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ABSTRACT 

To ward off a full-blown Kessler syndrome eventually 

rendering low Earth orbits unusable, active removal of 

large space debris appears imperative. Unfortunately, 

nothing currently prevents dead spacecraft or derelict 

launcher upper stages from tumbling uncontrollably. 

This makes ADR initiatives extremely daunting --and ul-

timately, costly. 

With support from CNES, Airbus has been developing a 

passive magnetic damping device dubbed the DE-

TUMBLER which ensures passive postmortem stabiliza-

tion of a host platform, a game-changer for ADR feasi-

bility and affordability. The first model (-M, which 

weighs 100 grams and is intended for medium platforms 

up to 1.5 tons) is completing qualification tests, and flight 

units should be ready for integration into their host plat-

forms by the end of 2025. 

Meanwhile, ESA is supporting the development of a 

larger model (DETUMBLER-L) targeted at bigger satel-

lites (up to 5 tons) or higher orbits (up to MEO). One goal 

of this study is to confirm our technological choice by 

pitting the detumbler concept against the whole gamut of 

alternate candidate technologies and physical phenomena 

for a detumbling function.  

Via a first-principles approach and analytical modelling, 

we provide an estimate of the mass penalty for each so-

lution to ensure detumbling within a year, for all possible 

values of satellite inertia and mission altitude. The exer-

cise confirms that the detumbler is indeed the best choice 

for a wide domain of inertias and altitudes, and especially 

in the range considered for the new DETUMBLER-L. 

1 LIST OF CANDIDATE TECHNOLOGIES 

Although removing debris via ADR will become more 

pressing as time passes, the level of urgency will not be 

the same for all spacecraft sizes and altitudes. Many der-

elict spacecraft will remain in orbit a very long time be-

fore they are disposed of. This means that a detumbling 

solution has to remain functional possibly for decades 

past the operational lifetime of its host satellite. Such 

long lifetimes are unheard-of for active systems requiring 

electrical and/or computing power. A detumbling solu-

tion will thus have to be 100% passive. 

1.1 Existing concepts 

Unfortunately, while the literature abounds in technology 

concepts for active detumbling, it is very parsimonious as 

to solutions that can provide a purely passive detumbling 

capability. After an extensive review of the state of the 

art, we identified only the following existing solutions: 

- Natural eddy currents in the satellite’s structure 

- Hysteresis rods or strips 

- Short-circuited magnetorquers 

- Magnetic detumbling device (by Airbus) 

1.2 Theoretical concepts, from first principles 

In order to make sure that we would not be missing any 

potential alternative technology in our comparison, we 

extended the search to ‘physically feasible solutions’, 

even ones of a purely theoretical nature. For this, we 

started from the premise that detumbling is more than just 

energy damping for spin or attitude stabilization: the total 

angular momentum must be reduced and therefore the ac-

tion of an external torque is needed for changing the mo-

mentum state of the satellite. In a ‘first-principles’ ap-

proach, we thus looked at the few physical phenomena 

that can be exploited for creating external torque in LEO: 

- Magnetic torque 

- Solar or thermal radiation pressure torque 

- Aerodynamic torque 

- Gravity gradient torque 

With the exception of magnetic hysteresis and eddy cur-

rents, these phenomena are not dissipative on a rigid 

body: this strongly suggests that a detumbling function 

needs mobile parts to ensure dissipation. 

We can consider the example of the Airbus detumbler as 

an illustration. A permanent magnet, if rigidly fixed to 

the satellite’s structure, creates a magnetic torque which 

tends to align the satellite with the local geomagnetic 

field like a compass needle. The attitude in which the 

magnet is aligned with the field is stable, but since the 

restoring torque is conservative, the oscillations around 

the equilibrium will be undamped unless additional dis-

sipation is introduced. In the detumbler concept, the mag-

net is therefore not rigidly fixed, but is left free about an 

axis of rotation, and it is the viscous torque resulting from 

the rotation (due to eddy currents in the device’s housing) 

that causes the dissipation. 
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For the other physical phenomena, we can imagine a sim-

ilar (and purely theoretical) design, whereby some me-

chanical element is responsible for exploiting the exter-

nal phenomenon and creating a restoring torque, while 

some sort of viscous articulation or flexibility helps to in-

troduce dissipation. This paper does not go into any tech-

nical details of how this might work in the real world. 

1.3 Consolidated list 

Adding the 3 theoretical concepts to the 4 existing ones 

leaves us with a total of 7 candidate solutions: 

1. Natural eddy currents 

2. Hysteresis rods 

3. Shorted magnetorquers 

4. Magnetic detumbler 

5. Solar windvane 

6. Aerodynamic windvane 

7. Gravity gradient pendulum 

2 ANALYTICAL MASS MODELS 

To determine a best candidate for passive detumbling, we 

establish analytical sizing formulas (simplified, scalar) 

for all candidate solutions. Note that since the equations 

are simplified, they are not to be used for precise sizing, 

but for establishing orders of magnitude for comparisons 

between solutions and identifying broad domains where 

one solution might be better than others. 

The key comparison criterion is mass, as a function of 

inertia and altitude, with the following assumptions: 

- Initial tumbling rate 𝜔𝑖 = 1 deg/s 

- final tumbling rate 𝜔𝑓 = 0.1 deg/s 

- Satellite inertia 𝐼 ∈ [500 50,000 kg.m²] 

- Orbit altitude ℎ ∈ [500 36,000 km] 

and the following requirements: 

- detumbling time 𝑇 < 1 year (if the detumbling 

torque is constant) 

- or equivalently a time-constant 𝜏 < 4 months (if 

the detumbling torque is proportional to the 

tumbling rate) 

Both requirements are equivalent to a requirement on the 

detumbling torque 𝐶: 

 
𝐶 =

𝐼𝜔0

𝑇
 

(0.1) 

and 

 
𝐶(𝜔0) =

𝐼𝜔0

𝜏
 

(0.2) 

respectively 

The dependency to altitude is simply captured by consid-

ering that the magnetic field strength decreases as the 

cube of the distance to the center of the Earth: 

 
𝐵(𝜂) =

𝐵0

(1 + 𝜂)3
 

(0.3) 

Where 𝜂 = ℎ/𝑅𝑒 is the non-dimensional altitude and 𝐵0 

is the average strength of the Earth’s magnetic field along 

the ground track (typically 𝐵0 = 45 µT for a polar orbit). 

2.1 Natural eddy currents 

When a conductive object tumbles in a magnetic field, 

the variations of the field inside the object cause eddy 

currents which naturally oppose the rotation. The kinetic 

energy is dissipated via Joule heating, similar to the op-

eration principle of magnetic brakes onboard heavy 

ground vehicles. 

Since they account for most of the effect, we focus the 

modelling effort on the structural panels of the spacecraft, 

which can each be approximated by flat plates. 

To simplify further, we consider a 1D model in which a 

flat plate of width 𝐿𝑥 (and length 𝐿𝑦 ≫ 𝐿𝑥) rotates at 𝜔 

around axis 𝑦, within a uniform field 𝐵 parallel to 𝑧. 

 

Figure 1. Geometric layout for the simplified problem 

(Since 𝐿𝑦 ≫ 𝐿𝑥, the problem become 1-dimensional) 

The Maxwell-Faraday equations simplify to: 

 𝜕𝐸𝑦

𝜕𝑥
= 𝜔𝐵 cos 𝜔𝑡 

(1.1) 

The analytical solution for the electric field is trivial: 

 𝐸(𝑥, 𝑦, 𝑡) = 𝜔𝐵𝑥 cos 𝜔𝑡 (1.2) 

We can then use Ohm’s law to get the energy dissipation 

per unit volume, and integrate along 𝑥 and 𝑦, as well as 

across the thickness, and then average over time: 

 
𝑃 =

𝐿𝑥
3 𝐿𝑦𝑒

24
𝜎𝜔2𝐵2 

(1.3) 

This can be scaled up from a single flat plate to a full 

satellite, taking into account a penalty factor 𝜅 to repre-

sent edge effects (aspect ratio 𝐿𝑦/𝐿𝑥 ~ 1) and the fact that 

𝐵 and 𝜔 have random orientations. The value of 𝜅 is de-

termined numerically to be (0.8×0.5×0.8 ~ 0.3). This 
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dissipation is then identified with the loss of kinetic en-

ergy: 

 
𝑃 = 𝐼𝜔𝜔̇ = 𝜅

𝐿2

24

𝜎𝑚

𝜌
𝜔2𝐵0

2 
(1.4) 

Where 𝑚 = 𝜌𝐿𝑥𝐿𝑦𝑒𝑁𝑝𝑎𝑛𝑒𝑙𝑠 is the mass of the panels 

contributing to the eddy current dissipation. 

Isolating the detumbling time-constant 𝜏 =  𝜔/𝜔̇: 

 
𝜏 =

24 𝜌𝐼

𝜅𝜎𝐵2𝑚 𝐿2
 

(1.5) 

Where 𝜎 is the electrical conductivity of the plate’s ma-

terial (typically aluminium) and 𝜌 its specific mass, and 

𝐿 is a typical length of the bus. 

Finally, substituting 𝐵 from (0.3), we get the mass of 

structural panels for detumbling in the required time 𝜏: 

 
𝑚 =

24 𝜌

𝜅𝜏𝜎𝐵0
2

𝐼(1 + 𝜂)6

 𝐿2
 

(1.6) 

The dependency in the sixth power of the altitude (term 

𝜂6) suggests that the solution’s performance will be seri-

ously reduced at higher altitudes. 

2.2 Hysteresis rods or strips 

Hysteresis rods are sometimes used for detumbling cu-

besats upon launcher separation. They are made of a high 

permeability magnetic material, with hysteresis proper-

ties such that the residual magnetization in the rod lags 

behind the Earth’s field, to create a resistive torque. 

The phenomena governing magnetic hysteresis are quite 

hard to predict analytically, especially in non-saturated 

regimes when the magnetic field is weak. We have based 

the analysis on a 2022 paper by Carletta et al. [6], where 

the apparent permeability of the hysteresis strip was 

measured in tests. This value remains constant when 

resizing the device, as long as the length ratios of the strip 

or rod are conserved (in the instance of the article, the 

strip was 0.35 x 9.4 x 65 mm). 

Another important aspect of hysteresis rods or strips is 

that the dissipative torque is constant rather than propor-

tional to angular rate. Indeed, the resistive torque is not 

caused by back-electromotive force / inductance but by 

hysteresis, which does not depend on the rate of change 

of the magnetic field (unless the variations are very fast). 

The peak dissipative torque is thus simply: 

 𝐶 = 𝑚ℎ × 𝐵 (2.1) 

with 𝑚ℎ being the remanent dipole moment due to hys-

teresis in the rod. 

Equation (3) in [6] establishes that: 

 
𝑚ℎ =

𝜇ℎ𝑉𝐵

𝜇0

 
(2.2) 

Therefore: 

 
𝐶 = 𝑚ℎ × 𝐵 =

𝜇ℎ𝑉𝐵2

𝜇0

 
(2.3) 

Like previously, the dependency in 𝐵2 is consistent with 

the fact that the Earth’s magnetic field intervenes twice: 

1. to elicit magnetization in the rod 

2. to interact with the magnetized rod to cause the 

resistive torque 

Imposing the required detumbling time in (0.1), and con-

sidering that the mass 𝑚 is proportional to the volume 𝑉: 

 𝑚 =
𝜌ℎ𝜔0𝜇0

𝑇𝜇ℎ𝐵0
2 𝐼(1 + 𝜂)6 (2.3) 

2.3 Short-circuited magnetorquers 

The operating principle is similar to the natural eddy cur-

rents in the structure: when the satellite tumbles, the var-

iation of the Earth’s magnetic flux in the coils of the mag-

netorquers causes current to flow and creates a magnetic 

dipole moment that opposes the rotation. 

Once again, we expect a dependency in 𝐵2 (and thus a 

high dependency on altitude), since the geomagnetic field 

is responsible for both eliciting the dipole moment and 

torquing it. 

Mass model 

We start by establishing a mass model: the magnetorquer 

is made of a soft magnetic core and a coil made of copper 

wire. We denote 𝐿 the length and 𝑑 the diameter of the 

core. For the coil, we denote 𝜆𝑑 the average diameter of 

a loop, and 𝑔 the diameter of the wire. 

 

Figure 2. Generic geometric model for the MTQs 

The weight of the core is: 

 
𝑚𝑐 = 𝜌𝑐

𝜋𝑑2

4
𝐿 

(3.1) 
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The weight of the wire is: 

 
𝑚𝑤 = 𝜌𝑤

𝜋𝑔2

4
𝜋𝜆𝑑𝑁 

(3.2) 

Replacing the number of turns by its expression in (3.9) 

(see next subsection), the wire’s diameter 𝑔 cancels out: 

 
𝑚𝑤 = 𝜌𝑤

𝜋2

4
𝜆(𝜆 − 1)𝐿𝑑2 

(3.3) 

The total mass can then be formulated as: 

 𝑚 = 𝑚𝑐 + 𝑚𝑤 =  𝜌𝑒(𝜆)
𝜋

4
𝐿𝑑2 (3.4) 

where 𝜌𝑒(𝜆) ≜  𝜌𝑐 + 𝜋𝜆(𝜆 − 1)𝜌𝑤 is an ‘equivalent’ 

specific mass for both the core and the coil. 

We define the elongation ratio 𝑒 = 𝐿/𝑑, so that: 

 𝑚 =
𝜋𝜌𝑒

4𝑒2
𝐿3 (3.5) 

This can be inverted to express 𝐿 as a function of 𝑚: 

 
𝐿3 =

4𝑒2

𝜋𝜌𝑒

𝑚 
(3.6) 

Expression for the magnetic tensor 

Reference [2]) introduces the notion of magnetic tensor 

for determining the dissipative effect of natural eddy cur-

rents in a rotating field. A. Benoit (in [3]) extends the no-

tion to shorted MTQs. Here we use a scalar interpretation 

of the magnetic tensor: 

 
ℳ = 𝜇𝑒

2
𝑁2𝑆2

𝑅
 

(3.7) 

where 𝜇𝑒 is the effective permeability of the magnetic 

core, 𝑁 is the number of turns, 𝑅 the electrical resistance 

of the whole coil, and 𝑆 is the cross-section of the core. 

Indeed, only the core contributes significantly to the mag-

netic flux, due to its high permeability compared to that 

of vacuum. The physical unit for ℳ is [Ω-1m4]. 

With the notations established previously and assuming 

that 𝜆 − 1 ≪ 1, we can replace 𝑆, 𝑁 and 𝑅 with expres-

sions depending only on the geometry: 

 
𝑆 =

𝜋𝑑2

4
 

(3.8) 

 
𝑁 = 𝑁𝑑𝑁𝐿 =

𝑑𝐿(𝜆 − 1)

𝑔2
 

(3.9) 

Where 𝑁𝑑 and 𝑁𝐿 correspond respectively to how many 

wires can fit within 𝑑 (radially) and 𝐿 (longitudinally). 

 
𝑅 = 4

𝜆𝑑𝑁 

𝜎𝑤𝑔2
 

(3.10) 

where 𝜎𝑤 is the conductivity of the wire. 

Substituting the terms above into (3.7), we get: 

 
ℳ =

𝜋2

64
𝜎𝑤

(𝜆 − 1)

𝜆

𝜇𝑒
2

𝑒4
𝐿5  

(3.11) 

Taking into account effective permeability 

In the expression above, a dependency in the elongation 

ratio 𝑒 is hidden in the effective permeability𝜇𝑒. Indeed, 

literature on designing electromagnets and magnetor-

quers shows that it is only when the core's elongation 

tends to infinity that the effective permeability ap-

proaches the permeability of the core’s material. 

Reference [4] supplies an empirical chart showing the re-

lationship between the effective permeability and the ma-

terial’s permeability, for various elongation ratios. As-

suming that the core material has a very high permeabil-

ity, we can infer an empirical rule of the form below: 

 𝜇𝑒 ≈ 𝑒𝑎  (3.12) 

with 𝑎 ≈ 1.5 (as long as 𝑒 < 100, which is reasonable) 

Replacing 𝜇𝑒 in the expression of the magnetic tensor: 

 
ℳ =

𝜋2

64
𝜎𝑤

(𝜆 − 1)

𝜆𝑒
𝐿5  

(3.13) 

Finally, replacing 𝐿 with its expression in (3.6) and iso-

lating 𝑚 on the left-hand side, we obtain: 

 
𝑚 =  (

256

𝜋
)

1 5⁄

(
ℳ

𝜎𝑤

(𝜆 − 1)

𝜆
)

3/5
𝜌𝑒

𝑒7 5⁄
  

(3.14) 

Final expression for the mass 

In parallel, we can determine the required value for the 

magnetic tensor, from (0.2) and the relationship between 

the torque and the magnetic tensor: 

 
𝐶 =

𝐼𝜔0

𝜏
=  ℳ𝜔0𝐵2 ⇒

𝐼

𝜏𝐵0
2

(1 + 𝜂)6  
(3.15) 

To simplify the notations, we define the auxiliary con-

stant 𝐿∗ (same units as a length) as: 

 
𝐿∗

5 ≜
𝐼(1 + 𝜂)6

𝜏𝜎𝑤𝐵0
2   

(3.16) 

Finally, replacing ℳ in (3.14), we obtain: 

 
𝑚 = (

256

𝜋
)

1 5⁄

(
𝜆

𝜆 − 1
)

3 5⁄ 𝜌𝑒𝐿∗
3

𝑒7 5⁄
  

(3.15) 
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Baseline mass of MTQs in LEO 

The above result computes the mass required for a mag-

netorquer-based detumbling capability. Since LEO satel-

lites already need magnetorquers for initial acquisition 

and momentum management, the weight of the ‘nominal’ 

magnetorquers should be subtracted from the determina-

tion of the mass penalty. 

The rationale for computing the baseline mass of mag-

netorquers is the following: 

• they are sized for initial detumbling after separation 

• they need to dump the initial angular momentum, 

from the initial rate at separation Ω0 = 3 deg/s 

• the initial rate reduction should last less than 2 orbits 

• the corresponding requirement for the dipole mo-

ment of the MTQs is proportional to the inertia (we 

assume that the magnetic field in LEO is 40 µT) 

• a scatterplot based on MTQ datasheets allows to fit 

a linear approximation for the mass of MTQs as a 

function of their dipole moment specs 

• the baseline MTQ mass is capped at the mass of the 

largest MTQs in the catalog (i.e. larger satellites use 

thrusters for detumbling) 

 

Figure 3. Fitting an affine (--) or linear (—) mass model 

onto MTQ datasheet design points (from Zarm data) 

For simplicity, the analysis considers that all satellites 

have a baseline weight of LEO magnetorquers, including 

non-LEO satellites. This is optimistic in the overall ap-

proach but will not change the results too much, since the 

mass penalty grows much faster. 

Note that since we are working in 1D, the expression is 

computing the required weight for only 1 MTQ. Like for 

the detumbler, it's probably acceptable even for the 3-axis 

case to have only one large MTQ for passive detumbling, 

and keep the baseline units on the other 2 axes. As a con-

sequence, the mass penalty considers the added mass for 

only one oversize MTQ. 

 

2.4 Detumbler 

The detumbler comprises a small rotor which behaves 

like a compass needle thanks to 2 permanent magnets on 

its rim. When the satellite tumbles, there is a difference 

in angular rate between the rotor (which wants to stay 

aligned with the local geomagnetic field) and the housing 

(which is attached to the satellite’s structure). This rate 

difference causes the rotor magnets to travel tangentially 

near the inner wall of the conductive housing, and the re-

sulting eddy currents create a viscous torque opposing the 

satellite’s tumbling motion. More details on the de-

tumbler itself can be found in [1]. 

In contrast to the other magnetic solutions presented 

above, the detumbler manages to break away from the 

dependency in 𝐵2: thanks to the use of permanent mag-

nets, the resistive torque is only proportional to 𝐵. 

Efficiency model 

The major element in the sizing exercise is the dipole mo-

ment 𝑀 required to produce the necessary magnetic 

torque (we implicitly assume that designing the rotor for 

achieving the right amount of viscous friction is second-

ary). This dipole moment directly determines the weight 

of the rotor magnets, and thus the mass of the device. 

We also assume that the detumbler is designed so that its 

saturation rate (the rate at which the viscous torque is 

equal to the maximum magnetic torque) is 𝜔0. 

At saturation, we know that the viscous torque is: 

 𝐶(𝜔0) = 𝑀 × 𝐵  (4.1) 

Plugging in (0.2), we can derive the requirement for the 

rotor's magnetic dipole moment: 

 
𝑀 =

𝐶

𝐵
=

𝐼𝜔̇

𝐵
=

𝐼𝜔0

𝐵𝜏
= (1 + 𝜂)3

𝐼𝜔0

𝐵0𝜏
   

(4.2) 

Mass equation 

The mass of magnets is directly proportional to the mag-

netic dipole moment 𝑀 through: 

 
𝑚𝑚 =  𝜌𝑚𝑉𝑚 = 𝜌𝑚

𝜇0𝑀

𝐵𝑟

   
(4.3) 

where 𝜌𝑚 is the magnet's specific weight and 𝐵𝑟  is the 

remanence of the magnet's material. 

Pending detailed design, we assume that the total mass of 

the detumbler is the sum of an incompressible mass (50 

grams) + 3 times the mass of the magnets themselves. 

Combining all of the above, we get the following expres-

sion for the device's mass: 

 𝑚 = 𝑚0 + 3
𝜌𝑚𝜔0𝜇0

𝐵𝑟𝐵0

𝐼(1 + 𝜂)3   (4.4) 
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2.5 Solar windvane 

The (purely theoretical) operating principle is similar to 

the detumbler, except that the restoring torque is not mag-

netic torque but solar radiation pressure torque from 

some sort of solar ‘empennage’ comprising a solar sail at 

the end of a boom: there is a stable attitude when the 

boom and sail are aligned with the sun’s direction, and 

energy dissipation is introduced by some sort of viscous 

angular deflection of the boom. 

Efficiency model 

The sizing for the solar windvane is quite straightfor-

ward, using the following (crude) model for the SRP 

torque: 

 
𝐶 = 𝜖𝑃𝑆𝐿 =

𝐼𝜔0

𝜏
   

(5.1) 

where 𝑃 is the solar radiation pressure, 𝑆 is the area of 

the sail, 𝐿 the length of the boom, and 𝜖 =  𝜃/2𝜋 is a 

penalty factor representing the fact that the angular mo-

tion of the windvane's boom is limited in range, limiting 

its effect to a portion of each revolution. 

Requirement for sail surface area 

Assuming that an optimum design would probably have 

a boom length somewhat longer that the side length of 

the sail, we can (arbitrarily) consider that 𝐿 = 3√𝑆 

 
3𝑆1.5 =

𝐼𝜔0

𝜖𝜏𝑃
 ⇒ 𝑆 = (

𝐼𝜔0

3𝜖𝜏𝑃
)

2/3

 
(5.2) 

 

Mass model and mass equation 

Deriving a weight budget from a required length and area 

is not trivial, since most of the weight is in the booms or 

stiffeners and the deployment mechanism and not the sail 

membrane itself. But since the length of the booms and 

stiffeners is probably proportional to √𝑆, we can expect 

a law in square root of the area. Looking at various 

datasheets, we can indeed fit such a simple empirical law 

𝑚 = 𝑏√𝑆 (see next Figure), with 𝑏 ≈ 1.14 kg/m 

This allows to reach the final result: 

 

𝑚 = 𝑏 √
𝐼𝜔0

3𝜏𝜖𝑃

3

 

(5.3) 

 

Note that the mass requirement is predictably– independ-

ent from the orbit’s altitude, since the solar radiation 

pressure is the same for all Earth orbits. 

 

Figure 4. drag/solar sail mass model fit, from 

datasheets in references [7], [8] and [9] 

2.6 Aerodynamic windvane 

The principle is the same as the solar windvane de-

scribed previously: the dynamic pressure acting on a drag 

sail at the end of a boom causes a restoring torque that 

tends to align the boom downwind from the main bus. If 

the boom is allowed to flex or rotate, and if that defor-

mation or motion causes dissipation through damping or 

friction, some kinetic energy will be converted to heat 

and the satellite will detumble. 

Efficiency and mass models 

The process for computing the mass model is the same, 

replacing solar radiation pressure by dynamic pressure: 

 
𝐶 = 𝜖𝑃𝑎𝐶𝐷𝑆𝐿 =

𝐼𝜔0

𝜏
   

(6.1) 

Assuming drag sails rely on the same technology than so-

lar sails, the mass model for the solar windvane can be 

reused as-is: 

 

𝑚 = 𝑏 √
𝐼𝜔0

3𝜏𝜖𝑃𝑎𝐶𝐷

3

 

(6.2) 

The dynamic pressure depends on air density and orbital 

speed, which both depend on the altitude: 

 
𝑃𝑎 =

1

2
𝜌𝑎(ℎ)𝑣2(ℎ) 

(6.3) 

 𝑣2 =
𝜇𝐸

𝑅𝐸(1 + 𝜂)
 (6.4) 

For the atmospheric density model, we can use a simple 

exponential model: 

 
𝜌𝑎 = 𝜌0 exp (−

ℎ

ℎ𝑠

) 
(6.5) 
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By choosing 𝜌0 = 1.7×10-9 kg/m3 and ℎ𝑠 = 62.4 km, the 

exponential model is a good fit for the standard US76 at-

mosphere model in the altitude range [400 - 600 km] we 

are most interested in. 

Mass equation 

The mass equation in (6.2) becomes: 

 

𝑚 = 𝑏 √(1 + 𝜂)
2𝐼𝜔0𝑅𝐸

3𝜏𝜖𝐶𝐷𝜌0

3

exp (−
𝜂𝑅𝐸

ℎ𝑠

) 

(6.6) 

The dependency in exp(−𝜂) shows how such a solution 

is extremely sensitive to altitude (and in fact only per-

forms suitably at altitudes where air drag brings the sat-

ellite down spontaneously, i.e. detumbling is not needed). 

2.7 Gravity-gradient pendulum 

The principle is similar to the previous 3 concepts: a pen-

dulum which is left free to rotate will naturally want to 

align vertically due to gravity gradient. If the attachment 

point exhibits friction when then pendulum rotates, the 

libration oscillations of the satellite will be damped. 

We assume that the pendulum has inertia 𝐽 = 𝑚𝐿2 

Efficiency model 

The peak value for the gravity-gradient torque is: 

 
𝐶 =

3

2
𝑛2𝐽 

(7.1) 

Where 𝑛 is the orbital pulsation: 

 
𝑛 =  √

𝜇𝐸

(𝑅𝐸(1 + 𝜂))
3 

(7.2) 

And we need the torque to detumble the satellite with a 

time-constant 𝜏 : 

 
𝐶 =

3

2
𝑛2𝐽 =

𝐼𝜔0

𝜏
 

(7.3) 

Mass equation 

From (7.2) and (7.3), we can derive: 

 
𝑚 =

2𝐼𝜔0𝑅𝐸
3(1 + 𝜂)3

3𝜏𝜇𝐸𝜖𝐿2
 

(7.3) 

 

3 COMPARISON CHARTS 

We can finally combine all these developments into a sin-

gle comparison chart. 

In addition to the common requirements mentioned be-

fore, we add (or recall) a few specific assumptions for 

some of the technologies: 

- for eddy currents, we consider that the allocated 

length of the structural panels is the complete 

bus length. Note: a simple empirical fit on a few 

satellite design points provides a simple rela-

tionship 𝐼 = 35𝐿4.5 between satellite inertia and 

a typical bus length 

- the hysteresis devices have the same proportions 

(and thus the same apparent permeability 𝜇𝑒) as 

in the cited article 

- for magnetorquers, the average diameter of the 

coil is 25% greater than that of the core. 

- for magnetorquers, the effective permeability of 

the core follows the empirical power law   

- for the detumbler, the total mass of the device is 

three times the mass of the rotor magnets (+ a 

penalty of 50 grams) 

- for the gravity gradient pendulum, the allocated 

length is the complete bus length  

The goal of the chart is not to perform an accurate pre-

diction of the performances of any specific design point 

but to compare orders of magnitude between technolo-

gies, and especially how those orders of magnitude scale 

with altitude and satellite size. As a consequence, the 

chart uses logarithmic scale, and the inaccuracies result-

ing from some of the assumptions and modelling simpli-

fications will have only a modest effect on the overall 

picture. 

 

3.1 Mass vs altitude 

 
Figure 5. Comparison between detumbling concepts: 

mass vs altitude for an inertia of 5000 kg.m² 
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3.2 Mass vs inertia 

 
Figure 6. Comparison between detumbling concepts: 

mass vs inertia for altitude = 800 km 

 

 
Figure 7. Comparison between detumbling concepts: 

mass vs inertia for altitude = 8000 km 

 

 
Figure 8. Comparison between detumbling concepts: 

mass vs inertia for altitude = 36000 km 

3.3 Best candidate in inertia/altitude domain 

We can summarize the results by showing the regions 

where each solution has the lowest mass budget. 

 

Figure 9. Comparison between detumbling concepts: 

best solution in inertia/altitude space 

The chart confirms that the detumbler solution is the most 

efficient way (in terms of mass) to ensure detumbling, 

except for the very heaviest satellites on the very highest 

orbits (typically, telecom platforms). 

And just for the sake of completeness, if we extend the 

range of inertia values down to much lower values, we 

show that the hysteresis rods might be an interesting so-

lution for very small satellites. 

This could be an artefact of the choice of 50 grams as an 

incompressible mass for a detumbler, but this is also in 

line with the fact that hysteresis rods are indeed used on 

some cubesats. In any case, the differences here are less 

than 50 grams. 

 

Figure 10. Comparison between detumbling concepts: 

best solution in inertia/altitude space (wider range for 

satellite inertia values) 



Leave footer empty – The Conference footer will be added to the first page of each paper. 

. 

. 

  

4 CONCLUSIONS 

The analysis clearly demonstrates that in terms of mass, 

the detumbler is a better solution than all other candidate 

concepts. The only exception is the theoretical contrap-

tion we called the solar windvane, which –if it existed-- 

would start to be competitive above typically 20,000 

kgm² inertia and 20,000 km altitude. 

Since the issue of space debris build-up is most pressing 

on LEO orbits around 800 km, Figure 6 is the most rele-

vant result, and it shows that the detumbler solution is at 

least 5 to 10 times more weight-efficient than all other 

solutions. 

We can acknowledge two key reasons for this higher ef-

ficiency: 

- Magnetic torque is quite powerful compared to 

other external torque phenomena. This is the 

reason why LEO attitude control systems use 

magnetorquers for momentum dumping. 

- Having permanent magnets only relies on the 

Earth’s magnetic field once (to create the 

torque), compared to the other magnetic solu-

tions, which exhibit a dependency to 𝐵2. 

This analysis has allowed to firmly justify the technology 

choice for the current detumbler development (DE-

TUMBLER-M), as well as for the ongoing, ESA-funded, 

predevelopment of a larger unit targeted at larger hosts 

and/or higher orbits (DETUMBLER-L). 
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