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(2)Università di Pisa, Dipartimento di Matematica, Largo Bruno Pontecorvo, 5, 56127, Pisa (Italy) , Email:
giulio.bau@unipi.it
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ABSTRACT

The Minimum Orbit Intersection Distance (MOID), i.e.
the smallest distance between two osculating orbits, is a
key parameter in astrodynamics. Determining the MOID
between Resident Space Objects (RSOs) is essential for
conjunction assessment and space traffic management.
Traditional Keplerian-based MOID approaches struggle
to account for environmental perturbations that alter ob-
ject trajectories over time, leading to reduced accuracy.
This work presents a fast and accurate non-Keplerian
MOID Assessment Tool (NKMAT) for estimating the
minimum distance between non-coplanar RSOs in low
Earth orbit with small eccentricities, encompassing the
majority of cataloged objects. By leveraging a third-
order extension of Cook’s theory, the proposed approach
significantly enhances accuracy compared to classical
MOID methods while maintaining high computational
efficiency. Extensive validation using real RSOs from the
Space-Track catalog confirms the method’s effectiveness
in accurately estimating the minimum distance between
perturbed orbits, providing a reliable tool for conjunction
analysis and space traffic management.
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1. INTRODUCTION

The minimum distance between any two points on two
osculating orbits is widely used to assess potential close
approaches and collision risks between artificial space
objects. By providing a measure of the minimum possi-
ble separation between two osculating orbits, the MOID
serves as a fundamental tool for conjunction analysis. As
the number of objects in Earth’s orbit continues to grow
(including both operational satellites and space debris)
there is an increasing need for swift and reliable meth-
ods to compute the MOID efficiently.

The problem of computing the minimum distance be-

tween two Keplerian orbits has been extensively stud-
ied in the literature [6, 7, 9, 10, 8, 19]. The MOID,
defined as the absolute minimum of this function, has
been employed in the so-called orbit-path filter, which
relies on this distance for preliminary screening. While
Keplerian-based MOID computation methods can be ap-
plied to perturbed orbits by using osculating orbital ele-
ments, they often fail to provide an accurate estimation of
the true minimum distance between two perturbed orbits
(here called “true” MOID). The limitations of purely Ke-
plerian approaches applied in conjunction analysis have
been noted in previous studies [11, 20].

Extending the work in [16], a new conjunction filter that
addresses the shortcomings of these techniques by incor-
porating the effects of the zonal harmonics of the geopo-
tential, has been proposed in [15]. The filter is conceived
for RSOs in LEO with eccentricities smaller than 0.1, and
for RSOs pairs with mutual inclinations in the range [10,
170] degrees, so that the points realizing the MOID are
very close to or coinciding with the mutual nodes [6].
The proposed procedure provides a more accurate and re-
liable MOID estimation of pairs of perturbed orbits for a
screening time of 5 days, while maintaining high compu-
tational efficiency.

The method proposed in [15] is effective for filtering pur-
poses, but can be overly conservative in MOID computa-
tion. Here, that method is improved to devise an effective
non-Keplerian MOID assessment tool. The new tool has
been extensively validated with a large dataset and com-
pared against existing approaches in the literature.

The structure of this paper is as follows: Section 2 defines
the true MOID for perturbed orbits and discusses the in-
adequacy of the Keplerian osculating MOID in this con-
text. Section 3 details the proposed non-Keplerian MOID
assessment tool and Section 4 presents validation tests
and a performance comparison against the Keplerian os-
culating MOID. Finally, Section 5 summarizes the find-
ings and outlines potential directions for future research.
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2. TRUE VS. KEPLERIAN OSCULATING MOID

Let us consider two RSOs whose (non-Keplerian) trajec-
tories are characterized by the position vectors rA(t) and
rB(t) over a time interval I = [t0, t0 +∆t] of interest.
The duration ∆t can be thought of as the time horizon
of a conjunction screening process, which typically lasts
a few days. From a theoretical point of view, one can
consider the (true) minimum orbit intersection distance
between the two RSOs over the interval I by computing
the absolute minimum of all the distances between any
two of their respective points with no regard to phasing
as:

trueMOID′ (t0,∆t) = min
tA,tB∈I

∥rB(tB)− rA(tA)∥ .

Because having a true MOID smaller than the combined
physical size of both objects is a necessary condition for a
collision to occur, the preceding quantity is of great inter-
est in the process of conjunction screening and filtering.
This is especially true if one considers that phasing er-
rors (errors in the timing of when objects reach specific
points in their orbits, reflected by along-track position un-
certainties) are typically the dominant component of an
RSO uncertainty distribution volume.

Nevertheless, completely disregarding the phasing infor-
mation for the two RSOs is unrealistic as phasing errors
are typically much smaller than the full width of the con-
junction screening window. Hence, a more practical defi-
nition of true MOID can be given after limiting the maxi-
mum phasing difference of each pair of points to less than
the greater of the two orbit periods, TA and TB , computed
at t0 :

trueMOID (t0,∆t) =

min
tA,tB∈I

|tB−tA|≤max(TA,TB)

∥rB(tB)− rA(tA)∥ .

The preceding definition will be employed as standard
for the analysis conducted in the present article. An al-
ternative approach for measuring the distance between
two perturbed orbits consists in computing the MOID
of the osculating Keplerian trajectories at times tk, k =
0, . . . ,m. This can be done through highly efficient
MOID computation tools available in the literature [e.g.,
8]. It results a time-dependent Keplerian osculating
MOID, where the minimum value is often used as a proxy
for the true MOID [see, for instance, 1, 4, 3]. However, as
demonstrated in the following examples, the presence of
gravitational perturbations causes the osculating MOID
function to significantly underestimate the true MOID in
LEO, making it an unreliable metric for accurate con-
junction assessment.

Fig. 1 illustrates the time evolution of the Keplerian oscu-
lating MOID over 5 days for two pairs of space objects.
The initial conditions are detailed in Tab. 1 and the com-
putations are carried out using a high-fidelity dynamical
model1. As depicted in the figure, the osculating MOID

1This numerical propagation model incorporates a 23×23 geopo-

RSO (NORAD) 41732 42775 41460
a (km) 6,839.44 6,867.10 6,875.36
e 0.0023 0.0019 0.0125
i (deg) 97.36 97.20 98.27
ω (deg) 120.14 139.31 129.61
Ω (deg) 229.73 339.11 129.53

Table 1. Osculating orbital elements at epoch JD
2,459,885.88 for the RSOs considered in Fig. 1.

function reaches zero multiple times in both scenarios.
However, the numerically computed true MOID values
remain considerably above zero, measuring 22.97 km and
9.58 km, respectively. These findings suggest that Kep-
lerian MOID calculations are often overly conservative,
emphasizing the necessity of a non-Keplerian approach.

3. NON-KEPLERIAN MOID ASSESSMENT
TOOL

The proposed method for estimating a non-Keplerian
MOID enhances previous approaches by explicitly ac-
counting for perturbations of the geopotential zonal har-
monics over a defined time window. It builds upon the
space occupancy path filter developed in [15], employing
that procedure to compute the boundaries of the orbital al-
titude at the mutual nodes. These altitudes are then com-
pared to determine the minimum separation distance. A
summary of the procedure implemented to estimate the
orbital altitude at the mutual nodes is provided below.

The algorithm is formulated as an optimization problem
aimed at computing the maximum and minimum values
of the orbital radius as a function of two variables over a
compact domain. An analytical expression for the radius
is derived in Section 3.1. Section 3.2 describes the com-
putation of the argument of latitude interval that defines
the positions of the mutual nodes. Section 3.3 explains
how to solve the optimization problem and determine the
radial boundaries, and Section 3.4 details the computa-
tion of the minimum distance. Finally, Section 3.5 intro-
duces a sampling method which is necessary to improve
the accuracy.

3.1. Analytical expression for the orbital radius

An analytical expression for the orbital radius is derived
by accounting for short-period effects driven by the J2
zonal harmonic, while neglecting higher-order contribu-
tions. Since the maximum target eccentricity is 0.1, the
expansion is carried out up to the third order in eccen-
tricity. Employing a classical result [see 17], the orbital

tential representation, accounts for luni-solar third-body perturbations,
and includes corrections for Earth’s geoid precession and nutation.



Figure 1. Keplerian osculating MOID for the two pairs
of objects NORAD 41732, NORAD 42775 (above) and
NORAD 41732, NORAD 41460 (below).

radius is approximated as

r ≃ a

[
1− e cosM +

1

2
e2(1− cos 2M)

+
3

8
e3(cosM − cos 3M)

]
.

In this formula, the orbital elements a, e, and M are de-
composed into their mean values (â, ê, M̂ ) and short-
period variations, which are calculated using the equa-
tions derived by Kozai [12] and Lyddane [14]. After some
algebraic manipulations, the radius is expressed in terms
of the mean elements as

r ≃ â
(
1− ê cos(θ̂ − ω̂)

)(
1− ê2 sin2(θ̂ − ω̂)

)
+

J2
4â

[(
9 + cos 2θ̂

)
sin2 î− 6

]
,

(1)

where θ̂ is the mean argument of latitude. Here, â and î
are assumed constant because zonal harmonics do not in-
duce long-period and secular variations in these elements,

in contrast to ê and ω̂. The evolutions of ê and ω̂ are rep-
resented by an extension of Cook’s theory [5] as refined
in [15] to include the dominant nonlinear effects of order
J2ê

2. Let

ξ = ê cos ω̂, η = ê sin ω̂ (2)

be the mean eccentricity vector nodal components. Their
evolution with respect a non-dimensional time τ are given
by [see 15]{

ξ(τ) = ep cos (κξκ τ + α) ,

η(τ) = κep sin (κξκ τ + α) + ef ,
(3)

where

κ =

√
κη

κξ
.

The quantities ep, ef , which represent the proper and
frozen eccentricity, respectively, κξ, κη , and α are con-
stant and are defined in [15]. Let us introduce the angle
β for the argument appearing in the expressions of ξ(τ)
and η(τ) in (3):

β(τ) = κξκ τ + α, (4)

which will play the role of the time variable.

Over a 5-days interval, while the fast angle θ̂ cycles mul-
tiple times within [0, 2π), β changes only slightly. This
separation of time scales allows us to assume that r is a
function of the two independent variables β and θ̂. The
final expression for r(θ̂, β) is obtained by using in (1) the
definitions (2) and the solutions (3), yielding

r ≃ â
(
1− ep cosβ cos θ̂ − κep sinβ sin θ̂ − ef sin θ̂

)
·[

1−
(
ep cosβ sin θ̂ − κep sinβ cos θ̂ − ef cos θ̂

)2]
+

J2
4â

[(
9 + cos 2θ̂

)
sin2 î− 6

]
.

(5)

3.2. Computation of the intervals T , T ∗

The locations of the mutual nodes are determined by their
arguments of latitude, which are computed as follows.
The latitude of one of the two pairs of mutual nodes is
given by2

ϕ = arcsin

(
sin î1 sin î2 sin∆Ω̂

sin γ

)
,

where î1, î2 are the mean inclinations of the two orbital
planes, ∆Ω̂ = Ω̂2 − Ω̂1, and the mutual inclination γ,
which is defined as the angle between the directions or-
thogonal to the orbital planes, is found from the relation

γ = arccos
(
cos î1 cos î2 + sin î1 sin î2 cos∆Ω̂

)
.

2The latitude of the other pair is equal to −ϕ.



If î1î2 ̸= 0, the arguments of latitude of the mutual nodes
are computed from

sin θ̂k =
sinϕ

sin îk
, k = 1, 2, (6)

which admits two solutions in [0, 2π). The ambiguity can
be resolved as detailed in [15] by analyzing the projection
of the orbit over a non-rotating Earth in the inertial refer-
ence frame.

Since the quantity ∆Ω̂ shows long-period and secular
variations due to the geopotential, the arguments of lati-
tude θ̂1 and θ̂2 of the mutual nodes also change with time.
Thus, it is necessary to compute for each object of the pair
the ranges of variation Tk, T ∗

k , k = 1, 2, of the arguments
of latitude of the two mutual nodes in the time interval I
of interest:

Tk = [θ̂min,k, θ̂max,k],

T ∗
k = [θ̂min,k + π, θ̂max,k + π].

The values θ̂min,k and θ̂max,k are determined depending
on whether θ̂k(τ) is monotonic or has a critical point (ei-
ther maximum or minimum) in I . All the details about
the computation of these intervals are given in [15].

3.3. Orbital radius bounds

This section presents an efficient method for determining
the minimum and maximum values taken by the orbital
radius r(θ̂, β) at the mutual nodes within each domain D,
D∗, defined as

D = T × B, D∗ = T ∗ × B,

where
B = [βmin, βmax] ,

with βmin = β(t0) and βmax = β(t0 +∆t) (see 4).

The absolute and local minima/maxima of r(θ̂, β) in the
domain [0, 2π) × R are searched for by a simplified
approach for saving computational time. Four critical
points of r(θ̂, β) can be easily identified: (π/2, π/2),
(π/2, 3π/2), (3π/2, π/2), (3π/2, 3π/2). Additional
critical points to these four, which may appear only if
the frozen and proper eccentricities, and thus ê, are suf-
ficiently small, are obtained for a simpler expression of
r(θ̂, β) than the right-hand side of (5) (see [15]).

If the absolute minimum/maximum point lies within D
(D∗), the corresponding value of r is computed by (5).
Otherwise, it is necessary to search for the absolute min-
imum/maximum of r on the border of D (D∗), check-
ing at the same time whether the interior of D (D∗) con-
tains local minima/maxima points. The search for min-
ima/maxima points of r(θ̂, β) on the border of D (D∗) is

done by computing the critical points of the functions

rβ∗(θ̂) = r(θ̂, β∗),

rθ̂∗(β) = r(θ̂∗, β),

for suitable values of θ̂∗, β∗. By setting their derivatives
equal to zero yields two polynomial equations of degree
six.

3.4. Non-Keplerian MOID

Denote the minimum and maximum orbital radii in the
domains Dk and D∗

k as rmin,k, rmax,k and r∗min,k, r∗max,k,
respectively (where k = 1, 2 refers to each object of the
pair) and introduce the following intervals:

Rk =
[
rmin,k, rmax,k

]
,

R∗
k =

[
r∗min,k, r

∗
max,k

]
.

If
R1 ∩R2 ̸= ∅ ∨ R∗

1 ∩R∗
2 ̸= ∅,

at least two radial intervals relative to one mutual node
overlap and the non-Keplerian MOID is set equal to zero.
Otherwise, if

R1 ∩R2 = ∅ ∧ R∗
1 ∩R∗

2 = ∅,

the non-Keplerian MOID is set equal to min {d, d∗},
where

d = max {rmin,1 − rmax,2, rmin,2 − rmax,1},
d∗ = max {r∗min,1 − r∗max,2, r

∗
min,2 − r∗max,1}.

3.5. Time interval sampling

The developed algorithm tends to provide a rather conser-
vative estimate of the minimum distance between the two
objects. This is particularly evident when one orbit ex-
hibits moderate eccentricity and a relatively fast motion
of the ascending node. In such cases, the range of values
taken by the orbital radius for a fixed argument of latitude
that belongs to B is quite large (see Fig. 3). Moreover, the
size of the interval T can vary significantly. If the rates of
the ascending nodes of both orbits are similar, this inter-
val measures only a few tenths of a degree. However, if
the absolute value of the difference between the two fre-
quencies is large, T can extend up to several degrees. In
this case, the domain D = T × B is quite large, leading
to highly conservative bounds of the orbital radius.

The pair NORAD 1778 and NORAD 27597 exemplifies
this scenario. The initial conditions of the two objects are
presented in Tab. 2. Fig. 2 shows both orbits in Carte-
sian coordinates over a 5-days interval. Fig. 3 shows the
evolution of NORAD 1778’s radius as a function of the
argument of latitude. This satellite has an eccentricity of
≈ 0.07 and a regression rate of the ascending node of



RSO (NORAD) 1778 27597
a (km) 7,462.31 7,166.43
e 0.0748 0.0026
i (deg) 34.33 98.51
ω (deg) 229.12 97.07
Ω (deg) 143.75 247.98

Table 2. Osculating orbital elements at epoch JD
2,459,885.88 for the RSOs considered in Fig. 1.

≈ −0.2 deg/h. Fig. 4 shows the corresponding evolu-
tion for NORAD 27597, whose orbit is much less eccen-
tric and is characterized by a precession rate of the as-
cending node of ≈ 0.04 deg/h. As a result, the intervals
Tk, T ∗

k , k = 1, 2, of the argument of latitude of the mu-
tual nodes are quite large, particularly for NORAD 1778,
where the range of values of the orbital radius for a con-
stant θ̂ ∈ Tk, T ∗

k is also quite broad.

Figure 2. Orbits of NORAD 1778 and NORAD 27597
for a time duration of 5 days. Light and dark purple
points refer to points of the propagated orbits whose val-
ues (θ̂, β) belong to the domains D and D∗ as computed
by the proposed procedure without applying any sam-
pling of the 5 days interval.

This pair reaches the minimum distance at the mutual
node located in the Southern hemisphere3. The maximum
and minimum values of the orbital radius at this node for
each orbit as computed from the proposed algorithm are
reported in Tab. 3. One can observe that the radius of
NORAD 27597 varies by less than 1 km, whereas that
of NORAD 1778 changes by more than 350 km. Since
the ranges of values covered by the orbital radius of the
two objects overlap, the non-Keplerian MOID is set equal
to zero. However, the numerically estimated true MOID
remains significantly above zero, at 118.44 km.

3The intervals of variation of the argument of latitude of this mutual
node, as obtained from the proposed procedure, are [276.82, 303.30]
deg for NORAD 1778 and [208.42, 214.44] deg for NORAD 27597,
where the values of the extrema have been rounded to the second deci-
mal digit.

Figure 3. Orbital radius of NORAD 1778 versus the ar-
gument of latitude. The meaning of the purple dots is the
same as in Fig. 2. The purple dots are replaced by the
gray dots if a sampling interval of 30 minutes is applied.

Figure 4. Same as Fig. 3 but for the object NORAD
27597.

This significant underestimation of the minimum distance
can be mitigated by analyzing smaller time intervals. If
the size of the interval B is reduced, also the intervals R,
R∗ become smaller, as well as T , T ∗. Therefore, rather
than computing the non-Keplerian MOID for the whole
duration ∆t of 5 days, one can compute it several times
from t0 to t0+∆t. While increasing the number of inter-
vals improves accuracy, it also increases computational
time. As a trade-off, the procedure is run every 30 min-
utes during the 5 days.

The benefit produced by this strategy (which was not pre-
sented in [15]) is particularly important for the object
NORAD 1778, as can be appreciated from Fig. 3 and
Tab. 4. From this table one can see that the range of val-
ues of the orbital radius at the mutual node in the South-
ern hemisphere has decreased of 60 km (see also Tab. 3).
On the other hand, the impact on NORAD 27595 is al-



RSO (NORAD) 1778 27597
rmax (km) 7,270.85 7,184.88
rmin (km) 6,916.23 7,184.02

Table 3. Maximum and minimum values of the orbital
radius at the mutual node located in the Southern hemi-
sphere for NORAD 1778 and NORAD 27597 as com-
puted by the proposed procedure without applying any
sampling of the 5 days interval.

RSO (NORAD) 1778 27597
rmax (km) 7,069.57 7,184.87
rmin (km) 7,010.24 7,184.09

Table 4. Same as in Tab. 3 but by applying a sampling
interval of 30 minutes.

most negligible as expected, because rmax − rmin was
already smaller than 1 km.

By computing the non-Keplerian MOID every 30 min-
utes, the evolutions of the extrema that define the inter-
vals Rk, R∗

k can be known during the 5-days duration or
until a conjunction is detected. Fig. 5 (left) shows how
these values evolve for the mutual node in the Southern
hemisphere of the pair under consideration, while Fig. 5
(right) shows for the same pair the evolution of the non-
Keplerian MOID computed every 30 minutes. The min-
imum of all these values, which gives the non-Keplerian
MOID for a time duration of 5 days, is attained at the ini-
tial epoch and is equal to 118.09 km, reducing the error
from 118.44 km to only 0.35 km.

Figure 5. Evolution of the maximum and minimum orbital
radius of NORAD 1778 and NORAD 27597 at the mu-
tual node in the Southern hemisphere (left) and the cor-
responding non-Keplerian MOID (right) computed every
30 minutes.

4. RESULTS

The NKMAT developed in this work to compute the
minimum distance between two non-Keplerian orbits has
been tested and validated against 272,240 pairs selected
from a subset of the dataset used in [15]. That study
built a dataset of 16,951 orbits from the publicly avail-
able Two-Line Element sets (TLEs) and processed them
using the SGP4 theory [18]. This dataset was obtained by

removing orbits with an eccentricity higher than 0.1 and
an apogee radius exceeding 40,000 km. Additionally, or-
bits with inclinations below 0.06 deg were excluded (21
orbits in total).

All orbits in the dataset were propagated to a common
epoch t0 (11/02/2022, 09:18:20) and then propagated for-
ward for 5 days. The dynamical model employed for
this propagation includes a 23 × 23 geopotential along
with luni-solar third-body perturbations and accounts for
Earth’s geoid precession, nutation, and polar motion ef-
fects. Earth orientation, the values of the harmonic coef-
ficients, and the positions of the Sun and Moon are ob-
tained from the corresponding SPICE kernels. Note that
the NKMAT is based on a dynamical model that only
considers zonal harmonics of the geopotential and as-
sumes that Earth’s polar axis is aligned with the z-axis
of the J2000 inertial frame.

The pairs used in this validation were randomly chosen
from the 32,474,006 pairs identified in [15]. Initially,
500,000 pairs were selected, and among them, only those
with a true MOID smaller than 30 km were retained, be-
cause the accuracy of this calculation becomes more rele-
vant in these cases. Moreover, note that the NKMAT can
only be applied to pairs with a mutual inclination in the
range [10, 170] deg.

For the validation conducted in this work, the true MOID
is computed as explained in Section 2. The trajectories
used as ground truth are those obtained from the numer-
ical propagation with a time resolution of 5 s. However,
due to the high speeds of objects in LEO, this resolution
is not sufficient for an accurate approximation of the true
MOID. Thus, around the points where the minimum val-
ues of the distance are reached, the resolution is increased
to 0.02 s, using linear interpolation with the generalized
equinoctial orbital elements [2]. Section 4.1 presents the
results of the NKMAT compared to the ground truth.

Additionally, the outcome of the NKMAT is compared
with the Keplerian osculating MOID evaluated every 25
s using the osculating orbital elements obtained from the
numerical propagation. The results of this comparison
are presented in Section 4.2.

4.1. Results of the NKMAT

The performance of the NKMAT is evaluated through the
error ϵ defined as the difference between the true MOID,
considered as ground truth, and the minimum distance
computed by our tool:

ϵ = (true MOID)− (non-Keplerian MOID). (7)

Note that while a positive error leads to an underestima-
tion of the minimum value and thus to a false alarm, a
negative error can lead to a miss-detection of a collision.

Fig. 6 presents the histogram and cumulative density
function of ϵ. This graph highlights the outstanding ac-



Figure 6. Histogram and cumulative density function of
the errors of the NKMAT as defined in (7).

curacy of the proposed tool. In 99% of the cases, the er-
ror remains below 1 km, demonstrating the method’s re-
liability in estimating the minimum distance. Moreover,
more than 65% of the cases exhibit an error between 0
and 0.2 km, further confirming the precision of the ap-
proach. Importantly, only 9% of the cases show a neg-
ative error, which means an underestimation of the true
minimum distance. However, these cases are still well
controlled, as merely 0.02% of the total cases present a
negative error smaller than −1 km. These results under-
score the robustness of the NKMAT in capturing the true
MOID with high fidelity, even in complex non-Keplerian
conditions.

The method is built on two main assumptions: the min-
imum distance is realized by points that are close to
the mutual nodes (since the orbital planes of any pair
of objects are far from being coplanar) and the eccen-
tricity is small, allowing the orbital radius to be well-
approximated by the expression in (5).

To better characterize the error, particularly the negative
ones, Fig. 7 shows the values of ϵ versus those of the mu-
tual inclination. It can be observed that the most negative
errors occur for small mutual inclinations. On the other
hand, positive errors do not show a clear dependence on
the mutual inclination. Concerning the second assump-
tion, Fig. 8 shows the errors ϵ versus the maximum ec-
centricity of the two orbits of the pair evaluated at the
initial time. As expected, larger values of this orbital el-
ement lead to greater positive and smaller negative errors
in the non-Keplerian MOID.

To reduce the occurrence of negative errors, which are
mainly due to values of the mutual inclination close to 10
and 170 deg, these bounds have been changed to 17 and
163 deg, respectively. This adjustment reduces the num-
ber of considered pairs of approximately 6.4%. With this
restriction, the minimum negative error is higher than −1
km for pairs whose eccentricities are smaller than 0.04,
whereas for more eccentric orbits, the negative error can

Figure 7. Errors of the NKMAT as defined in (7) versus
the mutual inclination (computed at the initial time).

Figure 8. Errors of the NKMAT as defined in (7) versus
the largest among the two eccentricities (computed at the
initial time).

reach −2 km. Fig. 9 shows the errors versus the maxi-
mum eccentricity of the two orbits of the pair evaluated
at the initial time for the reduced population of pairs.

4.2. Comparison with the osculating MOID

Section 2 explains that the osculating MOID provides a
poor estimation of the true MOID in LEO due to the ef-
fect of gravitational perturbations, as exemplified by two
particular cases. Fig. 10 presents the histograms of the
values of the true and osculating MOID for all the pairs
in the reduced population (254,703 pairs). While around
20% of the cases present a true MOID smaller than 1 km,
for more than 90% of the pairs the osculating MOID is
below 1 km, resulting in a high rate of false alarms.

To further highlight the different behaviors of the oscu-



Figure 9. Same as Fig. 8 but for those pairs whose initial
mutual inclination belongs to the interval [17, 163] deg
(instead of [10, 170] deg).

lating and non-Keplerian MOID as compared to the true
MOID, Fig. 11 displays the results for three specific pairs
of objects: (NORAD 33913, NORAD 34571), (NORAD
42167, NORAD 12663), and (NORAD 12737, NORAD
10991). The initial orbital elements of the six objects are
reported in Tab. 5. It is evident that the non-Keplerian
MOID as computed by the new tool closely follows the
true MOID over the 5 days. In contrast, the oscillatory
behavior of the osculating MOID obscures the true mini-
mum, making it less reliable for capturing the actual min-
imum distance.

To generalize the comparison, the osculating MOID was
also computed for the reduced population of pairs. Since
the error in the osculating MOID is strongly correlated
with the magnitude of the true MOID, six histograms rel-
ative to different ranges of the true MOID are presented
in Fig. 12 for the error

ϵosc = (trueMOID)− (osculatingMOID). (8)

It is worth noting that the osculating MOID exhibits er-
rors of the same order of magnitude as the values taken
by the true MOID. In cases where the true MOID is be-
tween 5 and 10 km, only 0.6% of instances have an error
smaller than 5 km; for true MOIDs between 10 and 15 km
and between 15 and 20 km, the percentages of cases with
errors smaller than the true MOID are 1.96% and 3.87%,
respectively. This poor performance arises because most
osculating MOID estimates are either zero or very close
to zero. For true MOIDs exceeding 25 km, a higher per-
centage of cases have errors below 25 km, although this
still remains under 50%.

Finally, Fig. 13 shows the analogous results for the er-
rors of the non-Keplerian MOID computed by our tool.
All histograms exhibit a similar shape, with 99% of the
errors around 1 km. These results underscore the robust-
ness of the non-Keplerian MOID assessment tool in ac-
curately capturing the true MOID even under complex

Figure 10. Histogram of the values of the true MOID and
the osculating MOID.

non-Keplerian conditions, thereby validating the method
as a highly reliable tool for minimum distance estimation.

5. CONCLUSIONS AND FUTURE WORK

This work introduces a fast and accurate method, named
non-Keplerian MOID assessment tool, for estimating the
minimum distance between two non-coplanar RSOs in
low-Earth orbit with moderate eccentricity. Tracking and
computing this minimum distance is crucial for identi-
fying potential collisions between Earth-orbiting satel-
lites. While existing methods for MOID computation
have been extensively studied in the literature, they typi-
cally assume Keplerian orbits and neglect the effects of
perturbations. The proposed approach overcomes this
limitation by accurately estimating the minimum distance
between two non-Keplerian orbits while explicitly ac-
counting for the zonal harmonics of the geopotential.

The method was validated using a large dataset by com-
paring its minimum distance estimations with both the
true MOID and the Keplerian osculating MOID. The
analysis reveals that while the osculating MOID often
provides overly conservative estimates (frequently reach-
ing 0 km even when the true MOID is close to the safe
distance of 30 km, which was set as the maximum value
of the true MOID in our dataset of pairs) the new tool de-
livers a highly accurate approximation. Specifically, 99%
of the cases exhibit an error smaller than 1 km, demon-
strating the method’s reliability.

Beyond offering a precise minimum distance estimation,
the method also captures the temporal evolution of this
quantity. This enables accurate predictions of its time
evolution and allows for the identification of the exact
location of the minimum separation—an advantage over
the osculating MOID, which is strongly affected by short-



c)

a)

b)

Figure 11. Evolution of the true MOID and the osculating MOID (left) and the true MOID and the non-Keplerian MOID
(right) of: a) NORAD 33913, NORAD 34571; b) NORAD 42167, NORAD 12663; c) NORAD 12737, NORAD 10991.



RSO (NORAD) 33913 34571 42167 12663 12737 10991
a (km) 7,126.72 7,193.46 7,335.58 7,324.17 7,384.34 7,360.43
e 0.0067 0.0108 0.0055 0.0051 0.0145 0.0035
i (deg) 74.12 74.18 82.78 83.08 83.02 82.81
ω (deg) 151.44 64.10 334.81 338.35 181.91 110.76
Ω (deg) 138.98 104.27 330.77 77.99 165.64 280.36

Table 5. Osculating orbital elements at epoch JD 2,459,885.88 for the RSOs considered in Fig. 11.

a) b) c)

d) e) f)

Figure 12. Histograms and cumulative density functions of the errors of the osculating MOID as defined in (8) for the
following ranges of the true MOID: [0, 5] km (a); [5, 10] km (b); [10, 15] km (c); [15, 20] km (d); [20, 25] km (e); [25,
30] km (f).

period variations and struggles with rapidly evolving or-
bital configurations. Consequently, this method repre-
sents a significant advancement in MOID computation
for non-Keplerian trajectories in LEO, establishing itself
as a highly reliable tool.

Future work will focus on further refining the NKMAT
for cases with low mutual inclination (10 - 20 deg), where
the minimum distance can be realized by a pair of points
far from the mutual nodes. Additionally, incorporating at-
mospheric drag and making the procedure accurate also
for orbits with higher eccentricities will extend its appli-
cability to the entire LEO region.
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