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ABSTRACT

Motivated by the ever-increasing space debris population
in LEO and subsequent re-entry events, risk analysis of
the effects of uncontrolled re-entry on-ground is consid-
ered a key component of modern space debris mitigation
strategies.

A standard approach of quantifying the uncertainty as-
sociated with re-entry makes significant use of Monte
Carlo (MC) campaigns but the heavy computation bur-
den of invoking MC means that physical models applied
to re-entry modelling in terms of aerothermodynamics,
structures and flight dynamics must often be necessarily
limited. This work proposes the use of nonlinear prop-
agation techniques commonly applied in on-orbit uncer-
tainty quantification as a means to acquire results without
needing to expend significant resources on an MC cam-
paign.

The Unscented Transform (UT) significantly reduces
the requisite function evaluations necessary to propagate
a probability distribution through a nonlinear function.
This is achieved by sacrificing information on the distri-
bution beyond the first two statistical moments. If a distri-
bution can be safely assumed (almost always as a normal
distribution), the UT presents significant computational
savings over MC. Unfortunately, re-entry processes can
cause positional uncertainty to deviate significantly from
Gaussian descriptions, thus the motivation for applying a
Gaussian Mixture Model (GMM) to approximate a non-
Gaussian distribution as a weighted sum of a “library”
of Gaussians. These two propagation techniques together
comprise the hybrid model known as GMM-UT.

The common use of covariance matrices in orbital uncer-
tainty propagation enables interoperability between stan-
dard orbital methods and the proposed re-entry uncer-
tainty propagation. Additionally, the lower computa-
tional expense provides the opportunity to utilise more
sophisticated physical models for re-entry, be that in
terms of higher fidelity aerothermodynamical computa-
tion, advanced structural models or in this case where
a larger quantity of fragments and fragmentation events
than would usually be feasible for MC propagation can

be analysed.

In this work, the comparative cheapness of GMM-UT
is leveraged to propagate a cluster of spacecraft frag-
ments simultaneously whilst still computing the aerody-
namics and aero-induced heating on these bodies. This
is performed using the TransatmospherIc flighT simulA-
tioN tool (TITAN), a code developed by the University
of Strathclyde for the purpose of simulating hypersonic
re-entries utilising models of multiple fidelities.

TITAN’s panel-code models approximate aerodynamic
effects enabling efficient propagation of multivariate un-
certain initial conditions in position and velocity. This
is done whilst accounting for both purely translational (6
dimensional) and combined translational and rotational
uncertainty (13 dimensional).

Results obtained for a more trivial fragmentation case
are compared, utilising statistical similarity measures,
against conventional Monte Carlo campaigns and single-
distribution Unscented Transform propagation. They are
used alongside the results obtained for a more complex
case to advocate for further exploration of nonlinear prop-
agation as a method for efficient uncertainty quantifica-
tion during re-entry.

Keywords: Re-entry; Uncertainty Quantification; Non-
linear propagation; Gaussian Mixture; Space Debris.

1. INTRODUCTION

Space debris in the Low Earth Orbit (LEO) environment
is a pressing issue for future space sustainability that can-
not be ignored but a hollistic approach to space sustain-
ability cannot only consider the effects of space debris
on-orbit, debris objects from LEO are re-entering the at-
mopshere and impacting Earth at an increasing rate[6],
thus the desire for performant analysis tools and method-
ologies to appropriately assess the impact of space-debris
on ground in a robust and uncertainty-aware manner.

This work seeks to apply a method frequently invoked
in on-orbit uncertainty quantification (UQ) and uncer-
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tainty propagation (UP), namely the Unscented Trans-
form (UT)[4], to propagate uncertainty associated with
the state vector of re-entering debris to ground for the
purpose of appropriately quantifying the resultant impact
distribution of surviving fragments. Standard practices
of Monte Carlo (MC) campaigns for UQ carry a heavy
computational burden that the UT seeks to avoid.

The TransatmospherIc flighT simulAtioN tool (TITAN)
[7]

2. NONLINEAR PROPAGATION

The problem sought to be solved in dynamical uncer-
tainty propagation is to propagate a state vector x⃗i ∈ Rd

with some initial probabilistic description pi(⃗xi) through
a function f (⃗xi) ∈ Rd in order to recover the resultant
distribution p(f (⃗xi)), i.e. pi+1(⃗xi+1). Note that in or-
der for the result that pi+1 can be described by a linear
transformation of pi it is required that pi is a Gaussian
distribution and that f (⃗x) can be assumed to be a linear
function on x⃗. This second requirement creates problems
as it is intuitively not the case for a great many dynami-
cal systems and especially systems with complex aerody-
namics such as transatmospheric re-entry.

Thus methods must be explored which seek to recover
pi+1 with repeated propagations of system dynamics,
classically Monte Carlo methods are employed to solve
this problem.

E[pi+1] ≈ µMC =

NMC∑
j=1

f (⃗xi,j)
NMC

(1)

However NMC must be a sufficiently large number in or-
der for MC to appropriately approximate the true value.
Julier and Uhlmann showed[4] that by restricting the
problem to only recover the first two statistical moments
and selecting points appropriately, the necessary number
of samples is far below the number required for Monte
Carlo convergence (NUT = 2 · d + 1 << NMC). This
so-called Unscented Transform (UT) in practice means
assuming an unchanging distribution kernel with vary-
ing mean and (co) variance, which is almost always as-
sumed to be a Normal distribution. The points selected
to propagate for an Unscented Transformation, termed
sigma points, are obtained deterministically[5].

x⃗i,σ1
= x⃗i,µ

x⃗i,σj =

{
x⃗i,µ +

√
λ+ d ·

√
Σk if j < d+ 1

x⃗i,µ −
√
λ+ d ·

√
Σk if j ≥ d+ 1

(2)

Where
√
Σk, k ∈ {1, . . . , d} is the kth column of the

square-root covariance matrix and λ = α2(d+κ)−d with
α and κ as scaling parameters. The mean and covariance
can then be reconstructed according to weighted sums of
the propagated sigma points

E[pi+1] ≈ µUT =

2d+1∑
j=1

wµ,σj
f (⃗xi,σj

) (3)

Σ[pi+1] ≈
2d+1∑
j=1

wΣ,σj
[f (⃗xi,σj

)− µUT ]
2 (4)

Where wµ,σj = wΣ,σj = 1/[2(n + λ)] ∀j > 1 and
wΣ,σ1

= λ/(n + λ), wµ,σ1
= wΣ,σ1

+ (1 − α2 + β)
with β as a term for incorporating prior knowledge (for a
Gaussian prior β = 2 is optimal).

The UT is a desirable method in a variety of contexts
where the system dynamics can be assumed to be linear
over a small timestep, thus by assuming a Gaussian ini-
tial case on can effectively propagate a transformed dis-
tribution. Unfortunately in orbital (and indeed suborbital)
contexts a well-behaved initial Gaussian can be observed
to distort into a “banana” distribution over time.

2.1. Gaussian Mixture Models

To accurately capture distributions which deviate from
Gaussian representations over time, a Gaussian Mixture
Model (GMM) is invoked. Any distribution can be ap-
proximated as a weighted sum of Gaussians[3].

p ≈ pGMM =

NG∑
n=1

wnN (µn,Σn) (5)

It should be noted that unless the GMM is changed during
the propagation that the assumption that system dynamics
can be linearly approximated over short timescales is still
necessary.

Satellites and space debris can be readily characterised
with a covariance ellipsoid describing the uncertainty in
their orbital elements. This is the motivation for selecting
a multivariate Gaussian in state space as the initial uncer-
tainty that is propagated through re-entry. Thus the GMM
can be defined as a collection of recursively split Gaus-
sians. Libraries of component size 3 and 5 respectively,
determined by DeMars[2], are applied to appropriately
split the Gaussians according to the following splitting
scheme in the direction of the mth principal axis of the
covariance, usually taken to be the largest.

wn = w0Wn

µ⃗n = µ⃗0 +
√
λmMne⃗m

Λn = Diag[λ1, . . . , s
2
nλm, . . . , λd]

Σn = EΛnE
T

(6)

Where λm is the eigenvalue corresponding to the mth

eigenvector (⃗em), E is the eigenvector matrix and Wn,
Mn and sn are the splitting parameters determined by the
library.

Once the GMM is split appropriately it can then be prop-
agated on a per-Gaussian basis, before perfoming an Un-
scented Transform. It should be noted that methods[2]
exist to adaptively split a GMM in response to system
nonlinearity, something that is desirable but non-trivial in
this precise context. Future work on this methodology
should likely consider this direction.



3. DYNAMICS DURING RE-ENTRY

Whilst in the orbital regime attitude can, in many cases,
be decoupled from state dynamics this is not true for
descent trajectories, especially for the continuum flow
regime and unstable uncontrolled re-entries. To propa-
gate the translational and rotational state vectors together
necessitates a 13-dimensional parameter space of 3 trans-
lational positions, 3 translational velocities, 4 rotational
positions in the form of a quaternion (to avoid gimbal
lock) and 3 rotational velocities.

x⃗ =


r⃗
˙⃗r
q

ω

∈ R13 (7)

Propagation of a 13-dimensional state vector obviously
increases the computational effort required to capture the
statistics of the problem and this means that often a trade-
off between physical accuracy and statistical convergence
must be made. In this context TITAN enables the use
of a variety of numerical integration schemes, applied in
this context is a 3rd order Runge-Kutta method, TITAN’s
aerothermodynamic modelling capabilites enable compu-
tation of aerodyanmic forces throughout all regimes ex-
perienced during a re-entry.

3.1. Aerothermodynamic Modelling

The TransatmospherIc flighT simulAtioN tool (TITAN)
enables the modelling of aerodynamical and aerothermo-
dynamical effects in the free-molecular and continuum
hypersonic flow regimes at varying levels of fidelity, no-
tably one can select between panel-based impact methods
implemented according to Modified Newtonian Theory
or Schaaf-Chambre[8] as opposed to full-scale volumet-
ric fluid analysis in the form of non-equilibrium computa-
tional fluid dynamics (CFD) or Direct Simulation Monte
Carlo (DSMC). In this context the application of the more
performant (lower fidelity) panel methods as the physi-
cal model within the GMM-UT propagation enables the
analysis of a larger number of fragments than could be
analysed with Monte Carlo propagation.

cp =


cpc

where Kn < 10−3

cpf
where Kn > 102

fbridging(cpc
, cpc

) where 10−3 < Kn < 102

(8)

4. APPLICATION TO RE-ENTRY

In order to assess the viability of the GMM-UT method-
ology when applied to the re-entry UQ problem this work

considers two distinct test cases with similar initial un-
certainty (Table 1), described as multivariate normal dis-
tributions in 12-dimensional state space, (with attitude
specified by Euler angles as opposed to quaternions).

Table 1: Uncertain input parameters

Parameter (units) Mean Variance
X Position (m) 6498.1× 103 1690.0× 103

Y Position (m) 0.0 250.0× 103

Z Position (m) 0.0 250.0× 103

X Velocity (m/s) -344.59 6.25
Y Velocity (m/s) 0.0 25.0
Z Velocity (m/s) 7892.48 25.0
Roll Position (rad) 0.0 0.44
Pitch Position (rad) 0.0 0.44
Yaw Position (rad) 0.0 0.44
Roll Velocity (rad/s) 0.0 0.0044
Pitch Velocity (rad/s) 0.0 0.0044
Yad Velocity (rad/s) 0.0 0.0044

4.1. Simple Geometry

In order to assess the described methodology in a re-
entry context it is applied to a simplistic approximation
of the kinds of objects that re-enter from low Earth or-
bit, namely a sphere joined to a cube by a demisable joint
specified to demise at hfrag = 78 km (Fig. 1). The
sphere and cube provide a an opportunity to assess the
effects of rotational uncertainty on re-entry, as the aero-
dynamic forces acting upon the sphere are invariant with
attitude. The simplicity of this representation means re-
sults can be directly compared with a Monte Carlo cam-
paign.

(a) Mesh prior to fragmentation event

(b) Mesh after fragmentation event

Figure 1: The simple geometry before (a) and after (b)
fragmentation



4.2. Comparison With Monte Carlo

Fig. 2 shows the altitude over time across 2456 Monte
Carlo runs, the dispersive effects of attitude uncertainty
on a non-axisymmetric body can be observed. In Fig. 3

Figure 2: Altitude vs Time plot of the 2456 reference
Monte Carlo Runs

it can be seen that whilst a 3-DoF GMM-UT cannot cap-
ture these effects the 6-DoF GMM-UT gives an accept-
able representation of the statistics of the problem. It is
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Figure 3: Comparison of 3-DoF and 6-DoF GMM-UT to
reference Monte Carlo

made clear by this comparison that the 3 degree of free-
dom model cannot be expected to resolve the resultant
statistics of the problems effectively, thus results for the
advanced case were obtained with the 6-degree of free-
dom model.

4.3. Advanced Case

Many instances of 2nd stage DELTA-II rocket bodies
are remain in low, decaying orbits above the Earth, this
makes them important and desirable targets for analysis.
One particular re-entry event lead to the recovery of frag-
ments on-ground[1], enabling direct comparison of re-
entry simulation to reality. It should be noted that not
only is the available orbital state information uncertain in
nature, in that it is provided in the form of a Two/Three
Line Element (TLE) which has an associated error, but

the attitude of the object at entry interface can be con-
sidered to be completey unknown. Thus this case was
considered an apt “stress-test” in this context.

Fig. 4 shows the mesh used in the TITAN simulation
of the DELTA-II R/B where a 6-DoF 3-Gaussian GMM
was applied to the problem as the most computationally
efficient method explored in this work. Fig. 5 shows 2500

Figure 4: The DELTA-II geometry used in analysis

samples of the GMM trajectory of the object drawn at
each timestep and FIG shows selected slices of the state
vector distribution across altitude.

It can be seen from these figures that the distribution
of position and velocity can be highly non-Gaussian for
complex re-entry cases

5. CONCLUSION

In this work the GMM-UT method was applied at first to
a simplified test case in order to assess the performance of
differing implementations before stress-testing the pro-
posed method on the more complex test case of the Delta-
II. It can be concluded that GMM-UT can be applied to
re-entry uncertainty quantification contexts although the
methodology is not without its challenges. It can be seen
that 3 degree of freedom representations have issues ac-
curately capturing the dynamics of the system. As sys-
tem dynamics become higher-dimensional and less linear
the advantages presented by this method decrease. Nev-
ertheless the computational savings open new avenues
that would not be feasible with traditional MC methods,
for example in simulating expensive re-entry events with
many objects.



(a) Altitude vs Time of Delta II Trajectory (b) Ground Track of Delta II Trajectory

Figure 5: Samplings of the GMM-UT applied in this context give an idea of the envelope of fragment positions

(a) State distribution at an altitude of 100km (b) State distribution at an altitude of 60km

(c) State distribution at an altitude of 20km (d) State distribution at an altitude of 1km

Figure 6: “Slices” of the Delta-II state probability at at selected constant altitudes of 100km (a), 60km (b), 20km (c) and
1km (d)
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