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ABSTRACT

Multistatic radar networks are a promising concept to ac-
curately determine the orbital parameters of objects in
space. The assessment of their performance, especially
in an analytical manner, poses a challenge, due to the nu-
merous degrees of freedom in designing a network lay-
out. This paper uses a simulation based approach, to
assess a network with two nodes where the distance be-
tween them and their geographical arrangement are var-
ied. The ability to determine orbital parameters are com-
puted for a set of different orbits. For each one of them es-
timated radar observations are generated using a stochas-
tic model. The parameter estimation is modeled as either
grid based (i.e. using range, Doppler, etc. cells) or grid
free (e.g. using nonlinear gradient based estimators). The
orbit determination is characterized using lower bounds
of a tracking based method. A goal of the paper is to find
a single best distance between nodes, leading to the least
possible error. However, this proved to not exist, at least
not for a wide range of different orbits.

Keywords: Space Surveillance; Multistatic Radar Net-
works; Simulation; Radar Signal Processing; Orbit De-
termination.

1. INTRODUCTION

With the increasing amount of active and inactive satel-
lites in orbit, their accurate observation becomes more
and more important to avoid fatal collisions in space. Ob-
servations of objects in space are typically performed us-
ing optical instruments (see [1, 2] as examples) or radar.
Radar has the inherent benefit of being independent on
weather conditions and the ability to determine the range
of an object (which require laser ranging for optical ob-
servations). For radar measurement, the use of large
monostatic systems is a well tested approach. The radars
can consist of powerful single dish antennas, such as the
TIRA [3] system or comprised of a phased array such as
GESTRA [4, 5]. In both cases objects are detected and
tracked over time in order to gather enough information

to reliable determine their orbits. Multistatic radars [6]
offer, in general, the additional benefit of improved cov-
erage and exploitation of varying aspect angles and the
bistatic radar cross section (RCS) of a target. The use
of radar networks takes this a step further by combining
mono- and multistatic systems and jointly process the ob-
tained observations. One can interpret networks as using
multiple observations from different locations in space to
determine an orbit as opposed to the using multiple ob-
servations over time. Examples for networks for space
surveillance applications are EISCAT (European Inco-
herent Scatter Scientific Association) [7] and GRAVES
(Grand Réseau Adapté à la Veille Spatiale)) [8].

The use of a radar network makes the assessment of
the performance of the determination of orbit parameters
more complicated as it introduces new degrees of free-
dom. The number of nodes in the network, their rel-
ative position to each other, the orientation of the field
of view (FoV) of the transmitter and in general the type
of nodes (either transmitter, receiver or transceiver) will
most likely impact the performance. Since it is not fea-
sible to analytically or theoretically investigate the radar
network a simulative approach is used instead. In this pa-
per the work of [9] is extended, by investigating the per-
formance of a two node network, with varying baselines
and two different orientations (north-south or east-west).
The trajectories of objects in different orbits were simu-
lated over a duration of four weeks. For a simulated FoV
of a transmitter, observations of the network nodes are
derived using a stochastic model of the signal processing
framework. Finally, orbital parameters are assumed to be
determined using a tracking based approach with respec-
tive performance bounds being used to measure the accu-
racy of the orbit determination. Furthermore, the orienta-
tion of the FoV is set to be either along or across the line
connecting the two nodes. Two different signal process-
ing strategies are considered. For the grid based method
the accuracy of the simulated observations is mainly lim-
ited by the chosen grid size, where the grid free case sim-
ulates an estimation procedure that reaches the Cramer-
Rao lower bound (CRLB). The obtained results show,
as expected, a much better performance in terms of lo-
cation and velocity error in the grid free case. Another
aim of the paper is to investigate the existence of a best
distance between the nodes, which leads to the smallest
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Figure 1: Exemplary setup with a vertical network, a hor-
izontal FoV and a single object in orbit

possible error. However, this much can be anticipated,
such a baseline apparently does not exist, at least not for
all possible orbits.

2. SIMULATION APPROACH

2.1. Radar Network Setup

The simulations performed for this work are based on
the ones conducted in [9]. The general setup is to have
two nodes in a network, where one is equipped with
both a transmitter and a receiver while the second node
is a receiver only. The two nodes are separated either in
a north-south or east-west manner with some length of
the baseline. The former is referred to as vertical net-
work or V-Net and the latter horizontal network or H-
Net. In total 20 baselines are considered in the range
[1, 50, 100, . . . , 950] km. The midpoint or center of the
baseline is fixed in each case at N50◦30′ E10◦0′, denot-
ing some arbitrary location in central Germany. The po-
sition of the transceiver and receiver nodes respectively
is given by half the baseline relative to the center of the
network. This means, with increasing baseline the loca-
tion of both nodes is changing along the predetermined
direction.

The radar system assumed in this work is equipped with
phased arrays on each node and is working in a search
mode. This means the goal is to monitor a rather extended
region of space instead of, for example, following the tra-
jectory of a specific object. A major benefit of a phased
array system, is the possibility to form and steer transmit
or receive antenna beams free of inertia in very rapid suc-
cession. In a pulsed radar, where multiple pulses are ag-
gregated to form a coherent processing interval (CPI), it
is therefore possible to quickly and repeatedly scan a cer-
tain (angular) region by placing beams at different (angu-
lar) positions for each CPI. A predefined FoV is therefore
determined as a collection of beam positions that are pe-
riodically addressed. The term search fence is sometimes
used to emphasize that the FoV is covered by a number
of beams instead of being observed at once.

For the work presented in this paper the FoV is defined
from the point of view of the transmitter, with both re-
ceivers being assumed to adjust their beams in a way that

a− rE [300, 400, 500, . . . , 1600]km
i [45, 47, 49, . . . , 89] ◦

Ω 307.1577◦

ω 91.5062◦

e 0.000 235 2
ν 0

Table 1: Classical orbital elements of the simulated ob-
jects

the volume illuminated by a transmit beam is fully cov-
ered. Due to the multistatic nature of the network this
implies that the remote receiver (i.e. second node in the
network) may need to use more than one beam to cover
a specific transmit beam. To not further introduce addi-
tional degrees of freedom in the simulation, the FoV is
always centered towards the local zenith, i.e. upwards,
right above the transmitter. The FoV has a fixed angular
extent of 90◦ × 15◦ with two distinct orientations hor-
izontal and vertical respectively. In the results sections
the terms H-FoV and V-FoV will be used to distinguish.
The orientations follow the definitions of the extent of
the networks. When the longer angular extent of the FoV
is orientated along the baseline of a horizontal network it
will be referred to as horizontal FoV. In the opposite case,
of the longer extent being along the vertical baseline, the
term vertical baseline will be used. Four different combi-
nations can therefore be identified, where for each type of
network, the FoV can be either aligned along the baseline
or perpendicular to it. An example is illustrated in Fig-
ure 1 showing a network being extended along the ver-
tical axis (transceiver (Tx/Rx) and second receiver (Rx)
are separated in north-south direction). The FoV is hori-
zontally oriented in this case with the individual transmit
beams that make up the search fence being shown as indi-
vidual cones. In addition a single orbit is illustrated over
roughly one and a half orbital periods, to illustrate how it
eventually enters the FoV.

2.2. Generation of Observations

With the network layout and FoV setup the different or-
bits or rather objects in orbit can be simulated. The tra-
jectories of a number of objects will be simulated over
a duration of four weeks. For each object it will be de-
termined if and when it enters the FoV and what param-
eters a hypothetical signal processing framework in the
receivers would return. Orbits are generated as Keplerian
orbits [10, Chapter 2] based on a regular grid in inclina-
tion (i) and semimajor axis (a) of the classical orbital ele-
ments [10, Section 2.4.1] associated with them. From the
Table 1 it can be seen that the remaining orbital elements
are fixed to rather arbitrary values. Since each object is
observed over a rather long time span (four weeks), it can
be expected that regardless of the true anomaly ν, argu-
ment of perigee ω and longitude of the ascending node Ω
the object will eventually pass through the search fence.
Therefore, their concrete values (in conjunction with a
fixed eccentricity e) should not influence the investiga-



RCS 5m2

average power 20 kW
dwell time tdwell 0.2 s
wavelength λ 0.2m
bandwidth B 1MHz
3 dB beamwidth Ω3dB 0.105 rad

Table 2: Radar and target parameters

tions conducted for this paper. The inclination i on the
other hand determines more or less directly if an orbit
ever crosses the FoV and under which angle. The semi-
major axis a is largely influencing the achievable signal
to noise ratio (SNR) in both a mono- and bistatic config-
uration. It should be noted that Table 1 shows a − rE
instead of the semimajor axis a. This is the difference
between the semimajor axis and the average earth radius
and is done primarily to present the values in a more in-
tuitive manner as an approximate measure of the height
of an object above ground.

The transmitter of the radar network is assumed to be
in constant search mode continuously cycling through
the different beam positions of the search fence with a
fixed dwell time of each beam. For each of the 322 or-
bits/objects it is determined when, if at all, they are en-
tering an active beam (i.e. a beam is active when it is
its turn in the search fence). The dwell time is set to be
tdwell = 0.2 s and denotes to largest time span an indi-
vidual object is observed in a given beam. It is possible
that the observation time is shorter than the dwell time,
when either an object has a high (angular) velocity or is
passing through a small segment of the area covered by a
beam. It is furthermore possible that an object is observed
multiple times during an orbital period (or overflight) if
it moves slow enough to be captured during multiple cy-
cles of the search fence. This is more likely to happen for
orbits with higher altitudes as they tend to have smaller
angular velocities.

Based on the possible detections (i.e. when an object
crosses a beam) actual detections are determined using
their probability of detection (PD). The PD is determined
according to the equations given in [11, Table 15-2] for a
Swerling 0 target using a square law detector. As a pre-
requisite, the SNR needs to be computed which is done
as defined in [11, Section 2.10] under the assumption of
coherent integration during the observation time. The re-
quired parameters of the radar as well as the assumed
RCS of the target are listed in Table 2.

After a detection is confirmed by its PD, observation pa-
rameters are generated. They represent the parameters
an actual radar signal processing framework would ob-
tain and encompass distance to the node r (range), radial
velocity vr and direction of arrival Ω (denoted as uv or di-
rection cosine components). The basis of the observation
is always the ground truth as determined by the simulated
orbital trajectory and projection to the respective receiver
location. Any actual radar would however be influenced
by unavoidable measurement noise and potential limita-

tions of the signal processing algorithm used. In order
to reflect this, artificial noise is added to the ground truth
values. Each observed parameter follows a normal distri-
bution with the ground truth as its mean.

r̂ ∝ N
(
r0, σ

2
rn + σ2

rp

)
v̂ ∝ N

(
v0, σ

2
vn + σ2

vp

)
Ω̂u ∝ N

(
Ωu0

, σ2
Ωn

+ σ2
Ωp

)
Ω̂v ∝ N

(
Ωv0 , σ

2
Ωn

+ σ2
Ωp

)
(1)

Please note, that in practice a radar would determine the
multistatic range (sum of distances to transmitter and re-
ceiver) but in the simulation the monostatic one is used.
By design there is always at least one monostatic config-
uration for each transmitter in the network, allowing to
estimate the distance of the object to the transmitter and
subsequently the one-way range to any receiver. The vari-
ance of the distribution is generally determined by two
terms.

σ2 = σ2
n + σ2

p (2)

The first term, σ2
n, denotes the inherent random devia-

tion of an estimated value from its true value caused by
measurement noise. If an estimator uses the maximum
likelihood principle (and is unbiased) this type of vari-
ance is ultimately lower bounded by the CRLB [12]. For
the investigations done in this paper the approximations
for the CRLB as defined in [13] are used. The variance
σ2
n depends on the concrete SNR as it is caused by mea-

surement noise. The second term, σ2
p, on the other hand

is independent of the SNR and denotes deviations caused
by the signal processing algorithm. If a parameter esti-
mation algorithm uses a grid-based search, its accuracy
is ultimately limited by the size of the grid. In radar sig-
nal processing the range- and doppler-cell size can define
such grid sizes. Both are actually resolution limits as they
denote the limit where it is not possible anymore for an
algorithm to decide if one or more targets are simultane-
ously present. Such limits typically do not consider the
possibility of using super-resolution or multi-target pa-
rameter estimation methods to further increase the resolu-
tion limit. If the granularity of a search grid is set to be ∆,
the largest possible error caused by the grid is ∆/2. This
is similar to the quantization of an analog signal and the
standard deviation of the error, assuming the true value
is sufficiently randomly distributed, can be approximated
as follows [11, Section 14.3].

σ2
p =

∆2

12
(3)

For the simulations at hand the following values for the
deviation caused by the signal processing are used.

σrp =
0.886c0

2B
√
12

= 38.8m

σvp =
λ

2tdwell

√
12

= 0.144m s−1

σΩp
=

Ω3dB

10
= 0.0105 rad (4)



With c0 being the speed of light. The values for range
and radial velocity are closely related to typical cell sizes.
σΩp

on the other hand is a coarser approximation as
it relates the accuracy of the direction of arrival to the
beamwidth of the transmit beam. It must be stressed
again that all variants of σp are determined by the sig-
nal processing algorithm chosen and are thus, to some
extent, adjustable by the operator. The deviations caused
by the measurement noise, σ2

n, on the other hand are in-
herent limits of the data itself. Depending on the SNR
of a detection one of the two terms dominates the overall
accuracy of the parameters. At a rather low threshold of
the SNR, the accuracy cannot be further increased when
a grid-based method is used. As an example, for the sim-
ulations setup used here, at a SNR > 6 dB the total vari-
ance is dominated by the grid part (i.e. σrp > σrn ). Due
to the RCS and the upper bound on the orbit height of
the target, the resulting SNR normally well exceeds this
limit. Therefore, results will be shown later on where the
accuracy is only limited by the CRLB denoting a situation
where a grid-free (superresolution) technique is assumed
yielding the theoretical best accuracy achievable.

2.3. Determination of Orbit Accuracy

With the detections and their associated observation pa-
rameters the orbits can be determined. The location and
velocity (in Cartesian space) will be used as state vectors
instead of the orbital elements. The procedure applied is
the same as has been used in [9] and details can be found
there. In short, for each overflight of an object/orbit all
possible observations are gathered and used as an input
for a Kalman filter based tracker. The filter is adapted to
predict targets following a Keplerian motion. The pro-
cedure is sequentially repeated for the whole simulation
duration of four weeks. In order to evaluate the accuracy
of the tracking process the posterior Cramer-Rao lower
bound (PCRLB) [14] is employed. For each overflight
the PCRLB is computed and serves as an (optimistic) es-
timate of the state covariance matrix. The computation
of the PCRLB require a current state and state covariance
matrix as input. Since there is typically a long time span
between subsequent overflights, the next state covariance
matrix cannot be easily predicted from a previous one due
to the Keplerian motion. Therefore, an experimental ap-
proach is used [9] for the prediction where the covariance
matrix is estimated using a Monte-Carlo approach.

The PCRLB or rather the state covariance matrix of the
last usable overflight will be used to ultimately determine
the accuracy with which an orbit can be estimated. The
covariance matrix has six dimensions denoting three co-
ordinates in Cartesian space in conjunction with three ve-
locity components. When the covariance matrix is inter-
preted as a six dimensional error ellipsoid, its determinant
can be used as a measure of its volume and can be used
to compare different matrices.

V =
√
det

(
Σθ̂θ̂

)
(5)

With θ̂ = [x̂, ŷ, ẑ, v̂x, v̂y, v̂z] being the six dimensional
state vector and Σθ̂θ̂ the associated covariance matrix.

The volume of a six dimensional ellipsoid can be difficult
to interpret, which is why in this work, as opposed to [9],
the covariance matrix is split into a location and velocity
matrix.

Σθ̂θ̂ =

[
Σθ̂r θ̂r

· · ·
· · · Σθ̂v θ̂v

]
(6)

For both submatrices the determinant and therefore a sub-
error-volume is computed.

Vr =

√
det

(
Σθ̂r θ̂r

)
, Vv =

√
det

(
Σθ̂v θ̂v

)
(7)

The relation V = Vr · Vv only holds if the location and
velocity terms are uncorrelated (i.e. Σθ̂r θ̂v

= 0) which is
an assumption made for this investigation.

3. RESULTS

In this section the results for the location and velocity
error volume are presented for different orbits and net-
work configurations. The values of the error volumes
will be shown in logarithmic scale, using the decadic
logarithm (log10 (V )). This is necessary since the ob-
tained values can vary over multiple orders of magni-
tude, which is difficult to represent in linear scale. An
intuition for the meaning of the error volume can be the
edge length of an equivalent cube instead of an ellip-
soid. It can be computed as 3

√
V such that a value of

e.g. log10 (Vr) = 9 is equivalent to an error cube with
1 km edge length. It must be noted that the error vol-
ume or equivalent cube length says nothing about the dis-
tribution of the error in the three coordinate axes. This
means an error volume can be large if the location error
is large only along the trajectory but not across it. Con-
sider as an example the angular limits of (4). If the ac-
curacy of the angular estimates is 0.0105 rad in both u-
and v-coordinates, the error area spanned at a distance
of 500 km is (sin (0.0105) · 500 km)

2 ≈ (5250m)
2. To-

gether with the range accuracy of 38.8m this yields an

equivalent cube length of 3

√
(5250m)

2 · 38.8m ≈ 1 km.
This seemingly large error is, however, mainly due to the
inaccuracy in the angular estimates of the simulated sig-
nal processing scheme. In case a specific orbit cannot be
observed by the network, for example if the object never
enters the FoV or an insufficient number of detections
is provided to the orbit determination algorithm, a blank
value will be shown in the plots (white background).

For all the results it must be borne in mind that the simu-
lations contain many variables that can lead to a specific
error volume. In general one would expect that the higher
the SNR the better the results. However, due to the ef-
fects of a grid based signal processing this might not be
reflected in the results. Furthermore, the errors are lower
the more detections or the more overflights are passed to
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Figure 2: H-Net 1 km baseline error location Grid
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Figure 3: H-Net 1 km baseline error velocity Grid

the orbit determination and tracking framework. The ge-
ometrical constellation on the other hand, either due to
the network layout, FoV orientation or orbital parameters
might counteract leading to an unexpected decrease of
accuracy. Therefore, it will in general not be possible to
name a single cause for a specific behavior of the errors
volumes shown in the following sections.

3.1. Results 1km Baseline Error

For the first example the second receiver is only 1 km
away from the transceiver node. In essence, this creates
a second monostatic configuration. The extent of the net-
work in either horizontal or vertical direction makes no
difference, which is why results are only shown for the
horizontal case. There is, however, a dependency on the
orientation of the FoV. Figure 2 shows the results for
the error in terms of location, while Figure 3 shows the
results for the velocity.

It can be seen that in general the error is larger for lower
orbits and higher inclinations. Although a lower or-
bit should exhibit increased SNR the effect appears to
be counteracted by a shorter time an object spends in
the FoV during one overflight. The effect is more pro-
nounced for the horizontal FoV shown in Figure 2b. It
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Figure 4: V-Net 500 km baseline error location Grid

could be speculated that this is due to, in general, un-
favorable geometric constellations as the object passes
through the FoV across the longer extent. This means
that the object may stay longer in the vertical FoV when
passing through in north south direction and thus gener-
ating more observations. An effect that will be seen also
later on is that the smallest error volumes (for location
and to lesser extent velocity) can be seen for mid-range
orbits at an inclination of around 50◦. Whether this just
happens to coincide with the latitude of the center of the
network (N50◦30′) has yet to be investigated.

3.2. Results 500km Baseline Error

For the second example the distance between the
transceiver and the second receiver is increased to
500 km. Since the second receiver now forms a proper
bistatic configuration with the transmitter the results are
shown for both the vertical and horizontal network. Fig-
ure 4 depicts results for the location error of the vertical
and Figure 5 of the horizontal network respectively. The
effect of larger location errors at low orbits is less strong
but still noticeable, especially for the horizontal network
with horizontal FoV. The valley of low error at mid-range
heights and inclinations around 50◦ is yet again notice-
able. Overall, it can be concluded that the error in loca-
tion is lowered over a wider range of possible orbits.

The results for the velocity error are shown in Figure 6
and Figure 7 for the vertical and horizontal network re-
spectively. Please note, that the colorbar (range of error
values coded in color) is stronger limited compared to
the results for the 1 km network. This is done to show the
distribution of error in regions where the error is small.
The outliers at low orbit heights, where the error is rather
large, are hereby aggregated with the same (yellowish)
color. It can be seen that the overall behavior of the ve-
locity error is quite similar to the location. With a general
preference of the vertical network and vertical FoV and
the valley of low error.
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Figure 6: V-Net 500 km baseline error velocity Grid
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Figure 7: H-Net 500 km baseline error velocity Grid
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Figure 8: V-Net optimal error location Grid
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Figure 9: H-Net optimal error location Grid

3.3. Results Optimal Error

After analyzing the results for the two distinct network
configurations using 1 km and 500 km separation, the
question arises if there is a specific baseline that is to be
preferred in all cases. The conclusion in [9] already in-
dicated that this is not the case. From a theoretical point
of view it would also be surprising if there is a one size
fits all solution regardless of particular orbital parameters.
However, the investigations in [9] did not fully consider
if there are optimal baselines for parts of the orbital pa-
rameters.

The results presented in this section, show the smallest
possible error encountered for a given orbit. This means
for each orbit (i.e. orbit height and inclination) the er-
rors of all the 20 different baselines are compared and
the smallest one is depicted. The plots are again split
into location (Figure 8, Figure 9) and velocity (Figure 10,
Figure 11) errors and the different network types. Please
note that the colorbar is modified, compared to the results
of the 1 km and 500 km networks to make the plots easier
to read. One of the purposes of investigating the smallest
possible error is to asses how much off the error value for
a particular baseline is from the optimum. For example,
can 500 km be chosen as the baseline of choice? Is the
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Figure 10: V-Net optimal error velocity Grid
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Figure 11: H-Net optimal error velocity Grid
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Figure 12: V-Net V-FoV optimal baseline

error at that baseline close to the smallest possible error
or would too much potential be given away?

From the locations errors (Figure 8, Figure 9), it can be
seen that the smallest possible error volume can be as
low as 1m3. The largest minimum error volume appar-
ently does not exceed an equivalent cube length of 100m,
except for the low orbits in the horizontal network with
horizontal FoV. Please be reminded again that the error
volume and therefore equivalent cube length do not dis-
tinguish skewed error ellipsoids. In general the range of
errors (min vs max) is thus reduced compared to the re-
sults of a single baseline.

What is striking in the results is that the valley of low er-
ror is also present. Note, when the baseline is increased,
the center of the network stays at a fixed latitude but both
the transceiver and second receiver nodes are moving.
Therefore, it is not clear if the location of the valley of low
error at around 50◦ inclination is a feature of the orbits
alone or a result of the relation between location of the
center of the network and a particular inclination (range).
The existence of the valley can be an indication that the
accuracy of the determination of some orbits is funda-
mentally limited, no matter the choice of network. It is
the expectation of the authors, that it might be possible to
shift the location of the valley, by altering the orientation
of the FoV and position of the center of the network, but
it won’t be possible to make it disappear entirely.

3.4. Results Optimal Baseline

The baseline at which the minimal error volume occurs
is presented in this section. The arrangement of plots is
altered, to show the results for location together with ve-
locity for different network and FoV configurations. This
is done, since ultimately a chosen baseline should be ap-
plicable to provide optimal error volumes in both location
and velocity. The colorbar in the plots indicates the base-
line in km.

Similar to the results presented in [9], there appears to
be no clear indication for a single best baseline. For
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Figure 13: V-Net H-FoV optimal baseline
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Figure 14: H-Net V-FoV optimal baseline

the vertical networks, shown in Figure 12 and Figure 13,
there appears, however, to be a preference for larger base-
lines towards the lower inclinations and possibly higher
to mid-range orbit heights.

For the horizontal networks, Figure 14 and Figure 15 in-
dicate a preference for larger baselines only for the mid-
range orbits and in general less dependency on the incli-
nation. There appears to be little difference between the
results regarding the location and velocity error.

Unfortunately, the results presented so far do not provide
an indication as to how much the error varies if a subop-
timal baseline is chosen. For example, consider a vertical
network with vertical FoV(Figure 12). A shorter base-
line of say 200 km is chosen, since shorter baselines tend
to be preferable for lower orbits and higher inclinations.
It is not possible to determine from the plots alone how
close the error at 200 km is to the optimal baseline. Fur-
ther work is needed to evaluate the evolution of the er-
ror volume along the baseline lengths and inspect if it is
somehow proportional to the baseline length at all.
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Figure 15: H-Net H-FoV optimal baseline
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Figure 16: H-Net 1 km error location high resolution

3.5. Results High Resolution Processing

As mentioned in subsection 2.2 there are two random
processes that influence the generation of observations
for the simulations. The first characterizes the inherent
randomness of estimated parameters due to measurement
noise (i.e. finite SNR), while the second emulates the
effect of a grid based processing procedure with limited
step size. The step size chosen for the simulation is such
that it dominates the variance of the generated parameters
already at rather low SNR values. If a virtually grid-free
estimator is used (such as gradient based nonlinear max-
imum likelihood estimators) a much lower variance can
be achieved that reaches the theoretical limit imposed by
the CRLB.

The plots in Figure 16 show the results for the location
error of a network with 1 km baseline similar to subsec-
tion 3.1. The results for the velocity error are not shown
as they provide the same conclusions. However, all val-
ues for σp are set to zero and thus disabling the impact
of a processing grid. The values of the error volumes are
overall much smaller compared to the grid case. Further-
more, the larger errors for low orbits heights disappeared
and there is a general trend of increasing error with in-
creasing orbit height noticeable. This trend could be ex-
plained with the decreasing SNR as the orbit heights in-
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Figure 17: V-Net 500 km error location high resolution
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Figure 18: H-Net 500 km error location high resolution

crease and thus the CRLB also increases. The valley of
low error is, if at all present, only weakly visible. In gen-
eral it appears that the high accuracy of the estimated pa-
rameters compensates for any geometrical effects. This is
also supported by the results for 500 km baseline shown
for the location error in Figure 17 for the vertical and in
Figure 18 the horizontal network respectively.

The outcomes for the minimal error volume are omitted
as they show the same tendency. This means that the
trend of higher errors is towards higher orbits (presum-
ably due to the decreasing SNR) and less variation with
respect to the inclination. Regarding the resulting base-
line of minimal error the conclusions are similar to the
grid based processing in that no clear favorite can be de-
termined. If anything, the best baselines may be slightly
smaller, probably caused by higher baselines yielding
higher ranges to the targets and thus smaller SNRs.

It must be noted that the case of high resolution pro-
cessing as assumed in the simulations is most probably
only of theoretical value. Due to the high achievable
SNRs, the CRLB is typically very low. This results in
highly accurate estimates for especially the range. The
estimates can be as close as a few wavelengths to the
ground truth. While this is perfectly normal in theory, it
is highly questionable if the assumption of a single target
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Figure 19: V-Net optimal error baseline high resolution
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Figure 20: H-Net optimal error baseline high resolution

with a single reflecting point is valid in practice. Tar-
gets with RCSs large enough to create high SNRs are
most probably extended, with multiple scattering or re-
flections points. Thus, the signal received from the target
is not that of a single one anymore but the superposition
of many reflections requiring in general a multitarget esti-
mation framework. While such frameworks exist (super-
resolution techniques do in fact rely on jointly estimating
multiple signals), they were not employed in the simu-
lations at hand. Furthermore, super-resolution requires
accurate knowledge about the behavior of the radar, in
terms of frequency response, waveform of the transmit
signal and calibration of the antennas used. Such knowl-
edge is not necessarily available for all types of radar sys-
tems. Nonetheless, the investigations conducted here al-
low to asses what is theoretically possible.

4. CONCLUSION

The aim of this paper is to present a simulation frame-
work to asses the capabilities of a network of two radars
to detect objects in space on a Keplerian orbit and deter-
mines their orbital parameters. The work is extending [9]
by evaluating networks with both horizontal and vertical
oriented baselines in conjunction with different orienta-



tions of the FoV. Observations from the radar nodes are
simulated using objects in Keplerian orbits and random
processes. The randomness is caused by inevitable mea-
surement noise and possible quantization effects when a
grid based signal processing scheme is used. The accu-
racy of orbit determination is verified using the PCRLB
of a tracking based approach. A major conclusion is
the presence of a valley of low error which denotes a
range of orbit inclinations and heights where the error,
both for a specific baseline and the minimal error over
all baselines, is lowest. It is yet to be determined how
this correlates with the location of the center of the net-
work and the direction of the center of the FoV. As ex-
pected, a single best baseline for all orbits could not be
found. However, a different distribution of optimal base-
lines between a horizontally or vertically aligned network
was found. If the range of orbits is further restricted (i.e.
smaller range of inclination and heights) it is possible that
a best baseline can be identified. It is unlikely that there
is just one network configuration that fits to all orbits.
The impact of a grid based signal processing scheme was
also analyzed. When the accuracy of estimated observa-
tion parameters is limited by the grid size, instead of the
CRLB, the choice of the network layout appears to have a
stronger impact on the determined orbital parameters. In
the future further investigations should be performed to
asses how feasible high resolution methods are for space
surveillance radars and if they truly lead to performances
less depending on the network geometry (and potentially
more on the sheer number of nodes).
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