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ABSTRACT

In this work, we summarize the procedure developed in
[1, 2] to justify rigorously the existence of Arnold dif-
fusion for satellites in Medium Orbit Orbit, that are af-
fected by the perturbation due to the Earth’s oblateness
and the gravitational acceleration exerted by the Moon.
The motivation is the need of designing affordable end-
of-life solutions also from high-altitude orbits. These can
be conceived not only on the basis of novel technologies,
but also following an advanced theoretical understanding.
The hypothesis of the work presented is that the Arnold
diffusion process is the cause of the eccentricity growth
found numerically by previous works, that is thus not due
to the chaotic behavior due to overlapping resonances.
The theoretical outcome can also explain the phase de-
pendence previously found.

Keywords: Medium Earth Orbit; disposal; third-body
perturbation; Arnold diffusion.

1. INTRODUCTION

In the last 20 years, since the work of Jenkin and Gick [3]
a large effort (e.g., [4]-[10]) has been devoted to analyze
the eccentricity growth mechanism in Medium Earth Or-
bit (MEO) and its practical implications. The long-term
eccentricity variation due to the third-body perturbation is
well known since the ’60s (e.g., [11]), but only recently
its value has been recognized, to achieve quasi-natural
transfers, notably, towards an Earth’s reentry for satel-
lites in MEO. In this context, the numerical simulations
performed in the past showed that it is possible to obtain
a natural eccentricity growth as large as to get into the
atmospheric domain, but this growth cannot be justified

Figure 1. When the inclination of the Moon iM is as-
sumed to be 0, the system is autonomous and the space-
craft can move only within a given energy level (left).
When iM > 0, we can move to a different energy level
thanks to homoclinic connections occurring along the
normally hyperbolic invariant manifolds. The figure is
taken from [1].

within a pure Lidov-Kozai mechanism, that takes place,
but it is not sufficient to achieve the values of eccentricity
required to reenter, assuming the nominal value of incli-
nation of the Global Navigation Satellite System (GNSS)
constellations.

In this work, we summarize our effort, well detailed in
[1, 2], to provide a well-structured theoretical framework
for the so-called Arnold diffusion mechanism, first pro-
posed in [9, 10], that can lead to such a high value of
eccentricity. Assuming that the satellite is affected by the
Earth’s monopole, the Earth’s oblateness and the gravi-
tational perturbation exerted by the Moon, the reentry is
achieved not because of a chaotic behavior due to over-
lapping resonances as suggested in [7], rather by the fact
that the orbit of the Moon is inclined with respect to
the ecliptic plane and thus the dynamical system is non-
autonomous, allowing for jumps between different en-
ergy levels.

We will take as example the orbit of the Galileo constel-
lation, but the procedure is general.
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2. BASIC FRAMEWORK

The basic theoretical ingredients are the following.

• In quasi-integrable Hamiltonian systems, Arnold
diffusion consists in the slow variations of the ac-
tions of the system due to the accumulation of small
perturbations over time. In the case considered in
this work, we have also a variation in energy because
the system is non-autonomous.

• For our problem, the action is the orbital eccentric-
ity of the satellite, that changes by ‘drifting along a
resonance’.

• It is well known that the inclination of the Galileo
constellation, i ≈ 56◦, corresponds to the resonance
2ω̇ + Ω̇ = 0, where i, the argument of pericenter
ω and the longitude of the ascending node Ω are as-
sumed with respect to the Earth’s equatorial plane.

• Assuming that the orbit of the Moon is coplanar with
the one of the Earth (that is, iM = 0), the system is
autonomous and has dimension 4 (2-degree of free-
dom).

• In the neighborhood of the resonance, that is, an
equilibrium point, there exists a family of hyperbolic
periodic orbits (each one characterized by a different
value of energy), and thus a stable and an unstable
invariant manifold stemming from each of them.

• Along the hyperbolic manifolds, assuming that the
associated periodic orbit corresponds to a circular
one (that is, e = 0) the eccentricity grows nat-
urally up to a certain value (Lidov-Kozai mecha-
nism). However, for the specific orbital parameters
of Galileo, that is not sufficient to achieve reentry.

• These hyperbolic invariant manifolds intersect
transversally, forming a homoclinic orbit associated
with the given energy level.

• In the extended phase space (adding time) the
hyperbolic periodic invariant orbits become 2-
dimensional invariant tori. Its union form a so-called
normally hyperbolic invariant cylinder (see Fig. 1 -
left), which has unstable and unstable invariant man-
ifolds that intersect transversally.

• When the inclination of the Moon is taken into
account (iM > 0), the system becomes non-
autonomous due to the longitude of the ascending
node of the Moon. The normally hyperbolic invari-
ant cylinder is persistent (for iM > 0 small enough).
Inside the cylinder, most of the hyperbolic tori per-
sist (thanks to KAM theory [12]). The invariant
manifolds of the cylinder are also robust.

• When iM > 0, the hyperbolic invariant manifolds
stemming from the invariant tori in the cylinder also

Figure 2. Examples of periodic orbits for H̃CP,1 assum-
ing a = 29600 km (Galileo semi-major axis) and the ec-
centricity to be 0. Non-dimensional units. On the right,
the inclination along the periodic orbit, as a function of
h. The colorbar reports the value of the energy, the one
of Galileo being equal to 0. The figure is taken from [2].

intersect transversally, but this time they can con-
nect also with hyperbolic invariant manifolds stem-
ming from tori at different energy levels (see Fig. 1
- right).

• Assuming that the inclination of the Moon is small
(iM ≈ 5.15◦ ≈ 0.08 rad with respect to the ecliptic
plane), the stable and unstable invariant manifolds of
the cylinder can be studied perturbatively, by means
of the so-called Poincaré-Melnikov Theory [13]). It
describes how homoclinic orbits to the cylinder may
be heteroclinic between different tori.

More details are given in the following section.

3. MAIN EQUATIONS AND INVARIANT OB-
JECTS

Let us consider Delaunay variables, namely,

L =
√
µa, l = M,

G = L
√

1− e2, g = ω,

H = G cos i, h = Ω.

(1)

and let α = a/aM , where a is the semi-major axis of
Galileo and aM the one of the Moon. Thus, the Hamilto-
nian of the system can be written as

H(L,G,H, g, h,ΩM ; iM ) = HK(L) + H̃0(L,G,H) +

α3H̃1(L,G,H, g, h,ΩM ; iM ), (2)

where the first term is the Keplerian contribution, the
second one is the perturbation due to the Earth’s oblate-
ness and the last one is the doubly-averaged quadrupo-
lar third-body perturbation. Since H does not depend on
l, the semi-major axis does not change. Moreover, we
can notice that the oblateness effect is responsible only
of the variation in (g, h), i.e., (ω,Ω), as it depends only
on (G,H). On the other hand, the third-body effect can
change all the orbital elements (except L and thus a), and
it is the sum of different periodic terms that depend on
(h, g,ΩM ). We do not show here the whole expansion



Figure 3. Examples of hyperbolic invariant manifold
associated with circular orbits on the Poincaré section
h = 0. The colorbar reports the maximum eccentricity
growth. The units used are non-dimensional. The vari-
ables are Poincaré variables to avoid issues due to the
fact that we are considering e = 0. The figure is taken
from [1].

that can be found for instance in [7]. If iM = 0, it can
be proven that the Hamiltonian does not depend on ΩM ,
and thus it is autonomous.

As a first approximation we assume that, for
the dynamics of Galileo, the dominant term in
H̃1(L,G,H, g, h,ΩM ; iM ) is the one depending on
2ω + Ω since, as mentioned before, 2ω̇ + Ω̇ ≈ 0 at the
Galileo constellation and thus the corresponding cos
term is almost constant. Moreover, H̃1 can be split in
the sum of an autonomous and non-autonomous part,
namely,

H̃1 = H̃CP,1(iM = 0) + R̃(iM ̸= 0). (3)

Notice that both terms depend on all periodic terms, not
only on 2ω +Ω.

In the neighborhood of the resonance, we can distinguish
two timescales corresponding to the third-body perturba-
tion: a slow one, corresponding to the resonant angle,
and a fast one corresponding to h. The equilibrium point
mentioned in the previous section corresponds to the case
when the autonomous part of the third-body perturbation
is averaged over the fast variable h, (that is the Hamil-
tonian HK + H̃0 plus the part in H̃CP,1(iM = 0) that
depends only on 2ω + Ω, see Eq. (2.20) in [2]). Under
this approximation, we have an equilibrium point

ė = 0, 2ω̇ + Ω̇ = 0

for each value of the integral of motion Γ = H − G/2,
that is, we can choose as action e or i, as the other one
will be determined by Γ.

If, instead, we consider the full coplanar contribution1,
1The detailed analysis on the difference between the invariant ob-

jects of the h−averaged coplanar approximation and the full coplanar
approximation is given in [2].
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Figure 4. An example of where the splitting angle is com-
puted for the homoclinic connections. The units used are
non-dimensional. The variables are Poincaré variables
to avoid issues due to the fact that we are close to e = 0.
The figure is taken from [1].

then the hyperbolic equilibrium points become hyper-
bolic periodic orbits in Poincaré variables (ξ, η,Γ, h),
where (ξ, η) are function of (a,

√
1− e2, (2ω + Ω)/2).

A given periodic orbit can be visualized as a function of
(Γ, h) or (i, h), as shown in Fig. 2 for e = 0. Note that the
equilibrium points and the corresponding periodic orbits
are hyperbolic for a small set of Γ [2].

We then compute numerically the homoclinic connection
associated with the given periodic orbit at a given en-
ergy level2, considering a well-defined Poincaré section
at h = 0 or h = π, and verify, again numerically, that the
connection between the stable and the unstable manifold
is transversal, i.e., the splitting angle is not 0. In Fig. 3,
we show the behavior of the hyperbolic manifolds for dif-
ferent energy levels on the h = 0 Poincaré section and
in Poincaré coordinates, showing also the maximum ec-
centricity that can be achieved (colorbar). Notice that to
achieve reentry for Galileo, the eccentricity should reach
the value 0.78, that is, we should get to an energy equal
to about 1.3×10−6 in the non-dimensional units consid-
ered, that corresponds to an inclination equal to about 58◦
for a circular orbit (see Fig. 2). In other words, if Galileo
were at this inclination, in principle the Arnold diffusion
mechanism would not be required, because along the cor-
responding hyperbolic manifolds the eccentricity grows
naturally up to such value. In Fig. 4, we show an exam-
ple of where the splitting angle is computed.

Having this, the Poincaré-Melnikov Theory gives infor-
mation of how the invariant manifolds of different (close-
by) hyperbolic tori intersect transversally in the non-
autonomous case. This is encoded in the so-called Mel-
nikov function, which is the first order of the jumps in
energy that the heteroclinic orbits may undergo. Roughly
speaking, by means of Poincaré-Melnikov Theory we ob-
tain a transition chain, that is a sequence of hyperbolic
tori connected by transverse heteroclinic orbits. Such
structure acts as a “highway” for the drifting orbits. Fi-
nally, a shadowing argument provides orbits that follow
closely this transition chain leading to the needed drift in

2As energy level, we mean the value of the Hamiltonian.



eccentricity.

4. DISCUSSION AND OPEN POINTS

The findings presented require some comments.

Under the assumptions considered, the time required to
obtain a high enough eccentricity growth would be long,
but considering a realistic value for the inclination of the
Moon this time can be reduced considerably. Notice that
the realistic case means to compute numerically all the
invariant objects in the non-autonomous 5-dimensional
case.

Another point worth to remark is the role of the secondary
resonance 2h − ΩM , that can influence the energy drift
when the two resonances coincide. Under the hypothe-
ses considered in this work, its role is weak and thus it
does not break the normally hyperbolic invariant cylin-
der structure. In the future, this aspect can be re-analyzed
without the perturbative approach.

There are two important additional points. In [6], we
found that the maximum eccentricity growth in a given
time interval (200 years) depends on the initial values of
both (Ω, ω) and ΩM . On the basis of the results in [1, 2],
the first dependence corresponds to how close the initial
condition is with respect to the hyperbolic periodic orbit
stemming from the hyperbolic equilibrium point in the
h−averaged system. If it is chosen not as close, but rather
on an elliptical invariant tori that stems from an invariant
libration curve in the neighborhood of an elliptic equilib-
rium point in the h−averaged system, then the eccentric-
ity growth can be very low, null in the limit (see Fig. 4 in
[2]). The dependence on ΩM is instead associated with
the jumps in energy that we can achieve by Arnold diffu-
sion. These jumps are function of the frequency of ΩM

3

(recall the Melnikov function mentioned before and see
Lemma 6.11 in [1]).
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