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ABSTRACT

Understanding the observability of space debris attitude
is crucial for attitude determination with lightcurves.
This study examines how observation geometry affects
the information content of a single brightness measure-
ment, providing theoretical and intuitive insights into fun-
damental observability conditions. Assuming an ideal
single-facet target, we simulate various spatial configu-
rations to identify optimal observer geometries for both
specular and diffuse reflections. The results establish a
basis for extending observability analysis to multistatic
and time-series scenarios. This work lays the foundation
for exploring multiple observation strategies, where in-
tegrating data from multiple observers or temporal mea-
surements can further improve attitude determination.

Keywords: lightcurve; attitude obserability; observation
geometry.

1. INTRODUCTION

The growing issue of space debris remains a significant
concern. Optical telescopes serve as the primary tool
for observing space debris, effectively determining orbits
but struggling to extract details such as shape, orienta-
tion, and reflective properties [1]. Light curves, captur-
ing brightness variations observed by telescopes, offer a
cost-effective means to infer these characteristics.

Light Curve Inversion (LCI), extensively developed for
asteroids, has been explored for space debris. From 1992
to 2001, Kaasalainen established the standard approach
for asteroid LCI [2, 3, 4, 5, 6, 7]. However, space debris
differs significantly from asteroids due to its complex re-
flective properties, necessitating the use of the Bidirec-
tional Reflectance Distribution Function (BRDF) [8, 9,
10, 11]. Additionally, its diverse shapes challenge tradi-
tional modeling techniques [12].

To address these complexities, researchers have con-
ducted extensive simulations to understand Resident

Space Object (RSO) light curves [13, 14]. Instead of
full inversion, partial solutions have been explored, such
as Kalman Filtering, Fourier, and Wavelet Transforms
for extracting rotational information [15, 16, 17]. More
recently, deep learning techniques have been applied to
RSO light curve analysis [18, 19, 20, 21].

Beyond these approaches, understanding light curve ob-
servability is crucial for extracting meaningful informa-
tion. Observability quantifies how well light curves re-
veal parameters such as orientation and reflectance, in-
forming space debris analysis. Hinks formalized the ob-
servability of a single brightness measurement, laying the
groundwork for further studies [1].

Building on Hinks’ framework, this study advances ob-
servability analysis by identifying optimal observation
geometries. We systematically simulate various single-
observation scenarios, providing theoretical and intuitive
insights into their impact on observability. This work
forms a foundation for extending observability analysis
to more complex cases, such as multistatic configurations
and time-series measurements.

The remainder of this paper is structured as follows:
Section 2 presents the mathematical model for the ob-
servability of a single brightness measurement, primarily
based on Hinks’ work [1]. Section 3 discusses the simu-
lation results under different observational scenarios. Fi-
nally, Section 4 summarizes key findings and outlines di-
rections for future research.

2. OBSERVABILITY MODELING

Observability quantifies the sensitivity of the measured
brightness to small variations in the object’s attitude and
surface properties. A rigorous mathematical framework
is required to evaluate the observability, as it directly im-
pacts the reliability of shape and attitude reconstruction
from optical measurements.

This section establishes the theoretical framework for ob-
servability modeling, integrating light propagation and
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information theory. The BRDF characterizes surface re-
flection, while the Fisher Information Matrix (FIM) pro-
vides a quantitative measure of observability. These for-
mulations assess single-observation observability.

2.1. Light Propagation and BRDF

Table 1. Mathematical symbols used in the formulation.

Symbol Annotation
eobs unit vector pointing to reflection direction
esun unit vector pointing to incident direction
h half vector,

(
esun + eobs

)
/∥esun + eobs∥

n(i) normal vector of the ith facet
con(i) eobs · n(i)

csn(i) esun · n(i)

chn(i) h · n(i)

csh(i) esun · h
r surface roughness, higher means smoother
Rs specular reflectance at normal incidence
Rd diffuse reflectance

Observability modeling relies on representing observa-
tions of non-luminous objects like space debris, where
measurements correspond to sunlight reflected from their
surfaces. This process consists of two key components:
light propagation from the Sun to the telescope and the
target’s surface reflection characteristics.

Consider a space debris target with k facets, where the
ith facet has an area A(i). The light propagation path, or
observation geometry, of this facet is illustrated in Fig. 1,
with vector definitions provided in Tab. 1.

Figure 1. Observation geometry on the ith facet

By applying approximations, light propagation model-
ing is simplified. Since orbital elevation variations are
negligible relative to the Earth-Sun distance, the solar
radiation received by space debris is assumed uniform,
approximated by the solar constant Csun. Accounting
for atmospheric effects, the energy density at the tele-
scope, isolating reflection and distance factors, is given
by Csun,vis.

Thus the irradiance received by the observer is given as

Eq. (1):

Eobs(i) = Csun,vis · ρ(i) · A(i)

csn(i) · con(i)
d2

(1)

where d is the distance between the target and the ob-
server, and ρ(i) is the BRDF of the ith facet. The BRDF
models surface reflection by relating reflected radiance
to incident irradiance based on illumination and viewing
geometry. It is a fundamental tool for characterizing re-
flection properties in light propagation.

Following Hinks [1], we adopt the Ashikhmin-Shirley
BRDF model [11, 10, 9], which captures both specular
and diffuse reflections. The surface parameters used in
this model are listed in Tab. 1. The BRDF of the ith facet
is given by Eq. (2):

ρ(i) = ρs(i) + ρd(i) (2)

The first part ρs(i) is for specular component:

ρs(i) =
r + 1

8π
·

c
z(i)
hn(i)

csn(i) + con(i) − csn(i) · con(i)

·
[
Rs + (1−Rs)

(
1− csh(i)

)5] (3)

where the exponent z can be written as:

z(i) =
r(i)

1− c2hn(i)
(4)

The second part ρd(i) is for diffuse component:

ρd(i) = k(i)

[
1−

(
1−

csn(i)

2

)5
]

·
[
1−

(
1−

con(i)

2

)5
] (5)

where the scale factor k(i) can be written as:

k(i) =
28Rd(i)

23π

(
1−Rs(i)

)
(6)

In summary, by integrating the light propagation model
in Eq. (1) with the BRDF model formulated in Eqs. (2)
to (6), we complete the modeling of the light curve ob-
servations.

2.2. Fisher Information Matrix and Observability

The Fisher Information Matrix (FIM) quantifies how ob-
servations x constrain unknown parameters µ, establish-
ing a theoretical bound on estimation precision. Given a
functional relationship h, the observation model is:

x = h(µ) + ε (7)



where ε represents observation noise with a covariance
matrix R = εεT .

Following Hinks [1], the FIM of µ given observations x
is formulated as:

F (µ) =

(
∂h

∂µ

)T

R−1

(
∂h

∂µ

)
(8)

which quantifies how observation sensitivity and noise
determine the best achievable estimation precision, com-
monly referred to as observability.

From Eq. (8), attitude observability from light curves re-
quires computing the gradient of observed irradiance with
respect to attitude parameters, given by [1]:

∂Eobs

∂δα
=

N∑
i=1

Eobs(i)

[
Cn1(i)

(
eobs × n(i)

)T
+Cn2(i)

(
esun × n(i)

)T ] (9)

where the scale factors Cn1(i) and Cn2(i) can be written
as:

Cn1(i) =
ρs(i)

ρ(i)

[
z(i)

csum(i)
−

1− csn(i)

csum(i) − cprod(i)

]
+
5k(i)

2ρ(i)

[
1−

(
1−

csn(i)

2

)5
] [

1−
con(i)

2

]4
+

1

con(i)

Cn2(i) =
ρs(i)

ρ(i)

[
z(i)

csum(i)
−

1− con(i)

csum(i) − cprod(i)

]
+
5k(i)

2ρ(i)

[
1−

(
1−

con(i)

2

)5
] [

1−
csn(i)

2

]4
+

1

csn(i)

(10)

The notation used to simplify expressions in Eq. (10) is
given by Eq. (11):

csum(i) = con(i) + csn(i)

cprod(i) = con(i)csn(i)
(11)

Thus, by substituting Eq. (9) into Eq. (8), the FIM for the
attitude parameters can be formulated as:

F (δα) =

(
∂Eobs

∂δα

)T

R−1

(
∂Eobs

∂δα

)
(12)

3. OBSERVABILITY OF SIMULATED DATA

Our objective is to investigate how observation geometry
influences attitude observability, providing a deeper un-
derstanding of the relationship between observation ge-
ometry and the information content of light curve mea-
surements.

To achieve this, we simulate various observation geome-
tries for a single observation scenario, modeling the target
as an ideal single-facet object. These simulations offer
both theoretical and intuitive insights into how different
spatial arrangements affect observability, laying the foun-
dation for further discussions on optimizing observation
strategies.

3.1. Simulation Configurations

The simulations are configured with defined coordinate
systems, BRDF parameters, rotation settings for time-
series analysis, and necessary simplifications to reflect
practical observation conditions.

It is essential to highlight that, to simplify the analysis
and provide a clearer understanding of the physical im-
plications of observability, all simulations are conducted
based on an idealized single reflective facet target, with
area of 1 square meter.

3.1.1. Coordinate System

To ensure consistency in observation modeling, we de-
fine a unified coordinate system framework. The inertial
coordinate system serves as the global reference frame,
describing the space debris target’s orientation, while the
body-fixed coordinate system, aligned with its surface
normal vectors, is used to describe the observation ge-
ometry.

Since only a single observation is considered, absolute
positions of the target, observers, and the Sun are irrel-
evant. Instead, their relative directions are adjusted to
simulate different observation geometries. A polar coor-
dinate system centered on the target’s body frame is used
for this purpose, facilitating the computation of incidence
and reflection angles.

Figure 2. Polar coordinate system for simulations.

As shown in Fig. 2, an arbitrary direction vector in the
body frame e is expressed using its azimuth ϕe and ele-
vation θe. As the ideal single-facet target is assumed to
have isotropic surface properties, there is no inherent ref-
erence for the azimuth. Thus, we define ϕ = 0 as the
azimuth of the Sun. These angle notations are retained
for subsequent discussions.



(a) Observability distribution

(b) BRDF lobe

Figure 3. Diffuse component of a single epoch monostatic
observation, θsun = 5◦.

3.1.2. BRDF Parameters

In our simulation, the target’s surface properties are de-
fined by BRDF parameters, including r for surface rough-
ness, Rs for specular reflectance, and Rd for diffuse re-
flectance, as listed in Tab. 1.

Space debris, often originating from fragmented space-
craft, is typically covered with highly reflective multi-
layer insulation, resulting in smooth optical characteris-
tics. To approximate this, we set r = 1000, effectively
modeling a smooth surface. Due to the lack of publicly
available reflectance data for spacecraft materials, we as-
sume an equal distribution between specular and diffuse
reflection, assigning Rs = Rd = 0.5 as a reasonable ap-
proximation.

3.2. Simulation Results

Initially we simulated just one measurement of a single
epoch, for a monostatic telescope it means we only have
one brightness measurement.

Given the assumption of a smooth target surface, the
specular component of the BRDF is confined to a small

(a) Observability distribution

(b) BRDF lobe

Figure 4. Diffuse component of a single epoch monostatic
observation, θsun = 30◦.

region. When the observer’s direction falls far from this
region, diffuse reflection dominates. Due to the large
magnitude difference between specular and diffuse com-
ponents, the latter becomes indistinguishable when both
are considered together. Thus, we analyze the diffuse and
the specular components separately. This applies to all
subsequent scenarios.

3.2.1. Diffuse Reflection Component

Figs. 3 to 6 illustrate the observability from the diffuse
components of single-epoch observations in a monostatic
system, where the solar elevation angle varies from 5◦ to
90◦. The light blue plane represents the ideal single-facet
reflective target, with the dark blue vector n indicating its
surface normal. The yellow vector esun denotes the Sun’s
direction, while the dark red vector eobs,max represents
the observer direction that maximizes observability un-
der the given conditions. The dark green vector ∂obs,max

corresponds to the optimal gradient of the observed value
with respect to attitude. A simplified notation is used here
for gradients and will be maintained. The hemispheres or
lobes visualize the distribution of observability or BRDF
relative to the observer’s direction.



(a) Observability distribution

(b) BRDF lobe

Figure 5. Diffuse component of a single epoch monostatic
observation, θsun = 48◦.

Notably, due to the large variations in observability and
BRDF values across different observation geometries, a
dynamic numerical range is applied to ensure clarity in
their distributions, as indicated by the color scale on the
right side of each figure. Additionally, since a polar coor-
dinate system is used, the scale values on the XYZ axes
have no actual significance and serve only to indicate axis
orientation.

The first notable phenomenon is that the maximum ob-
servability consistently occurs at the observer azimuth of
0◦. This is because when the Sun and the observer are
aligned with the target, the projected area in light propa-
gation experiences minimal surface area loss.

However, this trend differs for the observer’s elevation.
Regarding the observer’s elevation, as θsun increases,
the observer direction yielding the highest observability
shifts lower. Explaining this requires examining the ob-
servation expression in Eq. (1) with the diffuse BRDF
component in Eq. (5). Neglecting the specular compo-
nent and constant coefficients, we obtain:

Eobs,diff =

[
1−

(
1− esun · n

2

)5
]
(esun · n)

·
[
1−

(
1− eobs · n

2

)5
]
(eobs · n)

(13)

(a) Observability distribution

(b) BRDF lobe

Figure 6. Diffuse component of a single epoch monostatic
observation, θsun = 90◦.

This equation shows that the diffuse component is pri-
marily governed by the cosine of the zenith angles of the
Sun and the observer. Expressing these angles as func-
tions of δα, we define:

S (δα) =

[
1−

(
1− esun · n

2

)5
]
(esun · n)

O (δα) =

[
1−

(
1− eobs · n

2

)5
]
(eobs · n)

(14)

Thus, Eobs can be rewritten as:

Eobs,diff = S (δα) · O (δα) (15)

Taking the derivative, we obtain:

∂Eobs,diff

∂δα
= S (δα)O′ (δα) + S ′ (δα)O (δα) (16)

Using Eq. (16), we can interpret the variations in observ-
ability with respect to the Sun’s and observer’s elevations.
When θsun = 90◦, S (δα) reaches its maximum, corre-
sponding to the largest projected area and the broadest
BRDF lobe, while S ′ (δα) = 0, as shown in Fig. 6. A
similar behavior applies to O (δα) concerning the ob-
server’s elevation. When θobs = 90◦, O (δα) attains



its peak value with the largest projected area and high-
est BRDF contribution, while O′ (δα) = 0, as seen in
Fig. 3.

As θsun increases from 0◦ to 90◦, S (δα) grows, while
S ′ (δα) diminishes. At the same time, O′ (δα) becomes
increasingly dominant, while O (δα) plays a lesser role,
as illustrated in Figs. 4 and 5.

This explains why the observer elevation corresponding
to maximum observability decreases as the Sun’s eleva-
tion rises. Additionally, it clarifies why the maximum ob-
servability first increases and then decreases with increas-
ing solar elevation. When the magnitudes and gradients
of S (δα) and O (δα) reach a balanced trade-off, the
overall gradient—and thus the observability—achieves
its peak, as demonstrated in Fig. 5.

3.2.2. Specular Reflection Component

(a) Observability distribution

(b) BRDF lobe

Figure 7. Specular component of time-series monostatic
observations, θsun = 55◦.

Fig. 7 illustrates the observability from the specular com-
ponent of a single-epoch observation in a monostatic sys-
tem. It need to be noted that due to the significant numer-
ical disparity between the specular and diffuse compo-

nents of the BRDF, Fig. 7 applies a different normaliza-
tion factor for the BRDF lobe visualization and gradient
vector lengths compared to Figs. 3 to 6. Consequently,
their sizes or lengths depicted in the figures are not di-
rectly comparable.

Since specular reflection is concentrated within a small
region, as seen in Fig. 7b, the optimal observer direction
becomes more distinct and easier to interpret. This results
in a distinct ring-like region around the specular lobe, as
shown in Fig. 7a, where brightness variations are most
significant.

When the observer is positioned within this ring, even
minor attitude variations of the target lead to significant
changes in the observed light curve, making this region
the most informative. Compared to Fig. 5, where diffuse
reflection is the primary contributor, Fig. 7 shows that
the maximum observability in the specular component is
exponentially higher.

Moreover, the observer direction with maximum observ-
ability does not only lie along this ring but also consis-
tently aligns with the midpoint of its upper half, corre-
sponding to the highest elevation. To explain this, we can
reconsider Eq. (1) from another perspective. By isolat-
ing the area projection coefficients from the BRDF, while
neglecting constant terms, we define:

Eobs,spec = ρs ·(csn · con) = ρs (δα) ·Cproj (δα) (17)

where Cproj represents the area projection coefficients.

Following a similar approach to Eq. (16), we compute the
gradient:

∂Eobs,spec

∂δα
= ρs (δα)·C′

proj (δα)+ρ′s (δα)·Cproj (δα)

(18)

This formulation clarifies why the highest elevation point
along the specular ring exhibits the greatest observabil-
ity. Within this region, ρ′s (δα) dominates the gradient
magnitude, with Cproj (δα) acting as a scaling factor.
Higher elevation angles result in larger area projection
coefficients, amplifying ρ′s (δα) and ultimately leading
to a greater overall gradient and enhanced observability.

4. CONCLUSION

This study explored the observability of space debris at-
titude through simulated light curve observations, em-
phasizing the impact of observation geometry on the in-
formation content of measurements. By extending pre-
vious works on attitude observability, we systematically
analyzed the optimal observation conditions to enhance
the possibility of attitude determination of space debris.
Our findings indicate that the observer’s relative direc-
tion with respect to the Sun and target significantly in-
fluences the observability of attitude. Specifically, we



demonstrated the optimal observer geometries for both
specular and diffuse reflection components.

These results lay a solid foundation for further investi-
gations into more complex observational configurations,
such as multistatic setups and time-series analysis, where
multiple observers or temporal measurements contribute
to attitude determination. By characterizing the funda-
mental observability conditions, this study provides a ba-
sis for extending attitude obserability frameworks to in-
corporate diverse observation strategies, ultimately im-
proving our understanding of space debris dynamics in
more generalized scenarios.
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