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ABSTRACT

When modeling the evolution of the space debris envi-
ronment, the launch traffic plays a crucial role. Even
minor changes in simulated traffic have a substantial in-
fluence on parameters like the collision risk and the to-
tal number of fragments. Most of the launch traffic pat-
terns used in current space debris models are based on
historical data extrapolation, implemented by simply re-
peating the launches of the recent years. While this pro-
vides a good starting point, it does not accurately capture
the emerging trends in space activities. With commercial
spaceflight on the rise, the trend is going towards placing
satellites in orbit distributed missions composed by small
satellites and large constellations. These recent changes
need to be captured in a launch traffic model. This re-
search is part of the GREEN SPECIES project, funded
by the European Research Council on the “Robust control
of the space debris population to define optimal policies
and an economic revenue model for sustainable develop-
ment of space activities”. This work aims at developing
a highly adaptable and accurate launch traffic model by
combining the study of historical data with economic and
financial forecasting methods such as the Autoregressive
Integrated Moving Average (ARIMA), the Prophet model
and Long Short-Term Memory (LSTM). This will allow a
better adaption of the modeling of the debris environment
and the design of mitigation action to the actual evolution
of space activities and its impact in the orbital space.

To accurately compare and discuss existing space debris
evolutionary models and their limitations inputs such as
the launch traffic model needs to be clearly defined. As
a starting point a comprehensive overview of the exist-
ing launch traffic models, and their assumptions will be
given. This survey will be useful to assess how varying
assumptions affect predictions and the accuracy of space
debris risk assessments. Following the literature study,
a new model is developed to address the identified gaps.
As a novelty, economic forecasting methods are used to
predict the development of space activities and particu-
larly the launch traffic. In particular, three time-series
forecasting methods will be studied: Autoregressive In-
tegrated Moving Average (ARIMA), the Prophet model
and Long Short-Term Memory (LSTM). The ARIMA
approach is commonly used to predict stock prices and
trends or to predict economic development such as infla-

tion rates. The LSTM has also shown good results in pre-
dicting economic growth rates and is well suited to deal
with time-series data. Both of these methods can pro-
vide a way of capturing the underlying patterns and are
suitable for long-term forecasting. The different launch
traffic models obtained with the two approaches are pro-
duced and compared with the literature launch models.
The effect of the predicted launch activity on the future
environment is then studied with the COMETA debris
evolutionary model that allows to project the objects pop-
ulation into the future under the effect of objects’ sources
and sinks.

Keywords: Space Debris Modelling; Time-Series Fore-
casting; Launch Traffic; Machine Learning in Space;
Long term debris evolution; Population modelling.

1. INTRODUCTION

The evolution of the space debris environment is very
sensitive to its input parameters. One of these parame-
ters is the launch traffic model, used to predict the fu-
ture launches each year. Depending on the number of
launches, parameters such as the collision risk increase
drastically. A sensitivity analysis on the launch traffic
has been performed in [1]. For simplicity, a lot of launch
models repeat the launch traffic. This approach is ap-
plied in several models, such as EVOLVE [2], DAMAGE
[3], LEGEND [4], and MEDEE [5], where an eight-year
launch cycle is typically used. In this work time series
methods are employed instead. These are often used for
financial forecasting and predict the future development
of a parameter based on the historical data. An overview
of these methods can be found in [6]. Furthermore, not
only the number of launches influences the space debris
environment. The position of these objects in orbit play
a major role in the future evolution of space debris. In
this work the total number of objects launched each year
is determined using time-series methods. The ARIMA
model [7], the Prophet model [8] and the LSTM model
[9] are used to forecast the future trend of launches. The
best parameters for each of these models are determined
through the Mean-Squared-Error (MSE) between actual
historical data and the forecast. The next 100 years are
forecasted. Then, the results are compared to two litera-
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ture models.

Figure 1. To determine the number of objects launched
each year different models are trained on pre-processed
historical data.

Figure 2. The orbital parameters and the category of
the objects are determined through a distribution build
on historical data

After pre-processing of the historical data, sourced from
the ESA DISCOS database [10]. the total number of ob-
jects is determined with different models, as can be seen
in Fig. 1. Then, their position is assigned through sam-
pling from a distribution built on historical data in 3 di-
mensions: The semi-major axis, the inclination and the
eccentricity for the different object categories. The final
result can be seen in Fig. 2. Finally, the simulated launch
traffic is used as an input in COMETA, a debris evolu-
tionary model to determine the effect of the launches on
the space debris population as a whole.

1.1. The history of launches

Figure 3. The historical launch data divided into the ob-
ject categories.

With the first satellite launch of Sputnik 1 in 1957 the
Space Race between the Soviet Union and the United
States (U.S.) commenced. During 1962 to 1969 there
is a noticeable increase in launches corresponding to the
height of the Space Race. In between 1969-1972 the
Apollo program was at its peak, with the U.S sending
numerous missions to the moon. With the introduction of
the reusable space shuttle in 1981 the number of launches
increased slightly. After 1989 there is a drop in the num-
ber of launches, which may be due to the reduced fo-
cus on space after the end of the Cold War, the collapse
of the Soviet Union in 1991 and the Challenger disas-
ter in 1986. Between 2000 and 2010 the public inter-
est in space decreased drastically. The early 2000 reces-
sion had a major impact also on the space economy. This
further demonstrates the link between economic strength
and the number of launches. After 2010 there is a signifi-
cant rise, probably related to the increased availability of
commercial space launchers. This is also reflected in the
increased number of payloads being launched. Commer-
cial launchers are able to launch numerous missions at
once, with the focus of private companies being on pay-
loads that generate data they can sell.

2. THE NUMBER OF OBJECTS LAUNCHED
EACH YEAR

As a first step the number of objects launched each
year will be modeled. This describes solely the non-



constellation objects, since constellations follow a very
different more deterministic pattern compared to non-
constellation objects. To develop a forecast three main
methods are investigated. The Autoregressive Integrated
Moving Average (ARIMA) (3), the Prophet model (4)
and the Long Short-Term Memory (LSTM) (5). The his-
torical data is sourced from the ESA DISCOS database
[10]. There is data available from 1957-2022 (see Fig.
3). In a pre-processing, the constellation objects and de-
bris objects are filtered out.

3. ARIMA MODEL

The ARIMA model [7] is a time series forecasting
method that combines Autoregression (AR), Integrated
(I) and Moving Average (MA) components. The AR part
models the relationship between an observation and its
so called lagged (previous) observation, thereby captur-
ing temporal dependencies. The parameter p describes
the number of lags used as predictors. The differencing
transforms the data to remove trends or seasonality, mak-
ing it stationary. The parameter d describes the minimum
number of differences needed to make the time-series sta-
tionary. The MA models short-term fluctuations by con-
sidering error terms of previous observations. The param-
eter q determines how many error terms are to be included
in the model. The key part of an accurate ARIMA model
is to fine-tune these parameters according to the historical
data. To better understand the historical launch data the
time-series is decomposed into its components: the trend,
the seasonality and the residuals in Fig. 4.

Figure 4. The launch data decomposed into its trend, sea-
sonality and the residuals.

A general upwards trend and a seasonal pattern can be
observed. The seasonality could be due to external fac-
tors such as fiscal deadlines, weather conditions or op-
timal orbital windows for launches. The residuals de-
scribe any part not covered by the trend or seasonality.
There are some pronounced spikes in the residuals, which
might correspond to unexpected events such as the drop

in launches after 1990. Furthermore, a Dickey-Fuller test
[11] is implemented to check for stationary in the time-
series. The Dickey-Fuller test checks for the presence of
a unit root, which indicates non-stationarity. If a time-
series is stationary its statistical properties do not depend
on the time at which they were observed. The p-value was
determined to be p > 0.05, hence the time-series is non
stationary. Since the ARIMA model assumes stationarity,
differencing has to be applied to make it stationary.

3.1. Tuning of the model

The parameters (p, q, d) must be carefully chosen. There
are several approaches to tune the parameters. In this
work, a training and test dataset are defined based on the
historical launch data. This allows to determine the ac-
curacy of the forecast based on the MSE between these.
Then the best MSE is determined with a grid search ap-
proach to find the best combination of (p, q, d).
Furthermore, the training period has to be set. This in-
cludes the decision on whether or not to use all historical
launch data or only include the most recent years. Three
different starting points are investigated: 1957, 1980 and
2005. In all cases the data is split into 66% train data
and 34% test data. Then for each of these starting points
the best parameters (p, q, d) are determined using a grid
search which tests different combinations of the param-
eters and determines the best combination based on the
MSE. In Fig. 5 the result of the best parameters in the
training for the different starting points 1957 (green X),
1980 (yellow diamond) and 2005 (red star) and the his-
torical data (blue dots) are plotted against each other. The
best MSE is achieved by using the dataset starting in
1980.

Figure 5. The different starting points to determine the
best ARIMA parameters.

Figure 6. The forecast using different ARIMA parame-
ters.



To determine the correct parameters not only the com-
parison to historical data is important. Also the devel-
opment of the forecast in the future needs to be judged.
In Fig. 6 the forecast for the future 20 years is plotted.
Here, the nature of the different parameter curves is seen
more clearly. When using data starting from 2005 a lin-
ear approximation is modeled. Data from 1980 yields a
steeply growing curve. While the data from 1980 deliv-
ered the best MSE, it is not realistic that the launches keep
on growing with no bound. Instead, when using the en-
tire dataset from 1957 a realistic steadily growing curve
is achieved. For the rest of this work ARIMA refers to
the model trained on data from 1957 with the parameters
(p, q, d) = (1, 1, 4).

4. PROPHET MODEL

The Prophet model [8] is a forecast model developed
specifically for ease of use. It uses a decomposable time
series model with three main components: trend g(t),
seasonality s(t) and holidays h(t), as seen in Eq. 1.

y(t) = g(t) + s(t) + h(t) + α. (1)

The α represents the residual item, which follows a nor-
mal distribution. Each item is fitted separately and the
combination of them yields the final result. Prophet is ro-
bust to outliers, meaning that if there are unusual spikes
in the launches due to one-time events or unforeseen cir-
cumstances, the model can still make reliable predictions.
The Prophet model works with either a linear or a logistic
growth trend and can model seasonal effects and special
events. It is well suited to sparse data such as the histori-
cal data on launches and does not require complex man-
ual tuning like the ARIMA model. Since the model is
made up of three parts, there are three main hyperparam-
eters in the Prophet model. The changepoint prior scale,
which controls how sensitive the model is to changes
in the trend. The seasonality prior scale which con-
trols the strength of the seasonality effect and the hol-
idays prior scale, which adjusts for holidays or special
events, which can be added as external regressors. In the
fitting process, the Prophet model automatically deter-
mines the best values for all parameters to minimize the
error between the predicted and the actual data. For this,
Prophet uses a Bayesian approach in a Markov Chain
Monte Carlo [12] method to minimise the loss function.
After the model is fitted, Prophet generates forecasted
values including uncertainty intervals. Here, Prophet uses
Monte Carlo simulations to generate a distribution of the
possible future outcomes. Furthermore, cross-validation
can be used to assess the model performance. Here, dif-
ferent subsets of data is used to see how well the model
handles unseen data. When using Prophet with the launch
traffic data the parameters presented in Tab. 1 are used.

Table 1. The parameters used for the Prophet model.
Parameter Value

changepoint prior scale 0.5
seasonality prior scale 0.1

holidays prior scale 0.1

5. LSTM MODEL

In comparison to the ARIMA or the Prophet model the
Long-Short-Term Memory (LSTM) model is much more
complicated. Instead of a statistical method or a fitting
process it uses machine learning to predict the future val-
ues. In particular it is a type of Recurrent Neural Net-
work (RNN) designed to learn from sequential data. It
maintains the memory of previous information. The core
components are:

• Cell state: Acts as a memory, carrying relevant in-
formation across time steps.

• Forget gate: Decides what information to discard
from the cell state.

• Input gate: Determines what new information to
add.

• Output gate: Controls the output and what part of
the cell state to expose.

For the implementation of the LSTM model the python
library tensorflow is used. This library provides easily
implementable and reliable algorithms.

5.1. Tuning of the model

When building an LSTM model several hyperparameters
are important for the final result of the forecast. For the
training of the model the dataset was split into 77% train-
ing and 23% data. The best results were achieved when
using data starting from 1980 and ranging to 2021. The
sequence length describes the number of time steps in
each input sequence fed to the LSTM. For this model 5
consecutive years were used as sequence length. In this
work a custom loss function is defined. The loss function
describes the difference between the actual value and the
predicted value. In the ARIMA model the MSE was used
as a simple guideline to determine the best parameters.
For the training of the LSTM model a more complicated
custom loss-function is implemented. The custom loss
function is designed to incorporate both the squared er-
ror loss and penalties for predictions that are outside cer-
tain bounds. The penalty is based on the average yearly
change in launches, which includes both increases and
decreases. Let the following definitions hold: Let L(t)
denote the number of launches in year t. The change in



launches, ∆L(t), is calculated as the difference between
consecutive years in Eq. 2.

∆L(t) = L(t)− L(t− 1). (2)

The average decline in launches, ∆L−, and the average
increase, ∆L+, are computed in Eq. 3 and Eq. 4.

∆L− = mean(∆L(t) | ∆L(t) < 0), (3)

∆L+ = mean(∆L(t) | ∆L(t) > 0). (4)

Let L(T ) denote the last known launch count in the
dataset. A custom loss function is defined to penalise pre-
dictions that deviate significantly from expected trends.
The loss function is designed to incorporate penalties for
predictions that fall below a lower bound or exceed an
upper bound in Eq. 5.

penalty lower = L(T ) + 1.8 ·∆L−, (5)

penalty upper = L(T ) + 1.0 ·∆L+. (6)

The custom loss function, L(y, ŷ), with y, ŷ the actual
value and its prediction, is then formulated in Eq. 7.

L(y, ŷ) = MSE(y, ŷ) + penalty low(ŷ) + penalty high(ŷ),
(7)

where MSE is the mean squared error, and the penalty
terms in Eq. 8 and Eq. 9.

penalty low(ŷ) = exp (max(penalty lower − ŷ,−5))− 1,
(8)

penalty high(ŷ) = 2 · (max(0, ŷ − penalty upper))2 .
(9)

The low penalty is applied when the predicted value is
lower than the threshold based on the last known value
and the average decline in launches. Similarly the high
penalty is applied when the predicted values exceed a
threshold based on the last known value and the average
increase in launches. The low penalty grows exponen-
tially, ensuring that the model does not predict unusually
low values. The high penalty grows quadratically, avoid-
ing large overestimation. Together with the squared er-
ror the final loss function ensures that the model predicts
values close to the actual ones and does not generate any
extreme values in either direction.

6. LITERATURE MODELS

The launch traffic model most commonly used in space
debris evolution studies involves repeating the launch
data from the past years. This approach is applied in
several models, such as EVOLVE [2], DAMAGE [3],
LEGEND [4], and MEDEE [5], where an eight-year
launch cycle is typically used. For the purpose of this
paper, a five-year cycle (2020–2024) has been selected.
This decision accounts for the significant increase in
launches in recent years, particularly from 2021 onward.

Using a longer cycle that includes earlier years with
lower launch rates would not accurately represent the
current trend. Additionally, only individual payloads
have been considered, with large satellite constella-
tions—such as Starlink—excluded. This exclusion
drastically reduces the total number of launches per year,
bringing the peak down from over 2,500 satellites in
2023 to approximately 600.

Another approach is to extrapolate the data from
previous years. In the work of Velerda [13] the number
of launches per year is estimated using Gompertz logistic
curves, defined in Eq. 10.

L(t) =
[
a exp(−e−b−c(t−t0)) + d

]
, (10)

where L is the number of launches in the year t and t0 is
a reference year. The other parameters are obtained by a
fit to the data ranging between t0 = 2005 − 2021. The
parameter a describes the saturation point, which is cho-
sen based on a low and high rate scenario before fitting
the curve. This way, the effect of future variations of the
total number of launches is assessed. To assess the ac-
curacy of the here described time-series models the same
approach is applied to the data used for the previously de-
scribed models. This leads to the parameters described in
Tab. 2.

Table 2. Coefficients for low and high launch rates.
Coefficient Low Rate High Rate

a 1100.000000 1500.000000
b 1.164903 1.219842
c 0.110938 0.088033
d 100.000000 100.000000

7. COMPARISON OF DIFFERENT LAUNCH
MODELS

To discuss the validity of the different launch models all
of the trained models are used to forecast the next 100
years. The result can be seen in Fig. 7. Plotted are the
historical data (blue dots), the ARIMA model (green X),
the Prophet model (purple dots), Velerda low rate (yel-
low diamond), Velerda high rate (red star), LSTM (black
triangle) and the cyclic repetition (pink pentagon). Most
notably, all models except the Prophet one show a satu-
ration point. The Prophet model keeps on continuously
linearly growing. In the year of 2122 the final number of
launches for the different models is displayed in Tab. 3.



Figure 7. The historical data and the different launch models forecasted for a time span of 100 years.

Table 3. The final number of launches for the different
launch models in the year of 2122

Model Final number of launches
ARIMA 1248
Prophet 2656
LSTM 1200

Velerda High 1600
Velerda Low 1306

Cyclic 397

The final number of launches is similar for the ARIMA,
LSTM, and Velerda [13] low rate. The Prophet model
predicts almost double this value. The cyclic repetition
severely underestimates the number of launches in com-
pared to the other models. The ARIMA model shows a
steady upward trend, Velerda [13] models are trending
upwards at a moderate rate. The Prophet shows more
aggressive growth. Notably only after the 50 years the
Prophet exceeds the other models. While most of them
reach a saturation the Prophet one keeps growing. The
cyclic repetitions is the only model that captures down-
ward trends over time. This constant upward trend (with
a saturation) might not be representative of the reality,
since historical events and economic growth can strongly
impact the number of space launches. For this reason in
future work the launch model should not only be based
on the historic data but also consider adjunct influences
such as economic investment in space.

8. EVOLUTION OF THE SPACE DEBRIS ENVI-
RONMENT

The launch models derived in this work are simulated
using COMETA, a propagator developed by Politec-
nico di Milano [14]. COMETA is a probabilistic long-
term debris environment propagator that, in its cur-
rent implementation, estimates the future evolution of
the Low Earth Orbit (LEO) region under the influence
of sources—such as launches, satellite explosions, and
fragment-intact object collisions—as well as sinks, pri-
marily Post-Mission Disposal (PMD). The model distin-
guishes between fragments and intact objects. Fragments
are represented using a density-based approach and are
propagated in time by solving the continuity equation
along specific trajectories. The evolution of their semi-
major axis and eccentricity is derived from the King-Hele
equations [15]. Intact objects, on the other hand, are indi-
vidually propagated and categorized as payloads, rocket
bodies, and, theoretically, constellations—though the lat-
ter are not considered in this study, as they are not part
of the launch models. The model divides the space into
bins based on all orbital parameters, as well as the area-
to-mass ratio. Only atmospheric drag is considered as a
perturbation, as the analysis focuses on LEO (200–2000
km).

8.1. The distribution of the launched objects

To propagate the evolution of the entire space debris en-
vironment not only the number of objects is important
but also the orbital characteristics. As mentioned, this
analysis only focuses on LEO. Therefore, the distribution
is only build based on LEO objects. The probability of
the object being in LEO is determined to be 80% and the



number of objects launched each year is adjusted accord-
ingly. Then the probability of each object category in
LEO is determined based on historical data between the
years 2017 and 2022.

Figure 8. The division of the future launches on the exam-
ple of the ARIMA forecast. 80% of objects are determined
to be in LEO and of these remaining ones they are split in
their respective object categories.

Then for the each category in LEO, a 3-dimensional
binned distribution of the semi-major axis, the eccen-
tricity and the inclination is built. From this distribution
the orbital parameters are randomly drawn for each year.
In the propagation with COMETA (see section 8.2) only
payload objects are considered. Since the majority of ob-
jects are payloads and the focus of this paper is a sensitiv-
ity analysis and not to determine the true total number of
objects, this adjustment has been made to save for com-
putational time. Therefore, in the following only the pay-
load distribution is discussed further. For better visibility
only the 2D projection of the inclination vs. the semi-
major axis (Fig. 9) and the 2D projection of semi-major
axis vs. eccentricity (Fig. 10) are plotted here. For all di-
mensions the bin size is determined to be

√
N = 36, with

N=1306 the number of payload objects between 2017 and
2022.

Figure 9. Inclination vs. semi-major axis distribution of
payloads in LEO

Figure 10. Semi-major axis vs. eccentricity distribution
of payloads in LEO

The distribution in inclination vs. semi-major axis shows
a clear cluster around an inclination of 97− 100 ◦, which
is a common inclination for Sun-Synchronous Orbits
(SSO). These are often used for Earth observation. Fur-
thermore, around 50− 55 ◦ there is another cluster. This
follows an ISS-like orbit. The eccentricity has a clear pre-
dominance around 0: the majority of LEO satellites are
in a circular orbit.



8.2. Evolution with COMETA

At each timestep, the model incorporates newly launched
satellites, distributed by launch altitude, while removing
those that reach the end of their operational life. PMD is
modeled assuming a deorbit time of 25 years for elliptical
orbits. The operational lifetime of satellites is set to eight
years—shorter than IADC’s 25-year PMD guideline [16]
but more representative of the actual lifespan of LEO
satellites. A PMD compliance rate of 90% is assumed, re-
flecting an optimistic scenario. Satellites are considered
capable of maintaining their orbits until the end of their
operational life. Beyond PMD, only satellite-fragment
collisions are estimated by selecting representative tar-
gets within each semi-major axis and inclination bin and
calculating their collision probability based on the lo-
cal fragment cloud density. Fragment generation follows
NASA’s Standard Breakup Model [17], widely used in
other evolutionary models. The explosion probability of
each intact object is determined based on historical frag-
mentation event data. The active debris removal is not
included in these simulations. The simulation spans 100
years, starting in 2022, with population data—including
launch years, orbital parameters, area, and mass—taken
from the ESA’s DISCOS database [10]. The model has
been tested and is considered reliable. However, due to
the exclusion of a significant portion of the current in-
orbit population (more than 50% being only Starlink), the
predicted number of collisions and generated fragments
is lower than the ones that can be found in [14].

The results of the simulation illustrate how modifying
the launch model, while keeping other source and sink
mechanisms constant, leads to significantly different out-
comes. Despite these variations, all scenarios exhibit a
general increasing trend in the total number of objects in
orbit. In Fig. 11, the raw data related to fragment evolu-
tion are plotted.

Figure 11. The evolution of fragments for a time span of
100 years with COMETA.

Figure 12. Comparison or real vs. fitted data of the frag-
ments for a time span of 100 years for the ARIMA model

Figure 13. The fitted data of the fragments for a time span
of 100 years for all the models

Due to the chosen time step (two years) and the distri-
bution of objects in orbital parameters across different
models, some exhibit significant jumps in the number of
fragments between time steps, in contrast to the results
presented in [18]. Since only one simulation was per-
formed for each model, preventing the possibility of aver-
aging multiple runs for a smoother result, a curve fitting
has been applied, as shown in Fig. 12 for the ARIMA
model. This adjustment is necessary because the abso-
lute values of these results should not be interpreted as
precise (for example, due to the exclusion of satellite con-
stellations). Instead, they serve as a sensitivity analysis
of different launch traffic scenarios, making the overall
trends more discernible in Fig. 13. As shown in Fig. 14,
the Prophet model predicts the most significant growth,
with a steep rise and a peak exceeding 40,000 objects by
2120. This suggests a potentially critical escalation in de-
bris accumulation, in stark contrast to the cyclic model,
which stabilizes around 20,000 objects in this simulation.
The ARIMA, LSTM, and Velarda models present a more
moderate increase, with the Velarda High Rate scenario
leading to faster debris accumulation compared to the Ve-
larda Low alternative. The cyclic model, which replicates
past launch activity, results in the slowest growth of frag-
ments, even when compared to models like Velarda Low
Rate, LSTM, and ARIMA.
All four of these models show similar trends in the ab-
solute number of intact objects; however, the increase in
the fragment cloud is over 50% for the Velarda, LSTM,



Figure 14. Sensitivity analysis for the evolution of the number of objects, fragments and total population for a time span
of 100 years with COMETA.

and ARIMA models, compared to only 30% for the cyclic
model. This discrepancy suggests that further analysis is
needed to determine how the differences in launch mod-
els contribute to the varying fragmentation rates, given
that all other conditions remain equal. Regarding intact
objects, the trends for all models reflect the characteris-
tics of their respective launch models. In Fig. 14, the final
two simulation steps have been disregarded due to an ob-
served sudden drop, which is likely caused by a bug in the
code rather than a real physical phenomenon. Although
these data points are included in the plot, they should not
be considered representative of actual orbital behavior.
Moreover, a key limitation of the cyclic model is the evi-
dent oscillation in the number of objects over time. This
fluctuation is directly linked to variations in past launch
rates, which have increased dramatically from approxi-
mately 50 to over 200 launches per year in LEO, even
excluding large satellite constellations. Despite limiting
the repeated launch cycle to just five years, the model still
produces traffic variations that lack a clear trend, making
it an unrealistic representation of real-world conditions.
In contrast, the other models offer a more representative
outlook, with some exhibiting an optimistic steady-state
behavior, while others suggest a pessimistic scenario of
continuous and uncontrolled debris growth. These find-
ings highlight the critical role of launch patterns in the
long-term sustainability of the orbital environment and

emphasize the need for mitigation strategies to prevent
an unsustainable increase in space debris.

9. OUTLOOK AND CONCLUSION

In this work different methods for forecasting the launch
traffic have been investigated. The here presented launch
models range widely in the complexity behind them.
Going from a simple repetition of the last years, to a
curve fit, to statistical models and finally, a machine
learning model. While their intricacy varies, they all
arrive at very similar final launches for the time span
simulated (see Fig. 7). Most of them show a steady
upward trend with a saturation point. There are two main
outliers: The Prophet model and the cyclic model. The
Prophet model keeps on growing and exceeds the other
models after roughly 50 years. The cyclic model instead
is the only model which simulates also a downward
trend for future launches. While currently the number
of launches is rising drastically, this rise cannot go on
forever. Therefore, a model which also simulates a
drop in launches is realistic, especially looking at the
historical data. As seen in Fig. 4 the historical data
shows a clear seasonality. In the subsequent work this
seasonality should be further investigated and other data



such as economic revenue or orbital parameters could be
correlated to launch traffic. With the availability of more
data, the use of more complex models such as LSTM
could yield a real benefit. The LSTM model is suited to
help in finding the cross-correlation between the multiple
datasets.

Furthermore, a sensitivity analysis using the COMETA
software has been performed. These results should not be
taken as representative of the future number of objects,
but show the definite influence the launch traffic has on
the population as a whole.The number of objects, and
especially the number of fragments, shows trends that
closely follow the launch projections, emphasizing the
direct correlation between launch activity and long-term
debris accumulation. The fragmentation growth rate dif-
fers significantly between models, with more optimistic
launch scenarios leading to slower debris proliferation,
while high-growth scenarios result in an escalating
number of fragments. This illustrates the importance
of long-term launch planning and debris mitigation
strategies to prevent uncontrolled orbital debris buildup.
This work has served a a Proof of Concept of using the
presented launch models in conjunction with a space
debris environment propagator. In future work this link
will be improved and more simulations will be run,
delivering statistically relevant results.
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