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ABSTRACT

This paper presents a system-level simulation tool de-
signed to assess the performance of optical Space-Based
Space Surveillance (SBSS) missions in detecting and
characterizing new object orbits in Low Earth Orbit
(LEO). The tool integrates comprehensive models for
space population distribution, observer orbit and instru-
ment characteristics (including signal and noise mod-
els), and detection methodologies. Through sensitivity
analyses, we demonstrate how various parameters influ-
ence mission performance and highlight that mission op-
timization depends on whether the focus is on detect-
ing small, ground-elusive objects, maximizing detection
counts, or enhancing orbit determination accuracy. Our
findings indicate that the full potential of optical instru-
ments is currently underutilized due to constrained on-
board computational resources or down-link capacities.

Keywords: SBSS; Optical Detection; Signal Model;
Noise Model; SNR.

1. INTRODUCTION

The increasing population of satellites in Low Earth Or-
bit (LEO) necessitates advanced detection and tracking
systems to minimize collision avoidance maneuvers. Op-
tical tracking, being a passive method, is particularly ef-
fective for monitoring debris. Additionally, the need for
enhanced detectability and increased measurement re-
fresh rates makes embedded optical measurements in-
creasingly attractive.

However, designing such an embedded system involves a
multitude of parameters, making it challenging for simple
order-of-magnitude models. Therefore, it is beneficial to
develop simulation tools to ensure proper system dimen-
sioning and validate mission concepts.

This paper presents a system-level simulation tool that
quantifies the benefits of an optical Space-Based Space
Surveillance (SBSS) mission. We describe the various
models, assumptions, and techniques used in this simula-

tor. Finally, we present sensitivity results to demonstrate
the impact of certain parameters on mission performance.

Note that the emphasis was placed on the system’s abil-
ity to passively detect and characterize new object orbits,
rather than tracking and improving specific known target
orbits, which can be seen as a specific case of the former.

2. SPACE POPULATION

The first step for our simulator is to have a representative
space object population. Most space agencies maintain
a catalog of observable objects, with a typical minimum
size of 10 cm. However, to evaluate the capability of a
mission to detect smaller objects, it is necessary to have a
statistically representative population of smaller objects.

One approach to achieve this goal is to simulate the evo-
lution of a population by incorporating collision and frag-
mentation models, along with atmospheric re-entry mod-
els. After a few years of evolution, a population of
smaller objects starts to appear, and its distribution is
likely to be representative of the actual distribution of
smaller objects [1][2].

We accessed one of these simulated populations gener-
ated by the European Space Agency (ESA) and used
in Inter-Agency Space Debris Coordination Committee
(IADC) studies, providing a distribution of objects down
to 1 cm.

Fig. 1 illustrates that the debris density is proportional to
D−2.6, where D represents the debris equivalent diame-
ter. This empirical relationship holds for both observed
objects (> 10 cm) and simulated objects (< 10 cm),
reinforcing our confidence in the simulation’s ability to
statistically represent the real population distribution for
objects smaller than 10 cm. Furthermore, it underscores
the presence of a significant quantity of debris that re-
mains untracked by space agencies’ catalogs, with ap-
proximately 400 times more objects of 1 cm than objects
of 10 cm.

The analysis of this population’s distribution also teaches
us that even though circular polar orbits are more rep-
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Figure 1. Debris density function (from ESA population)
with respect to their diameter.

resented, they do not constitute the majority of debris.
Additionally, the debris are homogeneously distributed in
latitude, leading to a greater density around the poles1.

Thereafter, a Kepler model is used to propagate the popu-
lation (reasonable considering the short time scale, a few
days, of the propagation).

3. OBSERVER’S CHARACTERISTICS

An optical SBSS system can contain several observers. In
the following, we will focus on a single observer, but the
concepts can be easily extended to multiple observers.

This section presents the various characteristics of our
system, specifically the space component. The observer
is characterized by its orbit, mission programming, and
optical instrument.

3.1. Orbit

The observer is assumed to follow Keplerian motion. The
software does not impose any constraints on the orbit.
However, considering the highest object density is en-
countered at the poles, we opted for a circular and polar
orbit in our usage of the software.

3.2. Mission programming

A key aspect of the system is determining when and
where the observer should take images. Constraints
may arise from on-board processing capacities, glare,
telemetry/telecommand (TM/TC) slots, etc. Although

1The available volume for a given latitude angle is smaller at the
poles than at the equator, while the density per latitude is constant.

our software can accommodate any attitude and image
sequences, we chose to restrict our usage to a fixed at-
titude in the local orbital frame of the observer and an
image sequence regularly distributed over time.

Note that images can be considered mono or multi-frame
depending on the detection method used. This will be
discussed in Sec. 5.1.

3.3. Optical instrument

This section defines the vocabulary and components of
the optical instrument used in our software.

3.3.1. Optical objective

The optical objective is the optical component of the in-
strument. It focuses light onto a focal plane and can be
characterized by the following values:

• The optics diameter Φ. This is directly linked to the
quantity of photons the optical instrument can cap-
ture. The optics surface Soptics can be expressed
under a circular assumption as: Soptics =

π

4
Φ2.

• The focal length f . Combined with the lens diame-

ter, this value defines the f-number fn =
f

Φ
, repre-

senting the optics aperture.

• The Point Spread Function (PSF). This function rep-
resents the optical response of a point source. In this
article, a Gaussian PSF is considered:

PSF (x, y) =
1

2πσ2
PSF

exp

(
−x

2 + y2

2σ2
PSF

)
(1)

where σPSF is the PSF width (see Appendix A.1 for
notations). Note that x, y and σPSF are expressed
in pixel.

3.3.2. Image Sensor

The image sensor converts light into a numerical signal
and is positioned on the optical instrument’s focal plane.
It is characterized by the following values:

• The pixel size p (also called the pitch). The pixel
shape is considered to be square in this article.

• The number of pixels in a line (or column) nlp.

• The quantum efficiency ρquantic. This measures the
sensor’s efficiency in converting photons into elec-
trons. A 50% efficiency means that 2 photons are
necessary to generate 1 electron.



From these defined values, a few derived characteristics
are interesting to note:

• The sensor size D = nlpp.

• The field of view2 fov = 2 arctan

(
D

2f

)
.

• The pixel field of view αp =
p

f
.

The optical sensor wavelength sensitivity domain Λ is de-
fined as follows:

Λ = [λ0 −∆λ/2, λ0 +∆λ/2] (2)

where λ0 is the central wavelength, and ∆λ is the band-
width. The bandwidth is assumed to be sufficiently nar-
row to consider that all spectral functions are constant
over that range. For example, the silicon sensors consid-
ered in our simulation only work in the visible domain
([400, 800] nm).

4. IMAGING MODELS

In this section, the measured quantities will be expressed
in terms of electrons, as this is the physical quantity clos-
est to the actual measurement.

An image is composed of both useful and parasitic sig-
nals. The useful signal refers to the electrons generated
by the target’s photons, while parasitic electrons are gen-
erated by various other sources.

To detect a target with a certain level of confidence, we
need the Signal-to-Noise Ratio (SNR) to be sufficiently
high. In this section, we will present the different signals
considered in our simulator and develop an expression to
compute the SNR (depending on the detection method).

Throughout this section, we will denote ti as the integra-
tion time of an individual image. All expressions will be
relative to a single pixel.

4.1. Parasitic signal models

4.1.1. Readout noise

Readout noise is generated by the sensor electronics dur-
ing the readout process. It is often provided by the sensor
manufacturer as a standard deviation, expressed in terms
of the number of electrons σread.

2The field of view is considered circular in this paper, even though
sensors are usually square, because the sensor’s corners are typically
discarded by image processing due to higher vignetting.

In this article, a pragmatic model, proportional to the
pitch, was chosen to scale the noise to different detectors:

σread(p) =
p

pref
σread(pref ) (3)

4.1.2. Dark signal

The dark signal refers to the flux of electrons generated in
the absence of light. We model this quantity to be propor-
tional to the pixel surface area and the integration time:

Sdark = sdarkp
2ti (4)

where sdark is the dark signal flux, which depends,
among other things, on the sensor’s temperature.

The electron dark signal can be modeled as a Poisson dis-
tribution. Thus, the standard deviation of this signal can
be expressed as:

σdark =
√
Sdark (5)

4.1.3. Stray light

Stray light is diffuse light coming from the environment,
such as the Milky Way, atmospheric radiation, sunlight
reflection in the baffle, etc.

In this article, we assume that the stray light is isotropic3,
making it suitable to express it as a flux per solid angle.
It is usually expressed as a magnitude per solid angle.

Let mstray be the magnitude (with respect to Vega) of
the stray light flux per solid angle. The photon flux per
solid angle can be expressed, using the Vega photon flux
calculated in Appendix B, as follows:

φstray = φV ega 10
−
mstray

2.5 (6)

Typical magnitudes, expressed per arcsecond squared, in
space are around 21, while on the ground they are be-
tween 17 and 19. This is one of the reasons space-based
optical measurements look attractive, as the stray light is
much less present in space (by a factor of 1/15).

Finally, the number of electrons generated by the stray
light can be expressed as:

Sstray = ρquanticφstraySopticsα
2
pti (7)

where ρquantic is the quantum efficiency, Soptics is the
surface area of the optical instrument, α2

p is the pixel solid
angle (all defined in Sec. 3.3.2), and ti is the integration
time.

3This is a significant simplification, as the Milky Way and the atmo-
sphere are not isotropic. This hypothesis is to keep in mind, especially
when the camera has the atmosphere in its field of view.



The electron stray signal can also be modeled as a Pois-
son distribution. Thus, the standard deviation of this sig-
nal can be expressed as:

σstray =
√
Sstray (8)

4.1.4. Non-uniformities

Each pixel of the sensor has its own response ”bias” that
can be considered constant over the timescale of several
images. These biases include Fixed Pattern Noise (FPN),
Dark Signal Non-Uniformities (DSNU), spikes, etc.

These defects can be either calibrated or evaluated and
corrected within the detection processing in the case of
multi-frame image acquisition. For this reason, we will
neglect these effects in the performance evaluation soft-
ware.

4.1.5. Stars

The number of stars present in the optical field of view,
whose signal is higher than the faintest detected object,
increases exponentially with the sensitivity of the system.
If not well addressed, these stars may become the major
limitation of the detection capability.

If the observer maintains an inertial attitude during the
observation, the stars will appear motionless in the im-
ages and will have the same signature as the non-
uniformities. It will be possible to remove them with
good efficiency using relatively simple techniques in the
case of multi-frame images. However, if the pointing is
not inertial, the stars will be spread across the image,
forming streaks, and the problem will be more difficult
to address.

Fourier transform techniques may be useful to remove
both static defects in the sensor and inertial frames, but
these techniques are not standard. It is also possible to
use a star catalog to mask the pixels affected by predicted
stars, although performing this correction for high mag-
nitudes can be challenging.

Even though star pollution is not a trivial problem, it
is a deterministic source of pollution. As with non-
uniformities, we will consider in this study that this
source of perturbation is perfectly corrected and has no
major impact on the detection capability.

4.1.6. Complete noise model

From the previous sections, we can derive an expression
for the total noise for each pixel of an image, considering
that all the noise sources are independent:

σ =
√
σ2
read + σ2

dark + σ2
stray (9)

It can be convenient to highlight noise behavior with re-
spect to the integration time. We can achieve this for the
previous equation as follows:

σ =
√
η + ζti (10)

where η represents the dominant noise contribution for
low integration times (readout noise) and ζ represents the
dominant noise contribution for high integration times
(dark noise and stray light).

4.2. Useful signal model

4.2.1. Target signal

The signal received from the target is the result of sun-
light reflection on the target. Typically, the reflection can
be separated into diffuse and specular components [3] [4].

We consider here a simple spherical reflection model.

The diffuse component follows a Lambertian diffusion
model. The proportion of reflected light reaching the ob-
server, denoted as γ, can be expressed as:

γ =
2

3π
a0(λ)

d2
0

4

R2

(
sin θ + (π − θ) cos θ

)
(11)

where a0(λ) is the target reflectance at the given wave-
length, d0 is the target equivalent diameter, R is the dis-
tance between the target and the observer, and θ is the
phase angle between the observer and the Sun, with re-
spect to the target. The proportion of reflected light de-
creases with increasing phase angles.

Regarding the specular component, a spherical model is
less likely to be representative of reality. Indeed, for any
configuration, a perfect sphere always has a surface ele-
ment that will produce a specular reflection towards the
observer. However, for more complex geometries, a spec-
ular reflection only occurs at very specific orientations.
For this reason, we neglect the specular contribution in
our model.

Finally, the target signal can be expressed in terms of the
number of electrons using the following equation:

Starget = ρquanticγφSunSopticsti = ψtargetti (12)

where ρquantic is the quantum efficiency, Soptics is the
surface area of the optics, ti is the integration time (all
defined in Sec. 3.3.2), γ is the proportion of reflected
sun’s photon flux received by the observer, φSun is the
sun’s photon flux, and ψtarget is the target photon flux.

However, this signal will be spread over several pixels, as
explained in the next section.



4.2.2. Dynamic PSF

Because of the relative movement between the target and
observer during the integration time, the target’s image
on the optical sensor is not simply given by the ”static”
PSF introduced in Sec. 3.3.1.

To describe the target’s image, we first need to define the
motion of the target in the optical sensor frame. Let’s call
v⃗ the velocity vector of the target4 in that frame and u⃗ the
unit direction vector between the observer and the target.

The target motion d⃗ on the sensor focal plane, in pixels,
is given by:

d⃗ =
v⃗⊥u⃗ti
Rαp

= ω⃗ti (13)

where v⃗⊥u⃗ is the orthogonal component of v⃗ with respect
to u⃗,R is the distance between the target and the observer,
ti is the integration time, αp is the angular size of a pixel,
and ω is the pixel velocity.

We can now introduce the concept of dynamic PSF,
which is the target’s image during the integration time
(see [5] for an equivalent introduction to this concept). It
is the convolution (see Appendix A.3) of the ”static” PSF,
denoted here as PSFstatic, with the motion of the target
during the integration time:

PSFdyn = PSFstatic ∗
1

d
Πd⃗ (14)

where Πd⃗ is the 1D rectangle function of width and di-
rection d⃗. An analytical expression of this equation can
be found in Appendix C, under certain assumptions.

For the remainder of this article, we will omit the ”dyn”
suffix, but PSF will always refer to the dynamic PSF. Also
note that all PSFs will be considered as unitary, meaning
||PSF ||1 = 1 (see Appendix A.2 for norm definition).

For LEO observations, the relative angular velocity may
be high, leading to a significant number of pixels being
affected by the target motion. This results in the source
signal being highly spread, forming long linear streaks
on the image. Consequently, the useful signal is highly
diluted in the noise, increasing the difficulty of its detec-
tion, as we will see.

5. PROCESSING

Once images are produced on board, they need to be pro-
cessed. This process can be divided into two main steps:

1. Image processing to detect and extract observation
directions.

4Note that v⃗ is the composition of the relative inertial velocity with
respect to the observer, composed with the observer rotation rate.

2. Orbit determination to convert direction data into or-
bits.

The first step involves significant data compression. After
extracting observation directions, the original images can
be discarded, reducing the data from millions of pixels to
a few directional components. Performing this process-
ing on-board significantly reduces the constraints on the
link budget and may even allow for an increased number
of images, although it requires higher on-board computa-
tional capacity.

In contrast, the second step offers little benefit from be-
ing performed on board. The compression level is much
lower, and the availability of extensive population cat-
alogs on the ground aids in associating detections with
known objects.

5.1. Detection methods

The primary goal of a detection process is to identify a
useful signal amidst noise in a single or multi-frame im-
age.

The general methodology involves applying a transfor-
mation (linear or non-linear) to the raw image. This trans-
formation produces a new single-frame image on which
the detection process is performed. A detection occurs
when a pixel’s signal exceeds the noise by a predefined
factor. For instance, in our simulation, we consider a de-
tection when the SNR is above 5, indicating high confi-
dence in the detection.

This section presents several detection methods and eval-
uates their theoretical SNR to quantify their efficiency.

To evaluate the SNR of each method, consider the de-
tection of a unique object in a single-frame image, rep-
resented by the matrix Y . The intensity of the object’s
signal is denoted by the scalar s (see Equ. 12) and is
spread around the pixel (i0, j0) by its dynamic PSF (see
Equ. 14), represented5 by the matrix F . Note that the
PSF function is unitary, so ||F ||1 = 1. Additionally, let
the image noise be represented by the matrix ϵ, where
each component is an independent random variable with
a standard deviation σ (see Equ. 9). The image can be
represented as:

Y = Fs+ ϵ (15)

5.1.1. Obvious detection

This method is applied to single-frame images and does
not involve any transformation phase. The detection is
performed directly on the raw image.

5The matrix F represents the PSF centered on the pixel (i0, j0), but
it is omitted in the notation for readability.



Each pixel is evaluated independently, and the pixel with
the maximum object signal is chosen to compute the
SNR. This results in the following expression:

SNR =
max(F )s

σ
=
||PSF ||∞s

σ
(16)

This method can lead to a significant loss of signal. The
more the input signal is spread across different pixels, the
less signal is utilized by the obvious detection method.

Appendix C.1 provides a simplified expression for
||PSF ||∞. From this, we can deduce the asymptotic be-
havior of the SNR with respect to the integration time ti:

lim
ti→0

SNR ∝ ti and, lim
ti→∞

SNR ∝ 1√
ti

(17)

This method therefore has an optimal integration time
that depends on the target’s angular velocity6.

5.1.2. Mono-frame image PSF convolution

An intuitive solution to improve the previous method is to
consider a transformation that gathers all the signal of the
object onto a single pixel. This operation is commonly
used in image processing and is known as the convolution
product.

Mathematically, this method can be introduced by con-
sidering the best linear estimator of the signal s. This can
be found by solving the following least squares problem:

min
s
||Y − Fs||2 (18)

The solution to this problem is:

ŝ =

∑
ij

FijYij∑
ij

F 2
ij

(19)

This solution is optimal for measuring the source signal
at pixel (i0, j0). However, in the detection framework,
we do not know which pixel is concerned. The idea is to
apply this transformation to every pixel, which is exactly
a convolution operation with a kernel matrix represent-
ing the dynamic PSF. This technique is sometimes called
”match filter” in the literature, see [6] for another demon-
stration.

The new image, on which the final detection phase is per-
formed, can be defined as:

Yc =
PSF ⋆ Y

||PSF ||22
(20)

6This optimum is the solution of a third-order polynomial, however
it is quite intuitive that the order of magnitude of this optimum is the
time required for the static PSF to pass over a pixel. Beyond this time,
no more signal is dropped on the pixel while the noise still increases
with time.

where PSF is the kernel matrix representing the dy-
namic PSF, and ⋆ is the cross-correlation product (defined
in Appendix A.3) instead of the convolution product, to
apply correctly the PSF kernel. Note that this distinction
is only necessary when the PSF is not symmetrical.

On average, pixels with a source signal will result in their
own signal while their neighbor pixels will only have a
portion of the signal. Other pixels will result in zero sig-
nal.

The least squares formalism also provides the variance of
the signal estimator:

var(ŝ) =
σ2

||PSF ||22
(21)

We can now represent the SNR with the following equa-
tion:

SNR =
s||PSF ||2

σ
(22)

Appendix C.2 provides a simplified expression for
||PSF ||2. From this, we can deduce the asymptotic be-
havior of the SNR with respect to the integration time ti:

lim
ti→0

SNR ∝ ti and, lim
ti→∞

SNR ∝ z (23)

For this method, the SNR increases with ti until reaching
an asymptotic value. From Equ. 12, 55, 13 and 10, we
have:

z =
ψtarget√

2
√
πσPSF

√
ωζ

(24)

Now that this method is presented, some remarks are nec-
essary:

• The primary challenge of this technique is that the
target’s motion d⃗ is required for processing the im-
age but remains unknown. However, a viable so-
lution is to execute the process for sampled motion
values (dx, dy) within a specified range [−dm, dm]2

and focus on the samples triggering a detection can-
didate.

• We have ||PSF ||2 ≥ ||PSF ||∞, thus this method
is mathematically superior to the obvious method.

5.1.3. Multi-frame shifted-summation image and
convolution

With the previous method, if we double the integration
time, so does the noise. However, if we split the inte-
gration time into two image-frames, and then sum the
frames’ signals, the noise will only increase by a factor
of the square root of two due to the uncorrelation of the
noise between successive frames. It thus may be more
interesting to acquire n frames of integration time ti than
one frame of integration time nti.



Suppose the target’s movement d⃗ from frame k to k + 1
is known and considered to be linear and constant over k.
The idea would be to shift and superimpose the frames so
that the target’s image matches perfectly on each frame.

The best linear process is then to apply the convolution
method from the previous section to the summed-shifted
image Ys:

Ys =
∑
k

Yk ∗ δ−(k−1)d⃗ (25)

where Yk are all the image frames, and δ−(k−1)d⃗ is a dis-

placement convolution kernel of direction (k − 1)d⃗.

The SNR can then be expressed as:

SNR =
s||PSF ||2

√
n

σ
(26)

The SNR now also grows with the square root of the num-
ber of image frames.

When Ti = nti is fixed, it turns out that there is an op-
timal ti to maximize the SNR. This optimal ti tells us
how many frames should be used for the image. It can be
expressed as:

topti = 3

√
tradt2geo (27)

where

trad =
η

ζ
(see Equ. 10) represents the integration

time for which time-dependent noises equal time-
independent noises.

tgeo =
2
√
πσPSF

ω
(see Equ. 13 and 53) represents the

integration time for which the streak length d (see
Equ. 13) equals the inverse of the static PSF.

Once more, the target’s motion d⃗ is required for process-
ing the image but remains unknown. The same brute
force approach as for the previous method can be pro-
posed. Clearly, it demands significant computational
power, which may exceed on-board capabilities. Never-
theless, it is entirely feasible with ground-based compu-
tational resources, thereby shifting the issue to down-link
capacities.

5.1.4. Other methods

A variety of other methods exist (see [5][6] for refer-
ences). We highlight two detection methods found in the
literature here.

Radon transform To reduce computational demands,
it is possible to perform summations not for all displace-
ments (dx, dy), but only along segments that completely
traverse a single image (referred to below as ”full cross-
ing segments”), see [6]. The trade-offs include:

• A loss in SNR, which can be quantified, to a first-
order approximation, as the square root of the ratio
of the full crossing segment’s length to the actual
object streak’s length.

• The applicability to single-frame images only. How-
ever, single-frame images can first be computed
from multi-frame images using non-linear methods
such as max or max-med techniques (see below).

Non-linear methods Non-linear methods often involve
algorithms or filters that use non-linear operators such as
thresholds, max, min, median, and other non-linear con-
ditions to filter or select pixels or regions of potential
interest in images. The primary advantage of these al-
gorithms is their computational efficiency, making them
well-suited for on-board implementation or for compress-
ing images to download for ground-based analysis.

An example is the ”max” or ”max minus median” opera-
tor, which compresses a series of multi-frame images into
a single-frame resulting image. The result image is com-
posed, for each pixel (i, j), of the max or max-median
signal of pixel (i, j) in each frame. This operation re-
moves the non-uniformity (NU) of the pixel (i, j) through
median subtraction and captures the object’s signal when
it crosses the pixel (i, j), with noise equivalent to that of a
single image. The resulting image can then be processed
to detect streaks.

The main drawback of such methods is a loss of effi-
ciency for low signal levels relative to the noise. Indeed,
we can easily understand that when the signal is close to
or below the noise level, the max pixel is less likely to
correspond to the frame’s pixel containing the signal. We
can highlight this reasoning with a simulation. Let’s com-
pute the signal expected value of a 5-frame image’s pixel
for the max or max-median methods. Fig. 2 shows the
output signal for each method when one of the 5 pixels
is lit by an input signal (normalized with respect to the
noise)7. We can see that the output signal is non-linear
with respect to the input8, especially when the input sig-
nal is close to or below the noise, which is where we want
the methods to be as efficient as possible.

5.2. Orbit determination accuracy

If no prior information about the object is available, it is
first necessary to perform an Initial Orbit Determination
(IOD). For direction measurements, several algorithms
exist (Laplace, Gauss, Gibbs, etc.). However, they all
require at least three successive observations [7, §7.3][8].

7For example, if a pixel receives a 2-SNR signal, on average, the
output signal will only be 1-SNR for the max method. Indeed, in many
cases, the max pixel is different from the pixel containing the signal,
resulting in a 0-SNR.

8One can show that the slope, in zero, of these functions is 1/n for
the max method, where n is the number of frames and zero for the max-
median method.



Figure 2. Max and Max-median method efficiency for 5
frames.

Once the IOD provides a rough orbit estimate based on
simplified hypotheses, a more refined Orbit Determina-
tion (OD) can be performed using more sophisticated
models. The OD is often carried out with a least squares
filter, which provides an estimate of the solution error [9,
§4 and §6].

In our software, we use this error estimation to perform
what is often called a ”covariance analysis” to assess the
efficiency of a SBSS system in detecting and characteriz-
ing new objects.

The first challenge is to associate three successive obser-
vations to a single object. This can be achieved through
an estimation of the object’s velocity in the focal plane.
This velocity estimation can be obtained, for example,
from the streak length and orientation on a single-frame
image or as a direct output of the summation method
(Sec. 5.1.3). Using this velocity, an extrapolation be-
tween successive observations can be performed to de-
termine if they correspond to the same object. Although
this step may lead to incorrect associations, we consid-
ered it sufficiently reliable in our simulations to ignore
these particular cases.

The second challenge is that IOD methods are not per-
fectly reliable and may struggle to converge. This as-
pect was neglected in our simulations, where we focused
solely on the covariance analysis.

Finally, the third challenge is to model the precision of
the direction extracted from the detection method. This
input is necessary to assess the precision of the OD orbit.
To detect the position of the target, a centroiding method
is used. It consists of applying a weighted barycenter on
the pixels affected by the signal.

Classical centroiding The most simple centroiding
method consists in using the pixels’ amplitude as weights.
Let’s model the intensity of a pixel with the following

equation:
vij = sij + ϵij (28)

where vij is the total intensity, sij is the signal intensity
and ϵij is the noise intensity of the pixel (i, j). The noise
is considered independent between pixels, with a stan-
dard deviation σ. The position (px, py) of the target is
then calculated as:

px =

∑
i∈Jx

∑
j∈Jy

ivij∑
(i,j)∈(Jx⊗Jy)

vij
(29)

py =

∑
i∈Jx

∑
j∈Jy

jvij∑
(i,j)∈(Jx⊗Jy)

vij
(30)

where Jx = [−Nx/2, Nx/2] and Jy = [−Ny/2, Ny/2]
represent the domains, in x and y directions, around the
streak’s central pixel. The variance of the position can be
expressed as:

var(px) =
σ2

s2
NyNx(Nx − 1)(Nx + 1)

12
(31)

var(py) =
σ2

s2
NxNy(Ny − 1)(Ny + 1)

12
(32)

where s =
∑

ij sij ∼
∑

ij yij , and can be expressed
with respect to the SNR using the SNR expression of
the chosen method.

Let’s assume the velocity is along the x-axis, and we con-
sider a margin of 3 static PSF on each side of the streak,
we have Nx = d + 6σPSF (where d is defined in Equ.
13), and Ny = 6σPSF . Using Equ. 22, with asymptotic
Equ. 55, we can deduce the following uncertainties:

σpx
∼ (d+ 6σPSF )

3/2

2 SNR(πd2 + 4π2σPSF )1/4
(33)

σpy
∼ 3

√
3σPSF√
πSNR

(34)

Optimal centroiding The previous method is not opti-
mal since it does not take into consideration the a priori
distribution of the signal on the sensor. A better weight-
ing is possible by solving the following least square prob-
lem:

min
p⃗
||Y − (F ∗ δp⃗−p⃗0

)s||2 (35)

where Y is the image, s is the signal centered on the pixel
p⃗0, F is the PSF matrix centered on p⃗0 and (F ∗ δp⃗−p⃗0

)
is the PSF matrix centered on p⃗.

In the linear domain, the solution can be expressed as:

δp̂x =

∑
ij

(F ′
x)ij [Yij − Fijs]

s
∑
ij

(F ′
x)

2
ij

(36)

δp̂y =

∑
ij

(F ′
y)ij [Yij − Fijs]

s
∑
ij

(F ′
y)

2
ij

(37)



where F ′
x =

∂F

∂x
and F ′

y =
∂F

∂y

The variance of the solution is expressed as:

var(δp̂x) =
σ2

s2||PSF ′
x||22

(38)

var(δp̂y) =
σ2

s2||PSF ′
y||22

(39)

It is interesting to note that now, the weighting depends
on the derivative of the PSF, meaning the pixels that have
the most weight are the ones where the signal varies the
most. Conversely, pixels where the signal does not vary
significantly are less weighted, introducing significantly
less noise to the centroiding solution.

It can be shown that the standard deviation along the x-
axis grows with the square root of the streak’s length for
this method, whereas it grows linearly for the classical
method.

6. SIMULATION SOFTWARE DESCRIPTION

Our simulation software was developed using PATRIUS,
a CNES space dynamics library [10].

The software is separated into two distinct parts:

1. Simulate all possible detections for a given scenario.
See Algorithm 1 for a pseudo-code description.

2. Analyze the simulated detections to apply a covari-
ance analysis. The first goal is to identify the achiev-
able orbit accuracy for one observation of at least
3 successive measurements. The second goal is to
identify if the determined orbits are sufficiently ac-
curate to recognize the detected object the next time
it is detected.

Table 1 provides the physical values used in the simula-
tion tool.

7. RESULTS

The primary goal of this article is to present our simu-
lation software, its models, and detection techniques, as
discussed in the previous sections.

This section presents a selection of relevant results and
sensitivity analyses. Note that this cannot be exhaustive,
as mentioned in the introduction, due to the numerous
parameters and possible output representations involved
in a complete sensitivity analysis.

All parameters used in the sensitivity analysis are detailed
in Sec. 3. Various output representations can be of inter-
est:

Algorithm 1: Simulator’s pseudo-code
Input: dates = the observation dates
Input: population = the space population
Input: fov = the observer’s field of view
Input: threshold = the SNR detection threshold

Output: The detection events with computed SNR

1 for date ∈ dates do
2 for target ∈ population do
3 if target ∈ fov then
4 snr← computeSNR(target) ;
5 if snr > threshold then
6 save(date, target, snr);
7 end
8 end
9 end

10 end

Name Value Reference
fn 1.4 Sec. 3.3.1

ρquantic 0.5 Sec. 3.3.2
σPSF 0.8 pixel Equ. 1

λ 0.6 µm Equ. 2
∆λ 0.4 µm Equ. 2

σread(3.5 µm) 2.5 e− Equ. 3
sdark 0.8 e−/s/µm2 Equ. 4

mstray 19 arcsec−2 Equ. 6
a0 0.1 Equ. 11

ϕSun(0.55 µm) 1850W/m2/µm Equ. 43
TSun 5777 K Equ. 43

ϕV ega(0.55 µm) 35.5 nW/m2/µm Equ. 43
TV ega 9600 K Equ. 43

Table 1. Simulation numerical values

• Per image:

– The number of detections (including repeti-
tions of the same objects) with respect to dif-
ferent characteristics: size (Fig. 3), distance
(Fig. 5), orbital position (Fig. 4), or detection
methods.

– The distribution of detected targets’ direction
or angular velocity (Fig. 6).

• Per day (or any other relevant duration):

– The number of different detected objects.
– The number of n successive detections (e.g., 3

or more to ensure IOD convergence) (Fig. 10).
– The proportion of detected objects relative to

those that passed within the observer’s field of
view.

7.1. Results with fixed input parameters

In this section, we present some of the listed outputs us-
ing a fixed set of parameters.



We use a sun-synchronous orbit at an altitude of 600 km,
with a beta angle9 of approximately 70 degrees. The cam-
era is tilted by 5 degrees below the observer’s velocity
vector. An image is taken every 30 seconds. The integra-
tion time is 0.5 s, with 10 frames10 for the multi-frame
detection method. The camera has an 85 mm diameter
optical instrument and a detector of 10.5 mm with 3000
linear pixels (5◦ field of view). The simulation is per-
formed for 1 day.

Our study focuses on objects smaller than 1 meter to em-
phasize the challenges in observing such objects.

Detection method efficiency This paragraph high-
lights the differences in efficiency among the detection
methods.

Figure 3. Comparison of different detection methods with
respect to object’s size.

Fig. 3 shows the cumulative number of detections with
respect to the object’s diameter for each method. Key
observations include:

• On average, few objects are detected per image.

• The summation method is, on average, an order of
magnitude more effective than the others.

• The max-med method’s inefficiency compared to
the simple detection method at low SNR is visible.

• For very small objects (less than tens of centime-
ters), only the summation method is effective.

Other noteworthy outputs Fig. 4 shows a higher
density of detections just before the poles (coordinates
±90◦), consistent with the higher density of objects at
the poles (see Sec. 2) and the camera’s forward-looking.

9The angle between the orbital plane and the Sun.
10Each frame has an integration time of 0.05 s to compare methods

with the same integration time.

Figure 4. Comparison of different detection methods with
respect to argument of latitude.

Figure 5. Comparison of different detection methods with
respect to object’s distance.

Fig. 5 shows an optimal distance for detections. Closer
objects have higher signal flux but also higher angular
motion (thus signal is diluted in noise). Furthermore,
fewer objects are within the field of view11. Therefore,
closer objects may be more difficult to detect, and their
position accuracy may be degraded due to the increased
length of their streaks.

Fig. 6 shows the different velocities to be tested in the
shifted-summation brute force method.

11The signal flux varies quadratically with distance (see Equ. 11), the
angular motion varies linearly with distance (see Equ. 13), and the num-
ber of objects in the field of view at a given distance varies quadratically
with distance.



Figure 6. Velocity map of detections.

7.2. Sensitivity to input parameters

The design and optimization phase of an SBSS mis-
sion require sensitivity analysis. Our simulation software
meets this need.

The following sections present a couple of sensitivity
analyses, performed using the summation method, and
with the same hypotheses as the previous section except
for specific parameters for each section.

7.2.1. Orbit sensitivity

This section varies the altitude and the camera’s pitch an-
gle in Fig. 7 and the beta angle in Fig. 8.

Figure 7. Sensitivity of the number of detections to alti-
tude (km) and camera pitch angle (degrees).

Fig. 7 shows that the number of detections is maximized
when the pitch is negative (the camera looks below the
velocity direction). Beware that the atmosphere stray
light is not considered here and might slightly change

the conclusion for wide fields of view. The altitude’s im-
pact depends on the object’s size. It increases for small
objects (< 20 cm) while decreasing for larger objects
(> 20 cm).

Figure 8. Sensitivity of the number of detections to the
beta angle.

Fig. 8 shows that the optimal beta angle depends on
the object category. For small objects, smaller beta an-
gles are more advantageous to maximize the SNR during
half of the orbit (to have a small sun phase angle, see
Equ. 11), even though the other half of the orbit is unex-
ploitable due to the unfavorable phase angle. For larger
objects, a favorable phase angle throughout the entire or-
bit is preferable.

7.2.2. Optical sensitivity

The choice of the optical instrument significantly impacts
mission efficiency.

This section compares the camera defined in Sec. 7.1,
referred to as ”large camera” with a smaller camera with
a 34 mm diameter (12.5◦ field of view) and a 1000 linear
pixel detector, referred to as ”small camera”.

Fig. 9 shows that the larger camera provides much higher
detectability, except for the largest objects (> 50 cm).
For these bright objects, the camera’s sensitivity is less
critical, and wide field of view is more efficient.

Fig. 10 shows that very few triple successive detections
occur12. As a consequence, many detections are not us-
able for IOD and are only relevant when ground catalog
association is possible. To increase the number of triple
detections, two levers are possible: reduce the time be-
tween images but this will also reduce the geometric dis-
tribution of measurements (leading to an ill-conditioned
problem), or increase the instrument’s field of view, but
this will reduce its sensitivity. The former is represented

12This observation is consistent across all detection methods, one had
to be chosen for the plot.



Figure 9. Sensitivity of the number of detections for 2
different instruments, for different object sizes.

Figure 10. Number of detections (per consecutive occur-
rences) for the summation method, for images taken every
30 seconds, for instrument 1.

in Fig. 11. Instrument 1 generated 337 triple (or more)
detections while instrument 2 generated 579.

7.3. Covariance analysis

In this section, the classical centroiding method (see Sec.
5.2) was used for simplicity. Note that using the optimal
centroiding method, also presented in Sec. 5.2, can im-
prove accuracy by a factor of 2 to 4, depending on the
length of the streak.

In this section, we define a detection set as a set of suc-
cessive observations of the same object. An object can be
associated with several detection sets.

Figure 12 shows the orbit accuracy resulting from unique
detection sets. The orbit accuracy is quite variable, rang-

Figure 11. Number of detections (per consecutive occur-
rences) for the summation method, for images taken every
30 seconds, for instrument 2.

Figure 12. Orbit determination standard deviation in the
local orbital frame (Q is along the radial vector, W is
along the orbit momentum, and S completes the trihe-
dron).

ing from a few kilometers to hundreds of kilometers.

Figure 13 shows the pixel uncertainty of an already char-
acterized object at the date of a new detection set. It pro-
vides an indication of how difficult it might be to recog-
nize the detected object from a previous characterization.
The accuracy is quite variable and can go up to a thousand
pixels. The association with previously characterized or-
bits is thus not always guaranteed.

8. CONCLUSION

This paper introduces a simulation tool designed to assess
the effectiveness of optical space surveillance missions
in identifying and tracking new objects in LEO. The tool



Figure 13. Pixel standard deviation for detection sets of
previously characterized objects.

integrates detailed models for space population distribu-
tion, observer orbital and instrument characteristics, and
detection methodologies, providing a robust framework
for mission analysis.

Key findings from our sensitivity analyses include:

• The summation detection method outperforms other
methods, particularly for small objects.

• Optimal detection conditions depends on the target-
ted objects size. Sensitivity and field of view are two
opposite key points in the optimization of a mission.

• The number of successive detections, crucial for
IOD, is significantly influenced by the time interval
between images and the instrument’s field of view.

• Orbit determination accuracy varies widely. In many
cases, the accuracy is not sufficient to associate a
tracked object to its next detection without other
measurement sources.

These findings highlight the importance of tailoring mis-
sion parameters to specific objectives and show that the
full capabilities of optical instruments are not fully ex-
ploited due to limitations in onboard processing and data
transmission.

Future efforts will focus on enhancing the tool and vali-
dating it with real mission data to improve overall mission
performance.

9. CONCLUSION

This paper presents a simulation tool designed to evaluate
the effectiveness of optical space surveillance missions
in identifying and tracking new objects in LEO. The tool

integrates detailed models for space population distribu-
tion, observer orbital and instrument characteristics, and
detection methodologies, providing a robust framework
for mission analysis.

Key findings from our sensitivity analyses include:

• The summation detection method outperforms other
methods, particularly for small objects.

• Optimal detection conditions depend on the targeted
object size. Sensitivity and field of view are two op-
posing key factors in mission optimization.

• The number of successive detections, crucial for ini-
tial orbit determination, is significantly influenced
by the time interval between images and the instru-
ment’s field of view.

• Orbit determination accuracy varies widely. In many
cases, the accuracy is insufficient to associate a pre-
viously tracked object with its next detection with-
out additional measurement sources.

These findings underscore the importance of tailoring
mission parameters to specific objectives and reveal that
the full capabilities of optical instruments are not fully ex-
ploited due to limitations in onboard processing and data
transmission.

Future efforts will focus on placing greater emphasis on
the in-depth exploitation of the tool’s capabilities and the
establishment of more structured results. This will in-
volve detailed analyses of various mission scenarios. Ad-
ditionally, continuous efforts will be made to enhance
the tool and validate it with real mission data to improve
overall representativity. Finally, efforts are still dedicated
to improving the onboard method’s treatments to enhance
the efficiency and profitability of the space based optical
debris detection.
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APPENDIX

A. MATHEMATICAL DEFINITIONS

This appendix aims to define the mathematical objects
used in this article.



A.1. Continuous versus discrete domain

Theoretical notions and models are easily defined in the
continuous domain (Gaussian and rectangular functions,
Fourier transform, Parseval equality, etc.), while the opti-
cal sensor, for which the mathematical objects should be
applied, is composed of pixels and therefore is defined in
the discrete domain.

In the continuous domain, the functions are defined on
R2. We call the coordinates x and y. In the discrete do-
main, the functions are defined on I2 where I = [0, nlp],
with nlp defined in Sec. 3.3.2. We call the coordinates i
and j.

The conversion of functions from continuous to discrete
is not trivial. Formally, if we have a function f defined
on R2, its discrete equivalent is defined as:

Fij = (f ∗Π)(i, j) (40)

where ∗ is the convolution product (see Sec. A.3), and Π
is the 2D rectangular function of a pixel size, centered on
zero.

In this article, we consider that the pixels are sufficiently
small to assume that the functions are constant over the
pixel area13. Thus, to transform a function from continu-
ous to discrete, we simply need to multiply the continu-
ous function by the surface area of a pixel. By choosing
pixel units, we simply have an equivalence between con-
tinuous and discrete function expressions.

The following sections are described in the continuous
domain.

A.2. Norms

Let’s denote f a function defined on R2. We define L-
norms as:

• The norm-1: ||f ||1 =
∫
xy

|f(x, y)|dxdy

• The norm-2: ||f ||2 =
√∫

xy

f2(x, y)dxdy

• The norm-∞: ||f ||∞ = maxxy(|f(x, y)|)

A.3. Convolution and cross-correlation product

The convolution product ∗ is defined as:

(f ∗g)(x, y) =
∫

(t,τ)∈R2

f(t, τ)g(x− t, y− τ)dtdτ (41)

13This assumption is quite strong and sometimes false, but for a sim-
ulation process, we consider it acceptable.

The cross-correlation product ⋆ is defined as:

(f ⋆ g)(x, y) = f(x, y) ∗ g(−y,−x) (42)

Note that both products respect Parseval’s theorem.

B. STAR PHOTON FLUX IN OPTICAL SENSOR
BANDWIDTH

The light emitted by a star can be modeled as a black
body. Planck’s law provides a relationship between the
spectral energy fluxes ϕ(λ) at different wavelengths:

ϕstar(λ) = ϕstar(λref )

(
λref
λ

)5 exp

(
hc

λrefkbTs

)
− 1

exp

(
hc

λkbTs

)
− 1

(43)
where λ is the wavelength, h is the Planck constant, c is
the speed of light, kb is the Boltzmann constant, and Ts
is the surface temperature of the star.

To convert the spectral energy flux ϕ(λ) to the energy
flux ϕ detected by the optical sensor, it is necessary to
integrate over the sensor’s sensitivity bandwidth. As ex-
plained in Sec. 3.3.2, the bandwidth is sufficiently narrow
to consider the spectral energy flux as constant over that
range. Thus, we have:

ϕstar =

∫ λ1

λ0

ϕstar(λ) dλ ≈ ϕstar(λ0)∆λ (44)

where ∆λ = λ1 − λ0 is the sensitivity bandwidth of the
optical sensor.

Finally, for our study, it is convenient to convert the en-
ergy flux ϕ into a photon flux φ. To do this, we use the
definition of the photon’s energy:

Ephoton =
hc

λ
(45)

where h is the Planck constant, c is the speed of light, and
λ is the photon’s wavelength.

The photon flux can thus be expressed as:

φ =
λϕstar
hc

(46)

C. EXPRESSION OF THE DYNAMIC PSF

Equ. 14 can be expressed analytically14 using the static
PSF Equ. 1 and supposing, for simplicity, that the target

14The proof is not exposed here. However, the formula simply de-
rives from the definition of the convolution and the error function (erf).



motion is only along the x-axis:

PSFdyn(x, y) =
1√

2πσPSF

exp

(
− y2

2σ2
PSF

)
1

2d[
erf

(
d− x√
2σPSF

)
+ erf

(
d+ x√
2σPSF

)]
(47)

where erf(x) =
2√
π

x∫
0

exp(−t2)dt.

C.1. Norm-∞

The norm-∞ can be expressed as:

||PSFdyn||∞ = PSFdyn(0, 0)

=
1√

2πσPSF d
erf

(
d√

2σPSF

)
(48)

Asymptotically in δ =
d

σPSF
, we have:

lim
δ→0
||PSFdyn||∞ =

1

2πσ2
PSF

= ||PSFstatic||∞ (49)

lim
δ→∞

||PSFdyn||∞ =
1√

2πσPSF d
=

√
||PSFstatic||∞

d
(50)

We can thus define an asymptotic formulation as:

||PSFdyn||∞ ∼
||PSFstatic||∞√

1 + d2||PSFstatic||∞
(51)

C.2. Norm-2

The norm-2 can be expressed as15:

||PSFdyn||22 =
1√
πd2

(
exp(−δ2)− 1√

π
+ δ erf(δ)

)
(52)

where δ =
d

2σPSF
. Asymptotically in δ, we have:

lim
δ→0
||PSFdyn||22 =

1

4πσ2
PSF

= ||PSFstatic||22 (53)

15The proof is not exposed here because of page limitations, even
though it is not trivial. A few steps can be quickly provided though.
Start again from Equ. 14. The Parseval norm equality allows us to
compute the norm in the Fourier domain to transform the convolution
into a simple product (the rectangle function transforms to a sinc func-
tion). Then, some manipulations on the integral are required: derive
three times to find a differential relation of the integral to its second
derivative. Perform some variable changes, by parts integrations, and
finally handle the normalization factors correctly.

lim
δ→∞

||PSFdyn||22 =
1

2
√
πσPSF d

=
||PSFstatic||2

d
(54)

We can thus define an asymptotic formulation as:

||PSFdyn||22 ∼
||PSFstatic||2√

d2 + ||PSFstatic||−2
2

(55)
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