Figure 7.

Figure 7: Disposal ∆V as a function of the phase angle
and the time the satellite spends on the manifold before
performing the second disposal manoeuvre - 3D view.
Halo in L2, JC = 3.1383.

The total cost of the disposal manoeuvre is reported as
a function of the phase angle θ, which varies along the
orbit from 0◦ to 360◦ (see Figure 3), and the time spent
by the spacecraft on the manifold before the ZVCs clo-
sure manoeuvre is applied, t∆v2 . The value t = 0 cor-
responds to the time when the spacecraft is injected into
the unstable manifold. The maximum allowed time of
flight on the manifold is 6 months. The parameter t∆v2 is
significant for the analysis because, although the second
disposal manoeuvre can theoretically be performed just
after exiting L2, in some cases it may be useful to allow
the spacecraft to remain on the manifold for some time
before executing it. The value of t∆v2 , on the x-axis of
Figure 6, is parametrised as a function of the EM period,
equal to 27.32 days. The coloured dots in Figure 6 rep-
resent the minimum ∆V conditions for each phase angle
considered. The colour map used for the dots is not re-
lated to the one representing the evolution of ∆V and it is
instead associated with the corresponding phase angle, as
in Figure 3 and Figure 4. For phase angles where no min-
imum ∆V dot is present in the Figure, the minimum ∆V
is found in the correspondence of a ZVCs closure time
equal to 6 months. This could mean that, for such values
of θ, a lower ∆V could be found if a longer time spent by
the spacecraft along the manifold is considered. Conse-
quently, these conditions are not reported in the Figures,
as not of interest for the following analysis.



Figure 8: Left: Disposal ∆V as a function of the phase angle and the time the satellite spends on the manifold before per-
forming the second disposal manoeuvre - Reduced total time considered. Right: Trajectories corresponding to minimum
disposal ∆V conditions in the EM rotating frame. Halo L2, JC = 3.1383.

As shown in Figure 6, disposal cannot be performed for
low values of t∆v2 . These cases correspond to conditions
such that the spacecraft is still in the inner region of the
ZVCs of L2. Once the manifold trajectories reach L2,
disposal is possible but costly: after a short time, the same
manoeuvres can be carried out with ∆V s lower by even
an order of magnitude. In some cases, also for large val-
ues of t∆v2 , some areas of the Figures are empty. These
areas correspond to conditions such that the manifold,
previously outside the ZVCs of L2, temporarily re-enters
them. Consequently, disposal under these conditions is
not feasible.
From Figure 7, it can be observed that as θ varies, a re-
gion of minimum ∆V already appears after the satellite
has spent approximately two EM periods on the mani-
fold. If it is necessary to complete the disposal quickly,
waiting to reach just this condition could save a signifi-
cant amount of fuel, at the cost of a t∆v2 which is only
slightly longer than what would be needed if manoeu-
vring just outside L2.
The evolution of the minimum ∆V conditions in Figure 6
takes a parabolic-like shape as θ evolves, other than a few
points for which the global minimum is found for high
t∆v2 values.
To visualise the distribution of the conditions such that
the total ∆V is minimum along the manifold trajecto-
ries, it is chosen to plot them in the rotating EM ref-
erence frame, from the points where the time spent by
the spacecraft on the manifold is zero, to the point where
t∆v2 corresponds to a minimum ∆V for a certain value
of θ. To ease the visualization overly complex, the total
time considered is limited, minimum ∆V conditions are
computed a second time within this time frame, and the
colour map that relates them to a certain value of θ is ap-
propriately rescaled. The resulting conditions, which can
be identified in the left side of Figure 8, are shown as tra-
jectories in the EM rotating frame on the right side of the
same Figure.
In the right side of Figure 8, L2 is represented with a red
dot. In blue, the ZVCs of the EM system for JC = JCL2

are shown. The red area represents the ZVCs of the SE
system for JC = JCSE−L2 , where JCSE−L2 is the JC
of SE system at SE L2. It is important to note that the rep-

resentation is purely qualitative, as the EM system rotates
when the SE system is considered fixed, and vice versa.
This means that the condition depicted is valid only at a
specific instant. However, the ZVCs of the SE system
are shown to provide an idea of the distances reached by
the disposal trajectories. It is also reasonable to assume
that once a certain distance from the barycentre of the
EM system is reached, the approximation adopted by the
CR3BP dynamics is no longer valid. Under these con-
ditions, the inclusion of the Sun’s gravitational influence
in the system becomes necessary to approximate the dy-
namics with acceptable accuracy. However, all the so-
lutions found are considered here to perform a complete
analysis of the dynamics of L2 escape no-return disposal
trajectories. The influence of the Sun will be added to the
system in future work.
Trajectories in Figure 8 assume a spiral-like shape, dis-
tancing from the centre of the rotating system as the time
corresponding to the minimum ∆V manoeuvre increases.
However, it is still difficult to identify why some mini-
mum ∆V conditions are at t∆v2 greater than others as
θ varies. Disposal trajectories are shown in the Earth-
centred rotating reference frame in Figure 9.

Figure 9: Trajectories corresponding to minimum dis-
posal ∆V conditions in the Earth-centred inertial refer-
ence frame. Halo L2, JC = 3.1383.

It is important to note that only some trajectories are
shown in Figure 9, to enable the visualization of the dis-



tribution of conditions such that the disposal ∆V is min-
imal.
In Figure 9, the solid blue lines are related to mani-
fold trajectories before the lowest-cost disposal condi-
tion, and the dashed blue lines to manifold trajectories
after the lowest-cost disposal condition. The trajectory of
the Moon is represented as a yellow solid line. Note that
the colours of the dots are chosen as for the colour map
related to θ and defined in Figure 3. Looking at this plot,
it can be observed that the conditions such that the ∆V
required for disposal is minimum seem to correspond to
those such that the distance between the Earth and the
satellite travelling along the manifold is maximum. This
quantity is consequently shown as a function of the time
of flight spent by the spacecraft on the manifold in Fig-
ure 10.

Figure 10: Evolution of the distance between the mani-
fold and the Earth as a function of the time of flight spent
by the satellite along the unstable manifold and the phase
angle. Halo L2, JC = 3.1383.

In Figure 10, the dots represent the minimum ∆V dis-
posal conditions. The size of the dots is a function of
how small or large the minimum ∆V required to dispose
of the spacecraft is out of the total of those considered as
θ varies. Two relevant behaviours can be observed. First,
the minimum ∆V conditions are always found when the
satellite is at the apogee of the manifold. Secondly, the
disposal cost is generally lower when the apogee of the
manifold is higher, even if this second condition is not al-
ways verified.
Finally, one minimum disposal ∆V trajectory is propa-
gated after disposal in both the EM CR3BP and the n-
body model for 100 years, as shown in Figure 11.

For the sake of brevity, only the results of the propagation
of one condition are shown, but the findings reported are
similar to the majority of those analysed. The trajectory
after disposal, when propagated in the EM CR3BP, re-
mains outside of the ZVCs for the entire time considered,
following a predictable behaviour. As for the trajectory
propagated in the n-body model, it appears that the im-
pulse applied to close the ZVCs at L2 pushes the space-
craft away from cislunar space, preventing its reentry for
up to 100 years. Given this behaviour, it is reasonable to
assume that, in an n-body model, similar results could be
achieved with lower values of ∆v2, at least under certain
conditions. Consequently, this claim would only be con-
firmed by more complete simulations, performed in the

Figure 11: Trajectory after disposal, propagated in both
the EM CR3BP and the n-body model. Halo L2, JC =
3.1383.

n-body dynamical model.
In Figure 12, the disposal ∆V as a function of phase an-
gle and t∆v2 is shown for all the orbits listed in Table 1.

When there is a red area in the graphs, it indicates the
manifold impacts on the Moon before exiting L2. The
green areas refer to the manifold trajectories that remain
in cislunar space for the entire 6 months period without
leaving the inner region of the ZVCs. No manifold tra-
jectories impacting the Earth before exiting L2 were de-
tected. It is interesting to note that the parabolic shapes
defining the conditions for minimum disposal ∆V are not
centred at the same value of θ for all members of a con-
sidered family. Intuitively, one might expect symmetry in
disposal costs with respect to θ = 0 or θ = 180, given
that periodic orbits are symmetric about the xz-plane (or
the x-axis in the planar case). However, this symmetry
is not observed for all orbits analysed. The same applies
to the distance between the orbit and the Moon, which,
as shown earlier, varies closely as θ. Since the trends of
these two quantities are similar, it can be concluded that
the disposal cost does not depend on both parameters in
a similar way for all members of the considered families.
As expected, disposal is more challenging for orbits
around L1, where, as shown in the figures, there are more
impacts on the Moon or trajectories that remain in cis-
lunar space. Conversely, the disposal becomes easier as
the analysed orbit moves farther from the Moon along the
family, i.e. as the mean distance between the orbit and the
Moon increases. All other analyses are not reported for
all the orbits considered, for the sake of brevity. Anyway,
the results are consistent across all scenarios considered,
allowing the conclusions drawn to be extended to all the
orbits described in Table 1. Just as another example, the
distance evolution for a Halo orbit in L1 is reported in
Figure 13

5. CONCLUSIONS AND FUTURE WORKS

In this paper, the dynamics of EoL disposal for L2 escape
no-return trajectories have been analysed. The disposal



(a) Halo L2 - JC = 3.0988. (b) Halo L2 - JC = 3.0289.

(c) Lyapunov L2 - JC = 3.1612. (d) Lyapunov L2 - JC = 3.1161.

(e) Lyapunov L2 - JC = 2.9867. (f) Halo L1 - JC = 3.1525.

Figure 12: Disposal ∆V as a function of phase angle and time the satellite spends on the manifold before performing the
second disposal manoeuvre.



(g) Halo L1 - JC = 3.1239. (h) Halo L1 - JC = 3.0025.

(i) Lyapunov L1 - JC = 3.0804. (j) Lyapunov L1 - JC = 2.9370.

(k) Lyapunov L1 - JC = 2.8968.

Figure 12: Disposal ∆V as a function of phase angle and time the satellite spends on the manifold before performing the
second disposal manoeuvre.



Figure 13: Evolution of the distance between the mani-
fold and the Earth as a function of the time of flight spent
by the satellite along the unstable manifold and the phase
angle. Halo L1, JC = 3.11525.

cost has been examined as a function of various parame-
ters, and it has been verified that, for some disposal trajec-
tories, they remain outside the EM system for 100 years
after disposal, both when propagated in the CR3BP and
in an n-body dynamical model.
It was observed that the disposal cost, as a function of the
phase angle, is minimized when the disposal trajectory
reaches its apogee.
Additionally, disposal is less challenging for orbits
around L2 than for those around L1, as well as for orbits
with a greater average distance from the Moon. Anyway,
even for orbits in L1 where a high probability exists of
impacting the Moon or remaining in cislunar space for
many values of the phase angle, it is still possible to iden-
tify regions where disposal could be easy and fast to im-
plement, making it a viable option.
As future work, we propose extending this analysis
by first considering the Bicircular Restricted Four-Body
Problem (BCR4BP) to account for the Sun’s influence
on the system and then moving to an n-body dynami-
cal model to apply to the overall analysis, not only for
validation. Regarding the latter, it would be of particular
interest to assess how many of the trajectories propagated
in the n-body model manages to avoid re-entering L2 for
100 years after disposal is performed.
Additionally, the analysis presented herein should be ex-
tended to trajectories that not only exit EM-L2 but also
SE L2. Once there, the ZVCs of the SE system should be
closed, just as demonstrated for the EM ones, to make it
theoretically impossible for the satellite to return. Finally,
the parametric analysis conducted in this study could be
extended to other LPOs characteristics, such as the sta-
bility index, finite-time Lyapunov exponents, and more.
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