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ABSTRACT

The space sector is rapidly growing due to advances
in technology and more affordable space access, which
has increased the risk of in-orbit collisions. This high-
lights the need for effective space debris management.
Recently, sustainability in space has gained attention,
with efforts focused on creating a sustainable orbital en-
vironment through efficient space activity management.
This work presents a framework that combines environ-
mental models and a control system to allocate miti-
gation resources for sustainability. Using a statistical
one-dimensional model, the system simulates space envi-
ronment evolution, considering factors like atmospheric
drag, collisions, launches, and active debris removal. A
state-dependent differential Riccati approach is applied
for feedback control, handling non-linear dynamics. The
novelty lies in automatically identifying actions needed to
meet space debris targets. Results from this ERC-funded
GREEN SPECIES project provide insights into optimal
strategies for minimising risks and the effort required for
mitigation.

Keywords: space debris; feedback control; sustainable
space; mitigation strategy..

1. INTRODUCTION

After less than a century of activity the space sector has
dramatically grown and launch numbers have been pro-
pelled by phenomena such as technology miniaturisation
and a more affordable access to space. The consequence
of this exponential growth in the population of orbital ob-
jects, without adequate management, is to increase the
future risk of in-orbit collisions for current and future
space activities. Recently, there has been growing atten-
tion to sustainability in space. The scientific community
has been investigating ways in which a sustainable sce-
nario for the orbital population could be obtained through
efficient management of space activities (e.g. [1], [2]).
This translates into understanding how different launch
traffic cases, and combined mitigation and remediation
measures, such as Post-Mission Disposal (PMD) activi-

ties and Active Debris Removals (ADR), affect the future
space debris population. In parallel, past work aimed at
discussing what could be a sustainable scenario and what
metric could be used to quantify it (e.g. number and dis-
tribution of objects and debris, probability of collision
and risk for satellites, and capacity indices [3]). Discus-
sions around sustainability are ongoing, with the urgency
of implementing mitigation measures shaping the future
of space utilisation. The development of tools capable of
analysing various mitigation approaches across different
future scenarios or definitions of sustainable space would
be invaluable. Such tools could simultaneously advance
discussions on both defining sustainable space targets and
determining the most effective strategies to achieve them.
Previous research has primarily focused on investigating
different strategies to reach a target scenario, often rely-
ing on trial-and-error approaches to approach that target
[4]. In contrast, some studies have explored the formula-
tion of automatic strategies, typically targeting a specific
scenario and shaping control actions around it [5]. In [5]
work, the control logic was explicitly dependent on the
number of objects, aiming to reduce it.
The objective of this paper is to establish a unified frame-
work that addresses both of these problems. This frame-
work takes as input a definition of sustainable future and
the methods to achieve it. Then it provides insight into
how the environment can be influenced to reach the tar-
get scenario, the most efficient ways to do so, and the
robustness of the target definition considering available
methods. This approach also accounts for constraints and
limitations associated with the implementation of mitiga-
tion measures and the relative impact of the use of dif-
ferent spatial regions. This paper presents an initial step
towards defining this general framework. The proposed
approach integrates the definition of sustainability met-
rics and figures of merit to evaluate the effectiveness of
debris mitigation measures, while also defining a strategy
to achieve the desired outcome based on these metrics.
To do this, we apply an active controller that optimises
a value function of an evolutionary model of space ac-
tivities and debris growth. The model uses a statistical
propagation of objects in space, considering environmen-
tal effects and space activities-related effects such as in-
orbit collisions and launches, along with mitigation ac-
tions like PMD and ADR. These mitigation actions are
managed by a state-dependent differential Riccati con-
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troller, which efficiently achieves the desired future sce-
nario based on an input value function. This function
translates the environmental metrics into a performance
function that is minimised via optimal control.
The work is part of the GREEN SPECIES project, funded
by the European Research Council through a consolida-
tor grant. The control and model in this study are closely
integrated, meaning that the control action is informed by
the dynamics of the model. This approach enables high
control performance, as the expected behaviour of the
model is known during a simulation, provided the prob-
lem is well-defined. In contrast, a ”black-box” model
would require extensive tuning through trial and error to
customise the control capabilities and parameters on each
simulation, which might lack clear physical interpreta-
tion, while the control in our study has clearer physical
meaning, facilitating easier analysis.
Fig. 1 shows the general framework of the method. In
principle it is independent of the model used as long as
the required inputs can be given in the adequate shape.
The environmental model and space activities are trans-
lated in state-space fashion, as will be better described
in Section 2, while the environmental metric or tar-
get scenario definitions are given as input to the con-
troller as a quadratic performance function. Any non-
linear model and value functions can be inputted to the
controlled framework through factorisation in time- and
state-dependent form.
The complexity lies in defining a complex system in ma-
trix form and the challenges posed by the curse of dimen-
sionality, which could complicate computations for large
matrices on limited computational resources. However,
the benefits of a non-informed control approach, such
as its broad applicability to complex models, are well-
established and will be explored in future work. For ex-
ample, [6] developed a non-linear model-predictive con-
trol for their shell-based environmental model.
The paper is structured as follows: Section 2 provides a
description of each component of the framework in Fig.
1, including the environmental model developed for the
control application, the derived state-dependent Riccati
equations, and the presentation of the quadratic value
function. in Section 3 an application of the framework
in Fig. 1 is provided, along with validation of its benefits.
Finally, conclusions are in Section 4.

2. METHODOLOGY

To take advantage of the framework’s in Fig. 1 efficiency
we apply control logic to a simplified environmental
model. It is a one-dimensional, shell-based model
that uses a statistical approach to propagate objects in
space. The model considered in this paper is based
on the one from a previous work of the authors in
[7], and its key features are summarised below. The
objects in Earth’s orbit are treated as a continuous flow,
moving in one-dimensional space under the influence of
environmental effects, sources, and sinks. Propagation is
performed by enforcing the conservation of the number
of objects and fragments over time using the system of

continuity equations for each of the Ns shells of the
domain in Eq. 1. The objects’ density (n) in space
evolves over time, driven by atmospheric drag (relevant
for the low-Earth orbit region) and in-orbit collisions.
Atmospheric drag effect exploits King-Hele averaged
formulation [8] and it’s effect on the shell volume (V ) of
the continuity equation is included through the surface
integral

∫
Sshell

(vrn)objdS, where S is the boundary
surface of the shell and vr the radial velocity associated
to the central radius r in that shell. Two object families
are considered, each characterised by average physical
properties. The first family consists of intact objects (obj
in Eq. 1), including payloads, rocket bodies, and large
debris with a cross-sectional area greater than 1 m2. The
second family accounts for smaller fragments (frag in
Eq. 1). This distinction allows separate consideration of
catastrophic collisions among intact objects, described as
the product of collision rate η̇ and number of generated
fragments Nc or removed objects, and non-catastrophic
collisions (generating Nnc fragments) between small
fragments and intact objects, as assumed by the model
in Eq. 1. It is important to note that the intact object
family does not account for the active status of satellites.
All items are assumed to passively de-orbit under the
influence of drag during the simulation. This is a strong
assumption made to simplify the model and reduce
the number of species. While both families of objects
are influenced by environmental dynamics and in-orbit
breakups, space activities only affect the evolution of
intact objects. The model considers a historical repetition
of launch traffic from the five years preceding the initial
simulation epoch that is modelled as a fixed yearly
density deposition rate NiL

1year in Eq. 1. PMD actions
relocate satellites at the end of their operational life,
based on launch traffic, to below the re-entry limit radius.
Intact objects are placed below 630 km to re-enter within
25 years. The model assumes a fixed operational lifetime
for intact objects, and at each time step, a percentage β of
objects at the end of life in each shell (which in terms of

removal density rate is
∫
VtL

ṅ
iL

(tL)

1year ) is removed through
PMD and placed in the first shell below the re-entry limit,
following the approach in [7]. Another method to reduce
the number of objects in orbit is through ADR. In the
model, a fixed number of removals per year is considered

(
N

iADR

1year ), with a percentage α of these satellites being
removed from a shell and considering complete re-entry
through active de-orbiting.



Figure 1. Framework of the method presented in the paper. On one side, an environmental model to propagate the density
of objects under the effect of space activities is formulated in state-space fashion; on the other side a target function is
defined to identify a desirable future scenario and it is formulated as a quadratic value function. The two interface with an
active feedback controller for the automatic allocation of mitigation measures to efficiently reach the target environment.
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dnobji

dt = 1
V

[
−
∫
Sshell

(vrn)objdS

+
N

iL

1year − β
∫
VtL

ṅ
iL

(tL)

1year

−α
N

iADR

1year − 2η̇iobj−obj

]
... for i = 1, ..., Ns

dnfragi

dt = 1
V

[
−
∫
Sshell

(vrn)fragdS

−η̇obj−frag + η̇obj−fragNnc

+η̇iobj−obj
Nc

]
... for i = 1, ..., Ns

(1)

By using a simplified model, we can apply a dynamics-
informed control approach that exploits the expected en-
vironmental behaviour. The state-dependent differential
Riccati control, in its most general form, has been ap-
plied here. This optimal control technique uses well-
established linear control methods to define an optimal
strategy that minimises a performance function. The for-
mulation in [7] has been extended to generalise the con-
trol application for any non-linear, non-affine model and
performance function. As illustrated in Fig. 1, the model
interfaces with the controller by being written in matrix
form, following a state-space representation, as shown in
Eqs. 2 and 3, where the state x is the objects’ and frag-
ments’ density in each shell, as in the system in Eq. 1

x =

[
xobj

xfrag

]
. F is the state-matrix mapping the natural

dynamics of the state due to drag and in-orbit collisions
in Eq. 1; the control matrix G maps the control action
u, which is the application considered in Section 3 rep-
resents the percentage of PMDs and ADRs, in terms of
density rate and the C vector accounts for disturbances to
the model, e.g. launches in Eq. 1. The output parameter
y in Eq. 3 represents any generic metric of the environ-
ment taken as performance parameter which is described
as linear function of the state through the state-dependent

target matrix L.

ẋ = F(t,x)x+G(t,x,u)u+C(t,x) (2)
y = L(t,x)x (3)

In general, any non-linear system can be written in a lin-
ear form through factorisation. This allows not only the
collision dynamics to be state-dependent but also any ma-
trix related to the sources and sinks, and control mappings
to depend on the control action, making the system non-
affine. The environmental dynamics, including drag and
in-orbit collisions, and launches as disturbances in vector
form C in Eq. 2 are defined as in [7]. The percentages
of removed objects through PMD and ADR (β and α in
Eq. 1) are used as control inputs, with the correspond-
ing G matrices in E. 2 written accordingly. Additionally,
the dependencies in Eq. 2 allow to account for state- or
control-dependent constraints and limitations in the con-
trol action through the G matrix. An example of G ma-
trix will be provided in Section 3. The other input in Fig.
1 is the definition of the target scenario and the metrics
used to define it, which are translated in matrix form of
Eq. 3. As mentioned in Section 1, various metrics are
discussed to evaluate the environmental impact of human
activities in space, which help define a target scenario.
To apply the state-dependent Riccati control method, this
target must be expressed as a quadratic performance func-
tion, as shown in Eq. 4.

J =
1

2
eTSf (t,x)e+

1

2

∫ tf

t0

(
eTA(t,x)e+ uTB(t,x)u

)
dt

(4)

The terms in this value function account for the time-
integrated error e in the output y with respect to a ref-
erence value r weighted on matrix A, and the integrated
control effort u weighted on matrix B, with an addi-
tional penalty at the final output value weighted on ma-
trix Sf . This penalty increases with the controller’s ef-
fort to achieve the reference scenario, serving as a soft
constraint. This function has been extended to account
for state dependencies other than time. As a result, y can



be any non-linear metric, which is factorised in quadratic
matrix form. The weight matrices A and B also serve
as a valuable tool for translating external constraints into
penalties in the cost function. These matrices allow the
model to prioritise achieving goals in certain regions of
space or address the complexity of control implementa-
tion.
These two inputs, the state-space model and the perfor-
mance function, are connected through the control logic,
forming a general framework that enables the investiga-
tion of various implementation strategies for achieving
a given target. This framework considers the available
control actions and their limitations in real-world appli-
cations. The control logic is derived using standard op-
timal control techniques, following the optimality condi-
tions outlined in Eq. 5, as detailed in the literature (e.g.
[9], [10], [11]). In Eq. 5 H is the Hamiltonian defined as
H = 1

2 (y−r)TA(y−r)+uTBu+λT (Fx+Gu+C)
and λ is the co-state vector.

∂H

∂u
= 0

∂H

∂x
= −λ̇

∂H

∂λ
= ẋ

(5)

In a regulation case, where the controller aims to bring
the performance parameter to a target value within a fi-
nite time, the control logic is derived by writing the per-
formance function in Eq. 4 in terms of error in the state
with respect to the desired final value of the same from
the reference r previously defined. Applying the assump-
tion that the co-state λ takes the form λ = Se+D, where
S is a positive definite matrix of gains to drive the error
e to zero, while the additional D vector accounts for dis-
turbance rejection of the C term in Eq. 2 accounting for
launches, the expressions in Eqs. 6 and 8 for the S matrix
and the D vector are obtained, after some mathematical
operations. Similar to [7], a numerical back-propagation
approach is used to obtain the control matrices over time
by solving the equations backwards with the final con-
straints in Eqs. 7 and 9. The final solutions are then ob-
tained by forward-propagating the system and applying
the control in Eq. 10.

Ṡ =− SF+ SGB−1GTS−A− FTS

−
(
∂F

∂e
e

)T

S− 1

2

(
∂A

∂e
e

)T

+
1

2

(
∂B

∂e
u

)T

B−1GTS−
(
∂G

∂e
u

)T

S

−
(
∂C

∂e

)T

S

(6)

S(tf ) = Sf (7)

Ḋ =SGB−1GTD− FTD− SC

− SFxr −
(
∂F

∂e
x

)T

D

+
1

2

(
∂B

∂e
u

)T

B−1GTD−
(
∂G

∂e
u

)T

D

−
(
∂C

∂e

)T

D

(8)

D(tf ) = 0 (9)

u = −B−1GT (Se+D) (10)

This process is discretised to retain information on the
control at previous time steps, with a 1-day time step,
which is small enough to approximate continuous be-
haviour while reducing computational costs. Information
on the state at future times in the back-propagation pro-
cess is provided by solving a simple state-dependent Ric-
cati problem. In this simplified solution, all derivative
terms are omitted, and the control solution is obtained by
solving algebraic equations (see [7]). It is important to
note that the matrix factorisation used in Eqs. 2, 3 and 4,
which allows any model and cost function to be written in
linearised terms, is not unique. The choice of factorisa-
tion influences the performance of the controller. Meth-
ods for optimally selecting the factorisation are discussed
in the literature [12] and may be explored in future de-
velopments of this work. The method described here is
versatile and adaptable to any non-linear and non-affine
system that can be factorised. Various metrics and target
scenarios can be fed into the control logic for the auto-
matic definition of optimal control allocations to achieve
the desired target. Different dynamics and models can be
inputted to the controller, as long as they can be expressed
in matrix form.

3. APPLICATION

An application of the framework outlined in Fig. 1 and
described in Section 2 is presented here. To highlight the
versatility of the method, a non-linear performance met-
ric is considered, with control applied to the state-space
model in Eqs. 2, 3 to define the optimal allocation of
active removals and disposals, subject to constraints and
preferences on both the strategy and performance. A ref-
erence population is used to define the initial density dis-
tribution to be propagated with Eq. 1. The population in
[13] is used here, with the reference epoch set to 2022.
The launch traffic term in Eq. 1 accounts for the repeti-
tion of launches that occurred during the 5 years prior to
the reference epoch (see [7] and Fig. 2). The controller
adjusts the percentage β of disposed objects via post-
mission re-orbiting at the end of their operational life in
each shell above 630 km, and the percentage α of ac-
tively removed objects above this threshold. The 630 km
altitude is set as the limit for the control action, meaning
that objects below this threshold are considered dispos-
able within an acceptable time. The number of removals
per year is fixed at 5 ADRs per year. Both controlled



Figure 2. 5 years cycle of number of launched objects per
each 50 km wide shell of the domain repeated during the
simulations.

percentages are saturated at 99% for PMD and 100% for
ADRs. The performance metric selected is the collision
rate η̇ in each shell of the environment. This is computed
as shown in Eqs. 11 and 12, with separate contributions
considered for collisions between intact objects and be-
tween fragments and intact objects (the cross-sectional
area of the objects, σobj , is assumed much larger than the
fragments’ one).

η̇iobj−obj
=

1

2
σobjvrinobji(nobjiVi − 1) (11)

η̇iobj−frag
= σobjvrinobjinfragiVi (12)

The initial values for the collision terms are shown in Fig.
3, along with the desired final profile. The target is to
halve the collision rate in all shells where it exceeds a
threshold of 1 × 10−10 #/s. Since the collision rate is
non-linear with respect to the state, it is factorised as in
Eq. 13.

η̇obj−obj

...
η̇obj−frag

...

 =


Lobji,i 0 0 . . .

0
. . .

0 LfragNs+i,Ns+i

...
. . .



nobj

...
nfrag

...


(13)

where:

Lobji,i =
1

2
σobjvri(nobjiVi − 1) + σobjvrinfragiVi

Lfragj,j = σobjvrinobjiVi

The ability to introduce limitations and constraints into
the control action implementation is also exploited by
modifying the G matrix in Eq. 2 to the form in Eq. 14.
In particular, ADRs are applied to those shells where
the collision rate exceeds the acceptable threshold η̇thr
of 1 × 10−10 #/s (see Eqs. 16 and 17). The 5 removals
per year are distributed to the shells with the highest

collision rates, based on the collision rate share of each
shell in Eqs. 16 and 18. The remaining matrices in Eqs.
15 (where j defines the number of controlled shells) and
16 map the percentage of disposed and removed objects
in each shell as described in Section 2 and [7].

G =

[
Gobj

Gfrag

]
=

[
GPMD GADR

0 0

]
(14)

GPMD =

0 . . .
...

. . .
NPMD1

V1

NPMD2

V2
. . .

NPMDNs−j

VNs−j

−NPMD1

V1
0 . . .

...
. . .


(15)

GADR = GthrGη


0 . . .

0
. . .

−NADR

V1
0 . . .

0
. . .

 (16)

Gthr =


1
2

(
1 +

η̇obj1
−η̇thr

|η̇obj1
−η̇thr|

)
0 . . .

0
. . .

...

 (17)

Gη =


η̇obj1

+η̇frag1

ΣNs
i (η̇obji

+η̇fragi
)

0 . . .

0
. . .

...

 (18)

Additionally, Eqs. 19-24 show an example of how con-
straints and non-homogeneous costs are translated into
weighting terms in the performance function. The state
weighting matrix A in Eq. 19 incorporates the maximum
desirable error in the state during the simulation time
tf as ∆nobj/frag, which differs for intact objects and
fragments to reflect their differing magnitudes. Errors
are then weighted according to the local collision rates
in each shell η̇obj + η̇frag , with more weight assigned
where the collision rate is already high, which is trans-
lated with the matrix in Eq. 23. The control weighting
matrix B considers the maximum acceptable control
action during the simulation ∆u, with control actions
weighted by shell radius as in Eq. 24, so that removing
objects at higher altitudes is considered more costly.
Finally, the weights for ADR control are influenced by
the local collision rates of Eq. 23, accounting for the
more complex control implementation needed in regions
where the collision risk is higher. This also results in
greater weight being placed on ADRs rather than PMDs,
privileging the latter in the mitigation strategy.



(a) Initial and targeted collision rate contribution from catastrophic
object-object impacts.

(b) Initial and targeted collision rate contribution from non-
catastrophic object-fragments impacts.

Figure 3. Initial collision rate (black line) and targeted profile (red line) with halved rate values when above 1×10−10 #/s
at initial time.

A =


1

∆n2
obj1

tf
0 . . .

0
. . .

1
∆n2

fragNs+1
tf

. . .

Wη (19)

(20)

B = W∆

[
1

Wη

]
Wh (21)

W∆ =



1
∆u2

PMD1
tf

0 . . .

0
. . .

... 1
∆u2

ADR1
tf

. . .

 (22)

Wη =


1

1−
η̇obj1

+η̇frag1

Σ
Ns
i

(η̇obji
+η̇fragi

)

0 . . .

0
. . .

 (23)

Wh =

 1
1− r

Σ
Ns
i

r

0 . . .

0
. . .

 (24)

The regulation problem is simulated over 20 years. The
yearly evolution of the number of intact objects and frag-
ments is shown in Figs. 4, 5 and Fig. 6. The number of
objects in Fig. 4a gradually decreases in most shells, ex-
cept between 1000 km and 1400 km and above the peak
at 1475 km. When compared with the collision rate dis-
tribution in Fig. 3, this behaviour is consistent with con-
trol action being applied only where the collision rate ex-
ceeds 1 × 10−10 #/s. The reduction in the number of
fragments of Fig. 4b is more challenging above 630 km,
due to the already large presence of fragments in that re-
gion, which contributes to collisions with intact objects

and generate new fragments. Moreover, the reduction in
intact objects is smaller above 800 km. This can be at-
tributed to the launch traffic in Fig. 2, where very few
objects are launched above 1200 km during the simula-
tion. The few launched objects during the operational pe-
riod decay to lower altitudes, making PMD more active
there. Consequently, at the higher altitude peaks, ADRs
are expected to compensate for the lack of disposed ob-
jects. However, since the number of ADRs is limited to 5
per year, they are distributed to the shells with the highest
collision rates. With all these factors, the overall number
of intact objects in Fig. 6a decreases, exhibiting an os-
cillatory behaviour caused by PMD disposals following
the 5-year launch traffic cycle. While the number of frag-
ments in Fig. 6b is initially reduced, it eventually begins
to increase again as collisions accumulate, and the control
actions are no longer effective enough to maintain the re-
duction.
As seen in Figs. 7 and 8 showing the yearly evolution of
automatically selected disposals and removals, the num-
ber of PMDs exceeds the number of ADRs. The avail-
ability of objects for disposal is higher than the fixed
number of removals. Additionally, as shown in Eq. 23,
PMDs are preferred over ADRs. It must be noted that
the results in Fig. 7b display ADRs from the continuous
model of Section 2, where removals can be expressed as
percentages of objects. The total number of PMDs ex-
ceeds that of ADRs, with an ADR rate of approximately
4 #/y.
Finally, the control performance is shown in Figs. 9-11
which provide the evolution of the collision rate across all
shells of the domain, in terms of spatial and temporal dis-
tribution of the collision rate contributions in Eqs. 11 and
12 along with the overall cumulative rate in time. Fig. 12
shows the performance function in Eq. 4 over time. The
collision rate is forced by the controller to decrease over
the simulation period, exhibiting in Fig. 11 an oscilla-
tory behaviour that reflects the trade-off between reduc-
ing state error and minimising control effort. However,
as the simulation progresses the overall performance in-



(a) Yearly evolution of the number of intact objects distribution in the
shells of the domain.

(b) Yearly evolution of the number of fragments distribution in the
shells of the domain.

Figure 4. Number of intact objects (a) and fragments (b) distributions per-year simulated.

(a) Initial and final intact objects distribution in the shells of the do-
main.

(b) Initial and final fragments distribution in the shells of the domain.

Figure 5. Number of intact objects (a) and fragments (b) initial and final profiles.

(a) Yearly evolution of the total number of intact objects over the en-
tire domain.

(b) Yearly evolution of the total number of fragments over the entire
domain.

Figure 6. Yearly evolution of the total number of intact objects (a) and fragments (b) in the domain.



(a) Yearly evolution of the number of post-mission disposals per-
formed in each shell of the domain resulting from the control action.

(b) Yearly evolution of the number of active debris-removals per-
formed in each shell of the domain resulting from the control action.

Figure 7. Yearly evolution of the number PMDs (a) and ADRs (b) in each shell of the domain in the controlled simulation.

(a) Yearly evolution of the total number of post-mission disposals per-
formed in all the shells of the domain resulting from the control action.

(b) Yearly evolution of the total number of active debris-removals
performed in all the shells of the domain resulting from the control
action.

Figure 8. Yearly evolution of the total number PMDs (a) and ADRs (b) performed in all the shell of the domain in the
controlled simulation.

dex of Fig. 4 is reduced, proving the correct action of the
feedback controller.
The application described here illustrates the controller’s

ability to move closer to the target, utilising the avail-
able control capabilities, while incorporating constraints
and preferences in their implementation. This enables the
system to approach the desired target scenario in an effi-
cient and automated manner.
To validate this, the results are compared with a 20 years
simulation where the maximum control effort is applied
without automatically defining its allocation, and without
constraints or preferences such as those provided through
the control mapping matrix G and weight matrices A and
B. The model used is the same as described in Section
2. PMDs are performed at their maximum rate, with 99%

of the objects available for disposal being re-orbited to a
lower shell at each time step. ADRs utilise all 5 available
removals per year, but since ADRs have an additional de-
gree of freedom than PMDs (in terms of where to perform
the removals), a priori criteria for their implementation in
space are needed. Since the goal is to halve the collision
rate, as shown in Fig. 3, the 5 removals are placed at the
locations with the highest collision rates: 775 km, 975
km, 625 km, 525 km, and 1475 km, with one removal
performed in each shell each year. This case is labelled
as ’Limit case’ in the following results and the controlled
case previously presented is labelled as ’Targeted case’.
The initial and final distributions of the number of ob-
jects per shell, and the cumulative evolution over time for
both intact objects and fragments in the Limit case, are



(a) Yearly evolution of the collision rate in Eq. 11 in each shell of the
domain during the controlled simulation.

(b) Yearly evolution of the collision rate in Eq. 12 in each shell of the
domain during the controlled simulation.

Figure 9. Yearly evolution of the collision rate contributions in each shell of the domain during the controlled simulation.

(a) Comparison between initial, targeted and final collision rates in
Eq. 11 in each shell of the domain.

(b) Comparison between initial, targeted and final collision rates in
Eq. 12 in each shell of the domain.

Figure 10. Comparison between initial, targeted and final collision rates contributions in each shell of the domain
resulting from the controlled simulation.

Figure 11. Yearly collision rate evolution computed as
the sum of the contributions from Eqs. 11 and 12 over the
entire domain during the controlled simulation.

provided in Figs. 13 and 14 and compared with the Tar-
geted case previously described. It can be observed that
the distributions and numbers of objects and fragments in
the two cases are very similar. As expected, maximum
mitigation actions results in more removed objects in the
Limit case, with few less intact objects left in the envi-
ronment at the end of the simulation and minimum effect
on the number of fragments. In particular, the ADR re-
movals that have been placed at the peaks locations previ-
ously defined cause an overall final distribution of intact
objects in the Limit case that is lower than the number
of intact objects in the same shells in the Targeted case.
However, Fig. 15 shows that more PMDs and ADRs
are implemented in the Limit case over the 20 years to
get similar distributions in the number of objects of the
Targeted simulation. Figs. 16 and 17 provide the effect
of this larger control action on the collision rate evolu-
tion and performance function. The collision rate in Fig.



(a) Yearly evolution of the value function in Eq. 4 during the con-
trolled simulation.

(b) Yearly evolution of the cumulative value function in Eq. 4 during
the controlled simulation.

Figure 12. Performance metric evolution throughout the controlled simulation.

(a) Initial and final intact objects distribution in the shells of the do-
main for the Limit case, which are compared to the final intact objects
profile of the Targeted case (red line).

(b) Initial and final fragments distribution in the shells of the domain
for the Limit case, which are compared to the final fragments profile of
the Targeted case (red line).

Figure 13. Number of intact objects (a) and fragments (b) initial (blue) and final (green) profiles of the Limit case
compared with the final profiles (red) of the Targeted case.

(a) Yearly evolution of the total number of intact objects over the en-
tire domain for the Limit case (black), which is compared to the same
evolution for the Targeted case (red).

(b) Yearly evolution of the total number of fragments over the entire
domain for the Limit case (black), which is compared to the same
evolution for the Targeted case (red).

Figure 14. Yearly evolution of the total number of intact objects (a) and fragments (b) comparison between Limit (black)
and Targeted (red) cases.



16 for the Limit case simulation closely mirrors that of
the Targeted case simulation, but the latter is capable of
achieving better results in terms of collision rate reduc-
tion. Moreover, the cost of achieving this result, in terms
of the performance function, is much higher in the Limit
case, as shown in Fig. 17.
The results in Figs. 13-17 demonstrate that defined some
control actions and their associated constraints and limi-
tations, which can be translated into control information,
the framework in Fig. 1 is capable of applying them effi-
ciently to reach a target.

4. CONCLUSIONS

The discussion on sustainability in space continues, while
the urgency to implement mitigation measures is shaping
the future of space utilisation. The development and def-
inition of tools that can provide and analyse various mit-
igation approaches to address any future scenario or any
definition of desirable sustainable space would be highly
beneficial. This work presents a general framework that
connects environmental models of space activities and
debris growth with a controller that efficiently allocates
mitigation resources to reach a specific target. The pro-
posed approach offers a way to incorporate different defi-
nitions of metrics and figures of merit to evaluate the sus-
tainability of space activities and the efficiency of debris
mitigation measures. It directly links these evaluations
with the definition of an appropriate strategy to achieve
the desired behaviour of these metrics.
A statistical one-dimensional model is used to analyse the
expected future evolution of the space environment un-
der various modelled effects, including atmospheric drag,
in-orbit collisions, launches, post-mission disposals, and
active debris removals. The state-dependent differential
Riccati approach is applied to control the model in feed-
back, extending it to its most general form that can be
used on non-linear and non-affine models. This tool can
be used with any model that can be factorised in lin-
ear matrix form, and any evaluation metric for the sus-
tainability of space activities that can be expressed as a
quadratic performance function can be analysed. Addi-
tionally, since many factors affect the implementation of
mitigation measures, beyond merely targeting a specific
scenario, limitations on control applications and the rel-
ative importance of different parts of the control strategy
can be incorporated as weights in the performance func-
tion.
These extensions of the method open up a variety of sce-
narios to be explored. An application has been presented
to demonstrate how constraints and preferences in mit-
igation actions can be translated into information for a
controlled-system framework. The results confirm the
controller’s ability to efficiently allocate resources with
limited cost in terms of the value function, bringing the
system as close as possible to the target scenario.
Future work will focus on further applications of the de-
veloped model and on enhancing the model’s realism for
example by incorporating explosion modelling and sub-
dividing objects into more species.
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