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ABSTRACT

Space Situational Awareness (SSA) incorporates the de-
tection, tracking, and prediction of the movements of ob-
jects orbiting Earth. It is critical for protecting space as-
sets and mitigating collision risks, but it remains chal-
lenging due to the large number of objects, their high-
velocity dynamics, and challenging lighting conditions.
In this research, we present the use of a Neuromorphic
Vision Sensor (NVS) for observing and detecting Res-
ident Space Objects (RSOs) to enhance SSA capabil-
ities. The NVS is a cutting-edge, bio-inspired sensor
that operates asynchronously, responding to logarithmic
changes in light intensity at the pixel level. This sensor
is integrated with a high-performance 0.8-meter diameter
Ritchey–Chrétien telescope, part of the Abu Dhabi Quan-
tum Optical Ground Station (ADQOGS), which features
a pointing accuracy of less than 4 arcseconds. This NVS
event camera is activity-dependent which captures sub-
stantially less data in sparse scenes than standard cam-
eras, optimizing data handling. Additionally, its ability
to detect high-speed motion and capture fine RSO details
mitigates the limitations of traditional cameras prone to
motion blur and low resolution. Leveraging the unique
characteristics of the NVS, we are developing a novel and
robust approach for RSO detection across various sce-
narios and lighting conditions. The NVS offers advan-
tages such as reduced power consumption, lower process-
ing requirements, higher dynamic ranges, and faster data
communication. These attributes make NVS exception-
ally well-suited for space imaging and SSA applications.
Our work involves developing an innovative deep learn-
ing algorithm designed to process the NVS event streams.
This algorithm differentiates between event streams aris-
ing from sky background noise and those associated with
RSOs, revealing the spatiotemporal relationships within
the NVS data and producing bounding boxes for detected
RSOs. Training and evaluation on the locally recorded
NVS-based datasets has yielded promising preliminary
results, showcasing the potential of Artificial Intelligence
(AI) for processing raw NVS data in SSA fields. Key
deliverables comprise equipping the NVS sensor to a
ground-based telescope, developing advanced deep learn-
ing algorithms for RSO detection, tracking, and con-
structing a new NVS-based dataset locally collected in
the United Arab Emirates (UAE). These initiatives are
expected to significantly enhance the UAE’s RSO mon-
itoring capabilities, improving accuracy, operational ef-
ficiency, and strategic insights, thus advancing SSA and
the management of space objects.

Figure 1: Visualization of event generation by a neuro-
morphic vision sensor when observing a rotating black
disk featuring a single white dot spinning at 400 Hz [1]
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1. INTRODUCTION

Space Situational Awareness (SSA) has become increas-
ingly vital due to the escalating risks posed by space
debris, threatening the sustainability and safety of or-
bital operations. As Earth’s orbital environment be-
comes more congested, precise and timely detection
of debris is crucial to prevent collisions and protect
critical space infrastructure. Currently, passive imag-
ing sensors, particularly Complementary Metal-Oxide-
Semiconductor (CMOS) cameras, play a significant role
in SSA applications, including satellite tracking, astron-
omy, and Earth observation. However, conventional sen-
sors face significant limitations, particularly in accurately
detecting high-speed objects under challenging orbital
lighting conditions.

Neuromorphic Vision Sensors (NVSs), commonly
known as Event Cameras, have emerged as an innova-
tive technology capable of overcoming the limitations
associated with conventional passive sensors. Unlike
conventional frame-based cameras, NVSs operate asyn-
chronously, registering pixel-level changes only upon de-
tecting logarithmic variations in light intensity. This op-
erational principle significantly enhances their respon-
siveness and adaptability, making them exceptionally
suited for detecting and tracking rapidly moving space
objects under challenging orbital lighting conditions.

NVSs integrate specialized pixel-level circuitry, enabling
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Figure 2: Framework for Space Object Detection: Neuromorphic Vision-based SSA

imaging at high speeds, low power consumption, and
with a wide dynamic range. In contrast to traditional
sensors that capture data in frames over fixed integra-
tion periods, NVSs operate asynchronously, generating
output only when relevant changes in illumination occur.
Each pixel independently detects luminance variations
and produces discrete ”events,” characterized by pixel co-
ordinates (x,y), an accurate timestamp (t) at microsecond
resolution, and a binary polarity indicator (p), signaling
an increase or decrease in luminance, as illustrated in Fig-
ure 1. This event-driven mechanism substantially reduces
data generation, particularly in sparse observational con-
ditions commonly encountered in space environments.
Such efficient operation, combined with enhanced sen-
sitivity and responsiveness, makes NVSs particularly ad-
vantageous for spacecraft navigation [2, 3], precise track-
ing of satellites and stars [4, 5, 6], and effective detection
of Resident Space Objects (RSOs) [7, 8, 9, 10]—critical
tasks for advancing SSA.

In this work, we propose a novel approach integrating
NVS technology with advanced AI-driven methods to
significantly enhance the detection capabilities of RSOs
for SSA, as presented in Figure 2. Specifically, we design
and implement a learning-based model, called NeuTAR-
RSO, trained and evaluated using locally recorded NVS
datasets collected at the Abu Dhabi Quantum Optical
Ground Station (ADQOGS) in the United Arab Emirates
(UAE). Through this approach, we aim to advance space
imaging technology and deliver a robust, efficient, and
accurate solution tailored to address critical SSA chal-
lenges.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the problem statement along with the key
contributions of this research. In Section 3, we detail the
proposed framework for utilizing NVS technology within
SSA applications, covering the experimental setup for
local dataset acquisition and the complete development
pipeline, including the training and evaluation methods

for the deep learning-based space object detection algo-
rithm. The qualitative experimental results are provided
and discussed in Section 4. Finally, Section 5 summarizes
the research findings and conclusions.

2. PROBLEM STATEMENT AND CONTRIBU-
TION

This research addresses the challenge of detecting and
tracking RSOs by designing and developing a special-
ized module utilizing NVS technology integrated with
a ground-based telescope system (ADQOGS). The de-
veloped approach focuses on efficient real-time per-
formance, optimized for use on limited processing re-
sources. This module not only aims to strengthen the
UAE’s capabilities in protecting space-based assets but
also prioritizes local data collection and facilitates both
national and international research collaborations. Ulti-
mately, this effort contributes directly to enhancing tech-
nological innovation in the UAE’s space exploration ini-
tiatives and overall SSA.

3. PROPOSED FRAMEWORK NVS FOR SSA

This section outlines the proposed framework, structured
into three main stages: (1) Data Acquisition, involv-
ing ground-based observations to compile a local NVS
dataset; (2) Data Processing, focusing on the design and
development of the NeuTAR-RSO model for detecting
space objects; and (3) Detection Output, highlighting the
identification of objects of interest. The details of each
stage are presented comprehensively in the subsequent
subsections.

3.1. Data Acquisition - Ground Observations and
Data Collection

ADQOGS is situated in Abu Dhabi at an elevation of 70
meters above sea level, with geographical coordinates of



24◦11′ N, 54◦41′ E, as presented in Figure 3. Its primary
observational instrument is an 80-cm Ritchey–Chrétien
telescope with an f/6.85 focal ratio. The site’s infras-
tructure supports fully automated telescope operation, en-
abling SSA data collection during the instrument’s idle
periods. The NVS camera, DAVIS346c, will be inte-
grated at one of the telescope’s two Nasmyth ports, using
custom-designed adapters attached directly to the tele-
scope structure.

(a) ADQOGS Site description

(b) The AltAz 800 f6.85 telescope

Figure 3: Overview of the ADQOGS site layout.
ADQOGS is hosted at Al Sadeem Observatory in Al
Wathba, Abu Dhabi [11]

The objective of the initial observations is to compile a
preliminary local dataset using NVS recordings, ensur-
ing the presence of RSOs, to facilitate the development
and evaluation of our detection and tracking module. To
achieve this, we propose a telescope pointing strategy
based on known RSOs and real-time NVS stream data
acquisition, as illustrated in Figure 4. Prior to the ob-
servations, candidate RSOs are identified from Two-Line
Element (TLE) databases and imported into ANSYS Sys-
tems Tool Kit (STK) for pass simulations. STK provides
precise Azimuth and Elevation data, which are verified
using orbit propagation methods to confirm each RSO
pass. This process generates a comprehensive observa-
tion schedule containing the anticipated RSOs along with
corresponding telescope pointing coordinates (RA and
Dec) and timing information. The resulting dataset en-

Table 1: Observed RSOs at ADQOGS (NVS-based
Dataset)

Object
Name

Object
Type

NORAD
ID

Description

EGS-
16908

Satellite 16908 Japanese geostationary satellite

NOAA-6 Satellite 11416 NOAA weather and Earth
observation satellite

NOAA-
15

Satellite 25338 NOAA polar-orbiting weather
satellite

RESURS-
DK 1

Satellite 29228 Russian Earth observation
satellite

COSMOS
1933

Satellite 18958 Russian military
reconnaissance satellite

SAOCOM
1B

Satellite 46265 Argentinian radar Earth
observation satellite

SL-12
R/B(2)

Known
Debris

15772 Upper-stage rocket body debris
(Russian SL-12)

SL-16
R/B

Known
Debris

26070 Upper-stage rocket body debris
(Russian SL-16)

SL-16
R/B

Known
Debris

20625 Upper-stage rocket body debris
(Russian SL-16)

SL-8
R/B

Known
Debris

N/A Rocket body debris (Russian
SL-8)

ables rigorous analysis of the camera’s operational pa-
rameters, sensitivity optimization, and facilitates the de-
velopment of a robust data processing algorithm tailored
specifically for effective RSO detection.

During the initial observational sessions conducted from
December 2024 through January 2025 (6:00 pm to 8:00
pm UAE local time), we successfully collected NVS-
based datasets capturing various known RSOs. These ob-
servations comprise operational satellites and debris ob-
jects, summarized clearly in Table 1. A representative
visualization of these acquired NVS event streams is pre-
sented in Figure 4.

3.2. Data Processing - NeuTAR-RSO Algorithm for
Space Objects Detection

In this section, we describe the preparation of input data,
the architecture of the proposed NeuTAR-RSO model,
the procedure for generating approximate ground-truth
data, and the training and testing methodology employed
for NeuTAR-RSO.

3.2.1. Input Data Preparations

Data acquired by the NVS camera consists of asyn-
chronous events triggered by changes in the logarithmic
intensity of the observed scene. These events occur at
pixel-level resolution within a spatial array defined by
dimensions H × W , corresponding respectively to the
height and width of the sensor’s frame. Each event stream
containing N events, represented as {ei}N , can be ex-
pressed as a sequence of four-dimensional tuples:

{ei}N = {xi, yi, ti, pi}N , (1)

where (xi, yi) denote the spatial coordinates of the i-th
event, ti represents the event timestamp, and pi indicates



Figure 4: Telescope pointing method for RSO observation and real-time acquisition of a local NVS event stream dataset

Figure 5: Sample of neuromorphic event stream data col-
lected at the ADQOGS, capturing known RSO satellites
and debris in December 2024 and January 2025

polarity. The polarity pi is defined as +1 if the pixel’s
brightness increases and -1 if it decreases.

To handle these events, they are aggregated into a 4D
event tensor {xi, yi, ti, pi} over a predefined temporal
window. Detecting resident space objects (RSOs), which
are high-dynamic objects observed against a dark back-
ground, is particularly challenging due to a significant
number of simultaneous noise events that occur alongside
genuine events from the RSO. To effectively differentiate
the events related to high-speed space objects within the
narrow field of view from the abundant background noise
(e.g., dark sky), we explore different event representa-
tions processed in real-time prior to applying the main de-
tection model, described later in the next section. Specif-
ically, we examine two event representations—Time Sur-
face and Temporal Active Focus (TAF)—which leverage
temporal information and the volume of generated events
to distinguish dynamic object events from background
noise.

The temporal characteristics of the event stream inher-
ently reveal the velocity of dynamic objects when en-
coded into a 2D event-based image representation us-
ing temporal information as a feature. The Time Sur-
face representation transforms events into a 2D image
in which each pixel’s intensity encodes the recency of
events at that location, typically using an exponential de-
cay function, as introduced in [12, 13]. A more recent
approach, the Temporal Active Focus (TAF) method, in-
troduced in [14], efficiently represents sparse event data
as a dense tensor optimized for event-based object de-
tection. Unlike conventional sparse event spike tensors,
TAF selectively maintains only the latest temporal events
at each spatial and polarity position using a First-In, First-
Out (FIFO) queue structure. This approach enables TAF
to efficiently capture dynamic temporal information in a
dense format, substantially reducing computational com-
plexity and storage requirements, thereby enhancing per-
formance in dynamic object detection tasks.

In this work, we explore both representations and pro-
pose a fused event representation named Temporal Active
Representation (TAR), obtained by combining the Time
Surface and Temporal Active Focus representations. As
shown in Figure 6, the TAR representation enhances the
clarity and distinctiveness of dynamic objects compared
to either the Time Surface or TAF alone. Thus, TAR is
employed as the input to our proposed NeuTAR-RSO de-
tection framework, detailed in the subsequent section.

3.2.2. Architecture of the Proposed NeuTAR-RSO
Model

Figure 7 shows the overall architecture of the NeuTAR-
RSO model, where the fused TAR event frame is used
as input to the network. The temporal-based features of
the TAR image pixels are processed by encoding and de-
coding layers to detect the object of interest within the
frame. The network outputs four values representing the
bounding box of the detected RSO within the TAR image,



Figure 6: Input Representations of Neuromorphic stream
data : (a) Time Surface, (b) Temporal Active Focus, and
(c) Fusion of TS and TAF

where (xcenter, ycenter, w, h) is the bounding box format,
denoting the center coordinates, width, and height of the
object.

The NeuTAR-RSO architecture is inspired by YOLOv8
and uses Cross Stage Partial (CSP) blocks to improve
feature learning while keeping the model efficient. CSP
blocks split and merge feature maps to preserve impor-
tant information and reduce redundancy. The model also
includes attention mechanisms that help it focus on the
most relevant parts of the input, making it more effec-
tive at detecting small or faint RSOs in the fused TAR
image. The final output layer predicts bounding box co-
ordinates, which are passed through a sigmoid activation
to normalize the values between 0 and 1, ensuring they
remain within the image boundaries.

3.2.3. Approximate Ground Truth Data Preparation

The proposed NeuTAR-RSO model is developed, trained,
and evaluated using our locally acquired NVS datasets.
For each specified temporal window, the input to the net-
work is a 2D TAR event image generated from all event
data within that period. The corresponding output is the
bounding box coordinate of the detected RSOs. To gen-
erate the approximate bounding box labels used for train-
ing, a multi-step preprocessing pipeline is applied, as
summarized in Figure 8. First, a slice of events is col-
lected every 33 ms from the event camera. From each
slice, two event-based representations are created: the
Time Aggregated Frame (TAF), which bins events by
time and polarity, and the Time Surface, which encodes
the recentness of events per pixel using an exponential

decay function. Both representations are denoised with a
median filter and blended into a single RGB image to en-
hance spatial and temporal information. This combined
image is then converted to grayscale and thresholded to
segment active regions. Contours are extracted from the
thresholded image, and for each contour with an area
above a predefined threshold (e.g., 30 pixels), an initial
bounding box is generated. Finally, the bounding boxes
are refined to improve localization accuracy and reduce
noise, resulting in the approximate ground truth used to
train the detection model.

3.2.4. Training and Testing Methodology for
NeuTAR-RSO

Our approach trains the NeuTAR-RSO neural regressor
on 2D TAR images—fused representations of neuromor-
phic vision sensor (NVS) event streams—for supervised
object detection. The network outputs four values corre-
sponding to the bounding box (xcenter, ycenter, w, h) of the
detected object. Event data, represented as (xi, yi, ti, pi),
are inherently sparse and limited in spatial detail,
making accurate scene interpretation and object detec-
tion—especially for fast-moving objects—challenging.
However, the high temporal resolution of events enables
rapid data accumulation, even in low-light conditions
where noise may be present.

The performance of AI models is closely tied to the qual-
ity and diversity of the training dataset. A broad and well-
annotated dataset is essential both for refining model pa-
rameters and enhancing generalization to unseen scenar-
ios. Yet, collecting and labeling such datasets remains
resource-intensive in certain applications. The training
and evaluation data used in this work are obtained from
our recorded NVS-based dataset, as described in Section
3.1. The dataset is split into 70% for training, 15% for
validation, and 15% for testing. To ensure randomness
and reduce bias, the dataset is shuffled before training.
The NeuTAR-RSO network is implemented in PyTorch
for both training and inference, using the Adam optimizer
with a learning rate of 0.001. Training is guided by the
SmoothL1 (Huber) loss function. Figure 9 illustrates the
loss curves, showing effective model convergence during
training, validation, and testing.

4. EXPERIMENTAL EVALUATIONS

This section presents the experimental evaluation of the
proposed NeuTAR-RSO model, detailing the evaluation
metric used and analyzing the results both quantitatively
and qualitatively.

4.1. Evaluation Metric

To quantitatively evaluate the bounding box prediction
accuracy of the proposed model, we utilize the Intersec-
tion over Union (IoU) metric, which is widely adopted in
object detection tasks.

• Intersection over Union (IoU): IoU measures the de-



Figure 7: Architecture of the proposed NeuTAR-RSO neural network

Figure 8: Approach for generating approximate ground
truth bounding boxes for NVS-based RSO detection

gree of overlap between the predicted bounding box
and the ground truth bounding box, quantifying how
accurately the predicted box aligns with the actual
object location. It is formally defined as:

IoU =
Area of Overlap
Area of Union

(2)

Typically, IoU is employed to determine if a bounding
box prediction qualifies as a true positive by comparing it
against a predefined threshold (commonly 0.5 or 0.7, de-
pending on evaluation criteria). In our case, we selected
0.5 as our evaluation criteria.

Figure 9: Loss curves generated during the training, val-
idation, and testing of the NeuTAR-RSO model

Figure 10: RSO detection results using the proposed
NeuTAR-RSO algorithm on locally acquired NVS event
streams for both training and testing sets



4.2. Quantitative and Qualitative Analyses

The proposed bounding box regression model achieved
a mean IoU of 78.2% on the training set and 64.0% on
the test set, indicating good localization accuracy and
generalization to unseen data. Qualitative visualizations,
shown in Figure 10, further support the quantitative re-
sults, revealing high spatial correspondence between pre-
dicted and ground truth bounding boxes across diverse
scenarios. This alignment highlights the model’s effec-
tiveness in learning precise object boundaries, even under
the sparse and asynchronous conditions of event-based
input. These findings affirm the model’s potential for
space object detection and reinforce its suitability for
NVS-driven RSOs’ detection and tracking applications.

5. CONCLUSIONS

In this work, we presented the capability of NVS Sen-
sors combined with an AI-based algorithm to enhance
SSA. We demonstrated the experimental setup for cap-
turing NVS observations at the Abu Dhabi Quantum Op-
tical Ground Station (ADQOGS) and developed a ded-
icated algorithm for real-time detection and tracking of
RSOs, showing promising preliminary results. Moving
forward, we plan to expand the locally recorded NVS
dataset in the United Arab Emirates (UAE), presenting
the raw NVS-based observational data alongside detec-
tion and tracking results. This advancement is expected
to significantly enhance the UAE’s SSA capabilities by
improving accuracy, efficiency, and understanding of the
space environment. Ultimately, this work contributes to
the advancement of space imaging technologies, laying
the foundation for safer and more informed space opera-
tions.
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and Gregory Cohen. Real-time event-based unsu-
pervised feature consolidation and tracking for space
situational awareness. Frontiers in neuroscience,
16:821157, 2022.

11. Sana Amairi-Pyka, Christoph Fischer, Konstantin
Kravtsov, Gianluca De Santis, Alessandro Grosso,
Edgar Fischer, Klaus Kudielka, and James A Grieve.
Versatile optical ground station for satellite-based
quantum key distribution in abu dhabi. arXiv
preprint arXiv:2412.03872, 2024.

12. Tobi Delbruck. Frame-free dynamic digital vision.
Intl. Symp. on Secure-Life Electronics, Advanced
Electronics for Quality Life and Society, pages 21–
26, 2008.

13. Xavier Lagorce, G. Orchard, F. Galluppi, B. Shi, and
R. Benosman. Hots: A hierarchy of event-based
time-surfaces for pattern recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
39:1346–1359, 2017.

14. Bingde Liu, Chang Xu, Wen Yang, Huai Yu, and Lei
Yu. Motion robust high-speed light-weighted object
detection with event camera. IEEE Transactions on
Instrumentation and Measurement, 72:1–13, 2023.


