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ABSTRACT 

The rapid growth of the space catalog over the past few 

decades, and the anticipated trends towards proliferated 

constellations in the future, demand automation in 

collision avoidance procedures. However, most 

processes rely on state uncertainty information for both 

primary and secondary objects, which is not included in 

public space catalogs. This paper introduces a machine 

learning-based framework for generating synthetic 

covariances for such catalogs. Unsupervised learning 

techniques are used to discover natural data relationships 

within a database of historical Conjunction Data 

Messages. Neural networks are then trained to map the 

relationship between physical parameters and covariance 

trends. The result is a framework that enables improved 

collision risk assessment for spacecraft operators. 

1 INTRODUCTION 

The recent surge in space activity has exacerbated the 

orbital debris problem – the European Space Agency 

currently approximates the Earth debris population to be 

greater than 130 million. Of the millions of resident space 

objects (RSO) in orbit, only about 10,000 are operational 

satellites. Industry trends toward proliferated 

constellations for commercial, civil, and defense 

applications will accelerate the growth in the number of 

space objects, both functional and non-functional. Many 

future missions are planned for operation in Low Earth 

Orbit (LEO), a valuable yet already congested region. 

Already the effects of the growing debris population are 

apparent as the number of collision avoidance maneuvers 

(CAM) performed by the International Space Station 

within the past several years has increased drastically.  

To avoid the dire consequences posed by a potential 

collision, satellite operators rely on designated collision 

avoidance (COLA) groups to monitor the debris 

environment, predict close approaches, and provide the 

information necessary for planning avoidance 

maneuvers. The 18th Space Defense Squadron (SDS) 

operates the U.S. Space Surveillance Network (SSN) to 

track RSOs and the associated tracking information is 

published in the Special Perturbations (SP) catalog. 

Typically, once a potential conjunction is identified, 

information concerning the event will be provided to 

spacecraft owners in the form of Conjunction Data 

Messages (CDM) at regular intervals. COLA operators 

monitor the evolution of the event via these CDMs to 

determine if a CAM is necessary. In situations when a 

CAM is required, the operators will design a maneuver 

in-house but must deliver the post-maneuver ephemeris 

to the 19th SDS for additional conjunction screening. The 

screening process is human-in-the-loop intensive and 

relies on antiquated technologies, and consequently can 

be time-consuming. There is also no guarantee the first 

designed CAM will pass further screening, potentially 

requiring multiple iterations between the operator and 

19th SDS. 

As the space catalog continues to grow, it is infeasible to 

rely entirely on humans-in-the-loop for COLA processes 

and automation is necessary. However, while the SP 

catalog is available to COLA operators and is suitable for 

some basic analyses, the catalog does not include orbit 

determination uncertainty on any objects. This 

covariance information is necessary for more thorough 

risk assessment, such as calculating the probability of 

collision (Pc) between the primary satellite and any 

secondary object. This limitation restricts satellite 

operators to be reliant on the increasingly obsolescent 

technologies in-place today. 

This paper introduces a technique to approximate the 

covariances of objects in the space debris catalog using 

machine learning (ML). Unsupervised techniques are 

applied to a large dataset of historical NASA CDMs to 

systematically discover relationships between features 

like orbital state and object size, and the orbital 

uncertainties of secondary objects. Natural clusters in the 

dataset are extracted and a neural network (NN) learns 

the high-dimensional mapping between the input features 

and object covariances.  

2 RELATED WORK 

The use of historical CDMs to derive state uncertainties 

was first introduced as part of Assessment of Risk Event 

Statistics (ARES), a module in the European Space 

Agency’s (ESA) Debris Risk Assessment and Mitigation 

Analysis (DRAMA) toolkit [1]. ARES provides 

spacecraft operators with statistics concerning the 
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frequency of conjunction events and required CAMs 

between a given spacecraft and the Earth debris 

environment. To determine if an avoidance maneuver is 

necessary, operators use a combination of metrics such as 

miss distance, Pc, and Mahalanobis distance (MD), with 

Pc commonly being the primary decision factor. 

Calculating Pc and MD, however, requires the orbital 

state uncertainties of the primary and secondary objects 

involved in the conjunction. While the primary object 

covariance is often known by the spacecraft operator, 

public space catalogs, such as the SP Ephemeris catalog 

provided by SpaceTrack, do not contain covariance 

information on secondary objects. Therefore, in order for 

ARES to provide statistics on expected CAMs, the tool 

must be able to estimate expected covariance values for 

different classes of debris impact flux. 

Originally, in DRAMA 1, a Two-Line Element (TLE) 

analysis provided these uncertainties by comparing states 

propagated using the Simplified General Perturbations 

(SGP4) model to those propagated in a high-fidelity 

numerical model [2]. The state differences are compared 

in a radial, along-track, cross-track (UVW) frame and the 

associated covariances used in a look-up table. With the 

introduction of Conjunction Summary Messages (CSM), 

the DRAMA 2 covariance estimation model was 

augmented using the newly added data in the CSMs, with 

the original TLE analysis providing context in cases 

where CSMs were not available. DRAMA 3, the most 

recent iteration of the toolkit, currently leverages 

covariance data from a historical database of millions of 

CDMs. The DRAMA 3 approach divides the covariance 

lookup table into several classes based on physical 

parameters such as object size and orbit eccentricity, 

perigee, and inclination [3]. For each physical class, the 

UVW uncertainties are represented by a linear regression 

model. The regression model is fit using the covariance 

values contained in CDMs belonging to the given class. 

Recently, the German Space Operations Center (GSOC) 

has extended this approach to their database of historical 

CDMs for use with SpaceTrack’s SP Ephemeris catalog 

[4]. Similar to DRAMA 3, the CDM database is 

categorized into distinct domains based on combinations 

of various physical characteristics. In addition to those 

used by the DRAMA 3 team, the GSOC authors 

introduce an additional classification parameter, the 10.7 

cm solar radio flux (F10.7). The authors also add two 

additional classes to both the perigee altitude and 

inclination domains to account for objects in high-

altitude and retrograde orbits. After categorizing the 

CDMs to their respective classes, the UVW standard 

deviations of secondary objects are modeled using a non-

linear least square curve fit. A Trust Region Reflective 

algorithm fits a quadratic function to relate the time 

difference to Time of Closest Approach (TCA) and the 

one-sigma position error of each UVW component. A 

modified Powell’s algorithm is also used to generate 95th 

percentile upper and low bounds for each class. 

While effective, the covariance domain discretization 

technique has several noticeable limitations, primarily 

due to the manual selection of characterization class 

bounds. The selection of the characterization parameters 

is justified by qualitatively examining the factors that 

influence orbit state uncertainty: 

• Lower perigee altitudes lead to a higher drag 

perturbation but also make collecting longer 

ground-based tracking arcs difficult. 

• Lower inclinations may present greater 

challenges for collecting measurements, as most 

sensor networks are located at higher latitudes. 

• Smaller objects may be more difficult to observe 

and are more heavily influenced by drag and 

solar radiation pressure perturbations. Smaller 

objects also are usually debris particles, which 

rely on less accurate, passive observations. 

• F10.7 influences both the drag and solar 

radiation pressure environment. 

However, the process of defining class boundaries for 

these parameters largely relies on operator intuition, 

introducing several drawbacks. 

The most significant limitation, as described by the 

DRAMA and GSOC teams, is the occurrence of classes 

with no or limited CDM data. In these cases, the class 

must be populated either by the original TLE analysis, as 

used in DRAMA 1 and 2, or by borrowing the curve fit 

coefficients of a neighboring class, as demonstrated by 

DRAMA 3 and GSOC. In the latter case, the preferred 

approach is to borrow from classes along the inclination 

dimension. However, using covariance models from 

higher inclination classes may underrepresent the true 

covariances of lower inclination classes due to the poor 

observability of low inclination orbits. The challenge of 

empty or limited classes becomes more pronounced if 

one naively applies the predefined boundaries to a 

different CDM dataset, which may have a different 

distribution across the characterization parameters. 

Additionally, manually specifying the characterization 

class bounds neglects the exploration of underlying 

structures within the CDM dataset. While the prior look-

up table technique effectively encapsulates the range of 

possible values for each class parameter, it relies on rigor 

alone to do so. As a result, the method risks overlooking 

more effective patterns inherent in the data. Natural 

groupings or correlations between parameters may not 

directly align with the predefined class boundaries. 

Furthermore, the approach lacks flexibility to robustly 

generate additional classes when new data becomes 

available. Overall, the look-up table approach limits the 

ability to uncover more nuanced, data-driven insights that 

could improve the overall process. 

Prior work also relies on low-dimensional curve fits to 
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model the relationship between CDM creation time to 

TCA and the UVW component standard deviations for 

each class. In doing so, one must maintain many, albeit 

simple, models and introduce a process to access the 

correct models for a given secondary object. 

Furthermore, the UVW component standard deviations 

alone are modeled by the curve fits. The covariance terms 

of the uncertainty are neglected, despite being critical for 

accurate Pc calculations. Since the covariances are 

synthetic, one could argue that the slight improvement 

from modeling the off-diagonal components of the 

covariance matrix is negligible given the inherent 

modeling error. However, this is primarily limited by the 

choice of a low-dimensional curve fit. The overall 

performance of the technique can be improved by using 

a higher-dimensional model that also incorporates 

covariance terms. 

This study introduces a new approach for synthetic 

covariance generation using ML techniques. 

Unsupervised learning methods are used to uncover 

natural clusters and relationships between key parameters 

in the CDM dataset, offering data-centric insights into the 

training set and improving model performance. 

Furthermore, as new CDM data becomes available, 

unsupervised learning provides a rapid yet robust method 

for reevaluating the training dataset and identifying new 

patterns. After clustering, each cluster from the training 

dataset is extracted and used to train a specialized 

“expert” NN for covariance approximation. A “general” 

NN is also trained on the entire CDM dataset to generate 

covariance values for secondary objects that fall outside 

of the training distributions of the expert models. The NN 

model learns to approximate the high-dimensional 

relationships between orbit state, object size, and solar 

flux and the full UVW covariance matrix, providing a 

robust, accurate framework for synthetic covariance 

generation. 

3 METHODS 

3.1 Model Architecture   

The overall architecture to approximate the covariance of 

objects in the space debris catalog consists of a Feed 

Forward Neural Network (FNN), a supervised learning 

method, along with an unsupervised learning algorithm, 

K-Means clustering. Given the dataset of historical 

CDMs, the K-Means algorithm is utilized to uncover 

natural groupings in the dataset. After determining the 

appropriate 𝐾 value, the cluster labels are appended to the 

historical CDM dataset and exported for modeling. An 

FNN is initiated and trained on each cluster to evaluate 

the fit and prediction performance on each grouping. The 

following sections further highlight the model 

architectures and specific parameters utilized to execute 

the goal of approximating secondary object uncertainties.  

K-Means, an unsupervised learning method, seeks to 

identify natural clusters in the dataset using a distance 

metric. The 𝐾 in the algorithm’s name represents the 

desired number of clusters for the algorithm to create. 

Given a cluster, the distance between the centroid and the 

incoming datapoint is measured to identify the closest 

cluster to which the datapoint belongs. This method 

allows the user to discover and characterize natural 

patterns in the dataset. Given the historical CDM dataset, 

the K-Means clustering algorithm is utilized to identify 

different groupings among various conjunction 

messages. Since the K-Means algorithm requires a 

predefined 𝐾 value, the inertia value at various 𝐾 values 

are extracted to generate an elbow plot. The ideal 𝐾 value 

occurs when the change in inertia between subsequent 𝐾 

values begins to plateau. Note that the default distance 

metric, the Euclidean distance, is utilized in the K-Means 

algorithm. After identification of the ideal 𝐾 value and 

executing the algorithm, the cluster labels are extracted 

and appended to the historical CDM dataset for FNN 

training and testing.  

FNNs are a type of Artificial Neural Network that seek to 

mimic the mechanisms of a human neuron. The models 

consist of a network of “neurons” that receive input, 

perform a simple mathematical operation, and pass the 

resulting output to the next neuron. As the name implies, 

FNNs consist of several fully connected layers of neurons 

that pass information in one direction, from inputs to 

outputs. The model is trained by performing successive 

forward and backward passes of the neural network. 

During a forward pass, for each neuron, a linear operation 

is performed on a given input based on an associated 

weight and bias, then a nonlinear activation function is 

applied before the output is passed to the next neuron. 

Without an activation function, the mathematical 

formulation is similar to a linear regression model which 

is only suitable for linearly separable data. The ability to 

apply an activation function allows the network to 

identify and model nonlinearly separable data. During the 

backward pass, also known as backpropagation, the 

partial derivatives of a defined cost function are 

computed with respect to each weight and bias. The 

weights and biases are then updated based on a gradient 

descent algorithm such that the final error between the 

predicted and desired model outputs is minimized. Figure 

1 is an example FNN. In this example architecture, the 

input layer consists of three nodes, a single hidden layer 

with four nodes, and a final output layer with a single 

node.  
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Figure 1. Simple Feed Forward Neural Network. 

The FNN utilized to approximate the covariances of 

objects in the space debris catalog consists of 24 nodes in 

the input layer, four hidden layers with 4096 nodes in 

each, and a final output layer with six nodes. Note that 

the six nodes represent the second body covariance 

predictions in the UVW frame. After each layer, the FNN 

utilizes the Leaky ReLU activation function along with a 

dropout layer set to 0.1, which randomly sets 10% of the 

nodes to zero during model training. Both techniques are 

implemented to prevent overfitting and to better bound 

the covariance predictions. During the training process, 

the model learns to map the relationship between the 

secondary object’s orbit state, size, ballistic coefficient, 

solar radiation pressure coefficient, and creation time to 

TCA and the associated state uncertainties in the UVW 

frame. Mean squared error (MSE) is used as a loss 

function alongside the Adam optimizer to find the 

optimum model parameter values.  

3.2 Uncertainty Quantification Using 

Adaptive Monte Carlo Dropout 

Adaptive Monte Carlo Dropout is utilized as a method for 

uncertainty quantification. When the user interprets the 

predictions of the NN, the goal is to generate a 

corresponding confidence interval (CI) bound, which 

provides insight into the model prediction variability. 

Monte Carlo Dropout is a popular method for performing 

uncertainty quantification on NNs. During the training 

phase, the NN goes through a dropout layer which 

deactivates a set percentage of neurons in the network. 

While the dropout layer is activated during the training 

phase, the layer is normally turned off during the 

evaluation phase so that the full architecture is utilized to 

generate predictions. In Monte Carlo Dropout, the 

dropout layer is still activated during the evaluation 

phase. Using the mechanisms of a dropout layer, at each 

forward pass, a set percentage of neurons are switched 

off, ideally allowing the user to generate and make 

predictions using various NN architectures. Given this 

property, 𝑛 number of predictions are made, and the user 

can then generate a confidence interval from the 

prediction set. A downside of Monte Carlo Dropout is the 

difficulty in finding the ideal prediction set size where a 

from which a CI can be computed. A larger prediction set 

size allows for a more accurate representation of the CI. 

However, in some cases, it is easy to perform more 

computations than necessary when generating the 

prediction set, decreasing computational efficiency. 

Daniel Bethell et al., [5] proposes an alternative method 

called Adaptive Monte Carlo Dropout to decrease 

computational demand. The fundamental process of the 

Adaptive Monte Carlo Dropout method is like the Monte 

Carlo Dropout method, but the authors introduce three 

extra parameters: 𝛿, 𝐾, and 𝑃. In Adaptive Monte Carlo 

Dropout, the NN will generate multiple forward pass 

predictions until the absolute difference in prediction 

variance reaches the 𝛿 threshold 𝑃 times or the number 

of forward passes is equal to the maximum number of 

passes, 𝐾. During each forward pass, the predicted value 

is appended to the prediction set and the absolute 

difference between the prediction variance at the 

(𝑖 − 1)𝑡ℎ and 𝑖𝑡ℎ step is computed and compared with the 

𝛿 threshold. If the absolute difference in variance from 

the prediction set reaches the 𝛿 threshold 𝑃 times, the 

model has converged, and the confidence interval is 

computed. Compared to a generic Monte Carlo Dropout 

method, the Adaptive Monte Carlo dropout method 

integrates a stopping mechanism using the absolute 

difference in variances to mitigate excessive amounts of 

forward pass predictions. 

4 TRAINING DATA 

The NNs presented in prior sections are trained using a 

large database of NASA Conjunction Assessment Risk 

Analysis (CARA) CDMs. The database contains over 

575,000 CDMs covering nine primary satellites from 

October 1, 2016, to October 31, 2022. The primary 

objects all occupy similar Sun-synchronous orbits and 

are Earth science missions. The first five, for example, 

are some of the first satellites deployed as part of the 

Earth Observing System. The primary objects are 

detailed in Table 1. 

Table 1. Primary objects in NASA CDM training dataset. 

Primary 

ID 

Perigee 

(km) 

Inclination 

(°) 

Eccentricity 

25994 6992.4 98.20 0.015 

27424 6993.3 98.22 0.015 

28376 6994.1 98.21 0.015 

29107 6972.0 98.23 0.017 

29108 6980.4 98.24 0.016 

29479 6914.6 98.16 0.016 

38337 6993.1 98.21 0.015 

40059 6994.6 98.21 0.015 

40376 6968.8 98.13 0.016 
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Over this period, the nine primary objects encounter 

4,928 unique secondaries. Statistics on the secondary 

objects are given in Table 2. 

Table 2. Secondary object orbital element statistics. 

Parameter Minimum Maximum 

Perigee (km) 120.1 817.15 

Inclination (°) 0.28 144.23 

Eccentricity 3.09E-4 0.991 

Radar cross section (m2) 1.00E-3 26.06 

 

The CDMs include all parameters recommended in the 

2013 Consultative Committee for Space Data Systems 

(CCSDS) Conjunction Data Message Blue Book, plus 

some additional quantities computed by the NASA 

CARA team. Before training the ML models, the dataset 

goes through several preprocessing steps: 

1. Corrupt CDMs are removed from the 

dataset. Corrupt CDMs are defined as CDMs 

containing non-positive definite primary or 

secondary covariance matrices, negative “days 

to TCA” values, or faulty entries in any column 

(e.g., an invalid CDM creation year). 

2. Outlier CDMs are removed from the dataset. 

Outlier CDMs are defined as CDMs created 

more than seven days from TCA, CDMs 

reporting no observations or tracks used for 

either object’s orbit determination, and CDMs 

with extreme parameter values – such as 

ballistic coefficients larger than ±100, radar 

cross sections of zero, or covariance entries 

larger than 1E12 km2. 

3. Feature engineering introduces additional 

features to the dataset. The new features 

include the percentage of observations/tracks 

used, eccentricities, semi-major axes, and 

periods for both objects, the F10.7 solar flux at 

the CDM creation time, and correlation 

coefficients for the UVW covariances. The 

correlation coefficients are naturally bounded 

from [-1,1], making them more stable and 

predictable during the training process. 

4. Unused features are removed from each 

CDM. The inputs and outputs used to train the 

NNs are given below. 

5. Each feature is individually scaled to 

approximately [-1,1]. Keeping the 

inputs/outputs of the NN model close to an order 

of magnitude of one makes the model training 

process more stable, as large input/output values 

can lead to gradient issues during the 

backpropagation step. 

After preprocessing, the training dataset contains over 

550,000 unique CDMs. The input to the NN models 

consists of the following 24 features: 

• Miss distance – the relative distance between the 

primary and secondary objects. 

• Relative speed – the relative speed between the 

primary and secondary objects. 

• Apogee – The apogee of the secondary object’s 

orbit. 

• Perigee – The perigee of the secondary object’s 

orbit. 

• Semi-major axis – The semi-major axis of the 

secondary object’s orbit. 

• Eccentricity – The eccentricity of the secondary 

object’s orbit. 

• Inclination – The inclination of the secondary 

object’s orbit. 

• Period – The period of the secondary object’s 

orbit. 

• Radar cross section (RCS) – The radar cross 

section of the secondary object as reported in the 

CDM. The RCS serves as a proxy to the object’s 

size. 

• Ballistic coefficient – The ballistic coefficient of 

the secondary object, which is a function of the 

object’s coefficient of drag, frontal area, and 

mass. 

• Solar radiation pressure (SRP) coefficient – The 

solar radiation pressure coefficient of the 

secondary object, which is a function of the 

object’s coefficient of reflectivity, frontal area, 

and mass. 

• UVW orbital state – The six-dimensional 

position and velocity of the secondary object in 

the UVW frame centered on the primary. 

• Inertial orbital state – The six-dimensional 

position and velocity of the secondary object in 

an Earth-centered inertial frame. 

• F10.7 – The 10.7 cm solar radio flux at the CDM 

creation time. 

• Creation time to TCA – The time difference, in 

days, between the CDM creation time and TCA. 

The output of the NN models consists of the following 

six features: 

• The three UVW positional variances. 

• The correlation coefficients for the UV, UW, 

and VW covariances. 

5 RESULTS 

Six separate NN models are trained to map the 

relationship between the secondary’s physical 

parameters, such as orbit state and object size, and the 

UVW covariances of the object. The framework consists 

of one “general” NN, trained on the entirety of the CDM 
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dataset, and five “expert” models, each trained on a 

natural cluster identified by the K-Means algorithm. 

Similar to the look-up table approach used by DRAMA 

and GSOC, the expert models provide more accurate 

covariance approximations for secondary objects that fall 

within their training cluster. For objects that fall outside 

the distributions of the expert models, the general model 

provides a less accurate, but more robust prediction.  

5.1 K-Means 

To explore underlying patterns in the CDM dataset, only 

more static parameters are used in the K-Means 

algorithm. Although the instantaneous orbital state of the 

secondary object serves as an input feature to the NNs, it 

is excluded from the feature list when applying K-Means 

due to the large range of possible values. Instead, the K-

Means algorithms focuses on parameters like orbital 

elements and object size. The algorithm has access to the 

following features: apogee, perigee, semi-major axis, 

eccentricity, inclination, orbit period, RCS, ballistic 

coefficient, solar radiation pressure coefficient, and 

F10.7.  

To determine the best number of clusters 𝐾 for the 
dataset, the inertia values of various 𝐾 values are plotted. 

Following the elbow method, the ideal 𝐾 value occurs 

when the change in inertia between subsequent values of 

𝐾 begins to plateau. Figure 2 is the elbow plot of the K-

Means algorithm fitted at 𝐾 values ranging from one to 

ten. 

 

Figure 2. K-Means elbow plot comparing inertia for 

different values of K clusters. 

Based on the elbow plot, the ideal 𝐾 value occurs around 

𝐾 = 5. After determining the optimal 𝐾 value, the classic 

K-Means algorithm is applied to the dataset to generate 

five clusters. The mean of each input feature to the K-

Means algorithm is shown in   

Table 3, along with the number of samples in each 

cluster. There is little variance across each cluster for all 

features except RCS, suggesting that RCS may be the 

most distinguishing feature for this CDM dataset. This is 

further supported by Figure 3, which plots the RCS 

statistics for each cluster group and shows that the RCS 

values of each cluster do not overlap.  

Table 3. Mean of K-Means features for each cluster 

Parameter Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

5 

Number of 

samples 

14,000 6,031 4,560 464,607 13,546 

Apogee 794.7 1,073.7 1,092.6 828.3 766.1 

Perigee 678.6 660.7 681.0 665.7 675.3 

Semi-major 

axis 

6,904.0 6,826.2 7,006.4 6,708.0 6,817.1 

Inclination 79.8 93.5 92.4 84.2 91.9 

Eccentricity 0.038 0.082 0.050 0.076 0.052 

RCS 2.21 8.21 13.93 0.045 5.16 

Ballistic 

coeff. 

0.024 0.023 0.025 0.409 0.023 

SRP coeff. 0.015 0.013 0.018 0.179 0.012 

F10.7 82.3 90.4 115.6 81.3 80.4 

 

Figure 3. Box plot of RCS values for each cluster. 

5.2 NN Models 

To train each NN model, the relevant training data is 

randomly split into three datasets: training, validation, 

and test. This dataset splitting approach is a standard 

practice in ML to ensure the model is not overfitting. 

During the training, the NN updates its internal weights 

and biases by comparing its predictions to the true 

covariance values in the training set. The model 

processes the training set in batches, performing a 

parameter update via gradient descent after each batch. 

At the end of a training epoch, once the model has seen 

the entire training dataset once, the NN is evaluated on 
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the validation dataset to determine if it is overfitting. A 

well-performing model will deliver similar training and 

validation losses at the end of each epoch. This process 

is repeated for some number of epochs (500 in the case 

of the models presented in this study).  

The test dataset serves to evaluate the model on a 

completely unseen set of data at the end of the training 

process. The NN’s performance on the test data is often 

indicative of its true performance, i.e., good performance 

on the test set often points to a model that is generalizable 

and did not overfit the training set.  

Most NNs are essentially black boxes, providing point 

predictions through a convoluted series of mathematical 

transformations that are difficult to interpret. For an 

application as sensitive as COLA, model explainability is 

critical so operators can trust the predicted information.  

Therefore, when evaluating the performance of the NNs 

in this study the Adaptive Monte Carlo Dropout 

technique is utilized, which evaluates the NN several 

times for each test case. The Pc for each prediction is then 

calculated, providing a mean prediction as well as upper 

and lower confidence interval bounds. 

For each model in this section, two metrics are calculated. 

The first compares the Pc values derived from the point 

predictions of the NNs to the true Pc values from the 

CDM dataset, providing an assessment of the NN’s 

accuracy. The second evaluates how often the true Pc 

falls within the confidence intervals of the model 

prediction, providing insight into the reliability of the 

NN. Utilizing these metrics, the authors aim to 

demonstrate the applicability of an ML approach for 

synthetic covariance generation. 

5.2.1 Expert Models 

Each cluster identified by the K-Means algorithm is used 

to train an “expert” NN model. The expert models are 

then evaluated on the test dataset relevant to the 

respective cluster. The secondary UVW covariance 

predictions are combined with the true primary UVW 

covariances and miss distances to calculate the predicted 

Pc. To analyze the accuracy of the NN predicted Pc 

values, their impact on a COLA operator’s decision-

making is assessed. An actionable risk of 1E-4 is chosen 

as a CAM threshold, that is for events with a Pc greater 

than 1E-4 it is assumed a COLA operator would perform 

a CAM. It is assumed no CAM is performed for events 

with a Pc less than 1E-4. Then, the percentage of test 

cases in which the model prediction would change an 

operator’s decision relative to the truth is calculated. 

Table 4 reports this metric for each cluster group. A false 

positive is defined as when the true Pc would not result 

in a CAM, but the model prediction dictates a maneuver. 

A false negative is the reverse situation, when the true Pc 

would require a CAM but the model predicted Pc does 

not. The final category occurs when the NN predicted Pc 

and true Pc would result in the same CAM decision. 

Table 4. Percentage of test cases in which the expert NN 

predictions result in a different CAM decision 

Cluster # No 

Change in 

Action % 

False 

Positive 

% 

False 

Negative 

% 

1 99.66 0.20 0.14 

2 99.95 0.03 0.02 

3 99.87 0.06 0.06 

4 99.68 0.00 0.32 

5 99.95 0.04 0.01 

 

 

Figure 4. Cluster 1 NN-predicted Pc versus true Pc 

from CDM for events with Pc > 1e-10. 

To assess the reliability of the NNs, the Adaptive Monte 

Carlo Dropout technique is applied on each cluster’s test 

set. Table 5 reports how often the true Pc label falls 

within the model’s confidence interval. An example of 

the NN confidence intervals for Cluster 1 is shown in 

Figure 5. 

Table 5. Percentage of test cases in which the NN 

confidence interval captures the true Pc 

Cluster # True Pc lies within CI (%) 

1 92.2 

2 100.0 

3 94.1 

4 100.0 

5 98.0 
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Figure 5. Examples of NN confidence interval 

predictions for Cluster 1. 

As demonstrated in the results, the expert NN models 

generate accurate and reliable synthetic UVW covariance 

matrices that often do not impact an operator’s decision 

to perform a CAM. For every clustered NN, the CAM 

decision is changed less than one percent of the time, 

suggesting that the NN predicted covariances, while not 

truly representative of reality, are sufficient for non-

critical COLA processes. Additionally, the NNs provide 

confidence interval bounds that often capture the true Pc, 

offering COLA operators additional context. This allows 

them to make more informed decisions by examining the 

upper and lower bounds in conjunction with the mean 

prediction. 

5.2.2 General Model 

The general model is assessed in the same manner as the 

expert NNs, with the exception that the entire CDM test 

dataset is used. For each element in the test set, the NN 

predicts the full secondary object UVW covariance 

matrix, which is combined with the primary uncertainties 

from the CDM to calculate Pc. The CAM decision metric 

is then evaluated and reported in Table 6.  

Table 6. Percentage of test cases in which the general 

NN predictions result in a different CAM decision 

No Change in 

Action % 

False Positive 

% 

False Negative 

% 

99.57 0.19 0.24 

 

 

Figure 6. General NN-predicted Pc versus true Pc from 

CDM for events with Pc > 1e-10 

Similarly, the reliability of the general NN is evaluated 

using the Adaptive Monte Carlo Dropout technique, 

revealing that the model’s predicted CI captures the true 

Pc in 86.3% of test cases. An example of the NN 

confidence intervals for the general model is shown in 

Figure 7. 

 

Figure 7. Examples of NN confidence interval 

predictions. 

As anticipated, the general NN performs slightly worse 

than the expert NNs, as it must generalize to a much 

broader parameter distribution. However, the model is 

still shown to be highly accurate, changing an operator’s 

decision to perform a CAM in less than one percent of 

test cases. A notable flaw in the current model is the poor 

CI performance; ideally, the NN’s CI would capture the 

true Pc in nearly 100% of the test cases. This poor 

performance is most likely a result of improper tuning of 

the Adaptive Monte Carlo Dropout algorithm. Future 

work will refine the algorithm’s 𝛿, 𝐾, and 𝑃 input 

parameters to deliver improved CI scores. 
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6 CONCLUSIONS AND FUTURE WORK 

This study introduces an ML-based framework for 

generating synthetic covariance approximations for 

space catalogs. A K-Means algorithm is first used to 

uncover natural clusters in the historical CDM dataset. 

These clusters represent CDMs with high-dimensional 

similarities, which aids subsequent NN training. Then, 

expert NNs are trained on each cluster group to provide 

tailored covariance approximations. A general NN is also 

trained on the full dataset to provide coverage for objects 

that fall outside of the expert distributions. This ML-

based approach improves upon prior methods by 

providing means to dynamically adapt to new data, 

reduce reliance on manually defined class boundaries, 

and utilize higher-dimensional relationships between 

physical parameters and historical covariances trends. 

A clear weakness of the presented results is the lack of 

orbital variance in the training and testing data. The 

NASA CARA CDM dataset used to train the NN models 

consists of nine spacecraft in nearly identical orbits, 

which severely limits the distribution of variables seen by 

the NNs during training. Likewise, the test sets on which 

the NNs were evaluated is taken from the same historical 

database as the training data. Therefore, the 

generalizability of the presented framework to different 

orbital regimes has not been thoroughly explored. 

Recently, the authors have acquired access to Maxar 

Intelligence’s DigitalGlobe constellation CDMs on 

SpaceTrack. Future work will use these CDMs to explore 

the robustness of the ML approach to different orbital 

regimes. Improvements in the training data and 

architectures of the NNs will also be investigated to 

improve accuracy and generalizability. 

Additionally, the framework presented in this paper 

currently serves as a component in a larger conjunction 

screening system designed to automate COLA processes. 

The system enables the real-time screening of CAMs 

against the space debris catalog immediately after their 

design, reducing iteration with groups such as the 19th 

SDS. The tool is currently being deployed to a cloud-

based environment, where external users will access it via 

a simple application programming interface (API). The 

authors intend to provide the full system as a free service 

for COLA operators in the near future, enhancing 

automation, accessibility, and efficiency in space traffic 

management. 
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