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ABSTRACT 

The exponential growth of Resident Space Objects 

(RSOs) has significantly increased the computational 

demands of conjunction analysis, essential for space 

traffic management. Conjunction filtering processes, 

which eliminate RSO pairs unlikely to collide, are 

widely used to reduce this complexity. However, 

existing geometric filters suffer from two key 

limitations: they often neglect some perturbative effects 

on orbital elements and fail to account for satellite 

manoeuvres. 

This study enhances the Space Occupancy (SO) and 

Space Occupancy Path (SOP) filters by integrating 

satellite manoeuvres and atmospheric drag effects. 

Atmospheric drag is modelled using King-Hele’s theory 

to estimate orbital decay, while manoeuvres are 

addressed through ephemeris-based real-time position 

updates. 

The proposed filters improve the fidelity of conjunction 

analysis while preserving computational efficiency, 

addressing critical challenges posed by the escalating 

satellite population and advancing sustainable practices 

for orbital safety.   

1 INTRODUCTION 

The increasing congestion in the near-Earth space 

environment presents unprecedented challenges for 

sustainable space traffic management and orbital safety. 

The “new space era” is characterized by exponential 

growth in Resident Space Objects (RSOs), driven by 

both the deployment of extensive satellite constellations 

and the proliferation of space debris [16]. This situation 

has transformed Conjunction Analysis (CA) from a 

specialized concern into a critical necessity for ensuring 

the long-term sustainability of space activities. 

CA serves as an essential tool in space traffic 

management, encompassing methodologies and 

processes designed to evaluate and mitigate collision 

risks in orbit. While current operational practices 

primarily focus on the one-vs-all conjunction screening 

problem [11], this approach addresses only a fraction of 

the collision risk landscape. The more comprehensive 

all-vs-all conjunction screening problem, which 

examines potential collisions among all catalogued 

Resident Space Objects (RSOs), remains a significant 

challenge [20]. 

The computational complexity of the all-vs-all problem 

is staggering and is expected to intensify even more 

with the increasing number of catalogued objects being 

tracked. Nonetheless, prior research has explored 

various strategies to address these computational 

challenges, with conjunction filter processes being 

among the most widely used acceleration techniques. 

These filters efficiently eliminate pairs of RSO with 

negligible collision risk, significantly reducing the 

computational load of detailed CA. 

These processes typically involve a series of successive 

filters. The classical method proposed by Hoots [10] 

starts with the apogee-perigee filter, followed by the 

orbit path filter, which are based on the geometry of the 

orbit and the geometry of the pair, respectively. These 

filters are referred to as geometric filters for this reason, 

as they do not consider the position of the satellite in 

orbit. This aspect is considered by the third and final 

filter of the process, the time filter. 

Geometric filters have classically had two main 

limitations. The first is their reliance on a Keplerian 

framework; perturbations lead to variations in orbital 

elements, which in turn cause alterations in the 

geometry of the orbits. The second significant issue is 

their failure to account for the possibility of executing 

manoeuvres, which is crucial when at least one of the 

objects is an active satellite. The latter is becoming 

increasingly relevant due to the growing population of 

active satellites. 

Previous studies have sought to address these challenges 

by investigating diverse filtering processes [22, 4, 7] For 

instance, Casanova et al. in [4] utilize ephemeris tables 

to obtain equinoctial orbital elements, which are then 

linearly interpolated to estimate these elements at a 

given time. Alfano, in his work [1], introduces a 

geometric approach, offering versatility by enabling 

users to specify different in-plane and out-of-plane 

bounds for the path filter. Additionally, buffer distances 

are often incorporated into conjunction filters to reduce 

false positives, though they must be carefully calibrated 

to balance accuracy and efficiency [2]. 
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The authors previously developed two novel filters in 

their earlier works [18] and [17]: the Space Occupancy 

filter (SO-filter), which serves as an alternative to the 

classical apogee-perigee filter, and the Space 

Occupancy Path filter (SOP-filter), which offers a 

distinct approach compared to the classical orbit path 

filter. The key advantage of these filters lies their 

foundation on a zonal-perturbed two-body problem 

model. 

The purpose of the present work is to adapt these filters, 

which already account for zonal harmonics 

perturbations to be further tuned as objects manoeuvre 

during the prediction time span. Additionally, this work 

incorporates the atmospheric drag effect, since it is one 

of the most relevant perturbations, along with zonal 

harmonics—in Low Earth Orbit (LEO). The manoeuvre 

issue is addressed by using ephemeris files, which allow 

for the updating of real satellite data to handle 

manoeuvres that change the altitude of the orbit. 

Regarding atmospheric drag, the orbital model for a 

spherically symmetrical, exponential atmosphere of 

King-Hele is used [12] to analytically model the 

reduction in altitude experienced by low-eccentricity 

orbits due to this perturbation. This enables the 

analytical estimation of the reduction in the semimajor 

axis and consequently, the decrease in the minimum 

radius. 

These improvements have been numerically validated 

using Starlink constellation. The filter process has been 

applied by confronting the satellites of the constellation 

in an all-vs-all approach. 

The structure of this paper is as follows: After this 

introduction, a brief explanation of the Space 

Occupancy filter process is performed in Section 2. The 

implementations developed in this work are presented in 

Section 3, detailing how the filters have been tuned to 

account for satellite manoeuvres, and Section 4 covers 

the implementation of the atmospheric drag. Section 5 

presents the implementation of the improved filters, and 

the five different configurations used to validate the new 

methods. Finally, Section 6 presents validation tests on 

the Starlink constellation. The paper concludes in 

Section 7 with some final remarks and suggestions for 

future work. 

2 SPACE OCCUPANCY FILTER PROCESS 

The Space Occupancy filter process consists of two 

geometric filters, the SO-filter and the SOP-filter, which 

are based on the principles of the apogee-perigee filter 

and the path filter, respectively. The key aspect of these 

filters is that they are able to account for the effect of 

zonal harmonics. To achieve this, Space Occupancy 

(SO) concept [3] and Cook’s theory are employed [5, 6]. 

The Space Occupancy (SO) concept is described as the 

domain occupied by an individual satellite as it moves 

along its nominal orbit under the effects of 

environmental perturbations during a given interval of 

time [3]. This concept was initially defined for a long-

time scale, on the order of the period of the line of 

apsides. However, time horizons in conjunction analysis 

are significantly shorter, usually ranging from 5 to 7 

days. To address this time discrepancy, a “short-term 

SO” theory was developed in [18]. It estimates the 

satellite’s altitude range by employing the approximate 

evolution of the radius for a non-frozen orbit with small 

eccentricity, using a first-order eccentricity expansion: 

𝑟 ≈ 𝑎̂(1 − 𝑒̂ cos(𝜃̂ − 𝜔̂))

+  
𝐽2

4𝑎̂
[(9 + cos 2𝜃̂) sin2 𝑖̂ − 6] 

(1) 

where 𝑎̂, 𝑖̂, 𝜃̂ and 𝜔̂ represent the mean values, averaged 

over the mean anomaly, of the semimajor axis, 

inclination, argument of latitude and argument of 

periapsis, respectively. 

Equation (1) can be reformulated using Cook’s theory, 

which describes the behaviour of the mean eccentricity 

vector, (𝜉, 𝜂), of an orbit influenced by J2 and an 

arbitrary sequence of odd zonal harmonics [5], to obtain 

an expression for the radius as an explicit function of 

the argument of latitude, 𝜃̂, and time, 𝛽, 

𝑟(𝜃̂, 𝛽) ≈ 𝑎̂(1 − 𝑒𝑝 cos(𝜃̂ − 𝛽) − 𝑒𝑓 sin 𝜃̂)

+  
𝐽2

4𝑎̂
[(9 + cos 2𝜃̂) sin2 𝑖̂ − 6] 

(2) 

where 𝑒𝑝, 𝑒𝑓, and 𝛽 represent the frozen eccentricity, 

proper eccentricity, and rotation angle respectively. 

Cook’s theory provides the analytical expressions for 

these parameters, which are written here for the reader’s 

convenience: 

𝑒𝑓  =  𝑘−1 𝑎−
3
2  

       ∑
𝐽2𝑛+1

𝑎2𝑛+1

𝑛

(2𝑛+1)(𝑛+1)
𝑃2𝑛+1

1 (0)𝑃2𝑛+1
1 (cos 𝑖̂ )𝑁

𝑛=1 ,  
(3) 

𝑒𝑝 = √(𝑒̂0 sin 𝜔̂0 − 𝑒𝑓)
2

+  𝑒̂0
2 cos2 𝜔̂0 , (4) 

sin 𝛼  =  
𝑒̂0 sin 𝜔̂0 − 𝑒𝑓

𝑒𝑝

, (5) 

cos 𝛼  =  
𝑒̂0 cos 𝜔̂0

𝑒𝑝

, (6) 

𝛽(𝜏) = 𝛼 + 𝜅𝜏, (7) 

𝜅 =  
3 𝐽2

𝑎̂
7
2

(1 − 
5

4
sin2 𝑖)̂. (8) 

𝑃𝑛
1 denotes the associated Legendre function of the first 

order and degree n, 𝐽2𝑛+1 are the odd zonal harmonic 

coefficients, and 𝜏 denotes the dimensionless time 

considering the Earth’s radius as the reference length 



 

 

unit and 1/𝑛⊕ as the reference time, with 𝑛⊕ the mean 

motion of a circular orbit of radius 𝑅⊕.  The initial 

conditions 𝑒̂0 and 𝜔̂0 represent the mean eccentricity 

and argument of periapsis at 𝜏 = 0. 

An accurate and efficient method to compute the 

maximum and minimum value of Eq. (2) within a 

specific timeframe is provided by [1818]. It involves 

solving a quartic equation, leveraging the short-term SO 

model as a computationally efficient tool to accurately 

compute radial bounds. Figure 1 illustrates the schema 

of the SO and the radial bounds with the required buffer. 

These boundaries, 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛 in Figure 1, are used 

by the SO-filter to efficiently remove pairs of objects 

with non-overlapping ranges of radii.  

 

Figure 1. Space Occupancy Geometry [18]. 

This procedure is also extended to the path filter 

resulting in the newly introduced SOP-filter. The 

classical orbit path filter focuses on the concept of 

minimum orbit intersection distance (MOID), which has 

been thoroughly investigated in the literature [8, 9]. 

When the orbits are far from being coplanar, the MOID 

occurs at the relative nodes [8]. Then, the proposed 

procedure of the SOP-filter estimates the maximum and 

minimum value of the orbital radius in a specific 

timeframe when the object is located at the mutual 

nodes [17]. These bounds are used by the SOP-filter to 

efficiently remove pairs of objects with non-overlapping 

ranges of radii at either of the nodes. 

Considering the influence of zonal harmonics, the 

temporal shift of relative nodes transitions them from 

discrete points to measurable intervals. The calculation 

incorporates the influence of the first three zonal 

harmonics (𝐽2,  𝐽3,  𝐽4) using the expression for the 

secular effect of Ω̂, as developed by Kozai in [13]. 

This second filter employs an approximation of the orbit 

radius considering up to the third order in eccentricity. 

Moreover, it uses a more comprehensive theory to 

describe the behaviour of the mean eccentricity vector, 

developed in [6], which expands upon this result by 

including the impact of the remaining even harmonic. 

The theory is also modified in [17] to include a 

correction to account for the effect of the order 𝐽2𝑒̂2. 

The radius expression employed by this filter is 

𝑟(𝜃̂, 𝛽) ≈ 𝑎̂ (1 − 𝑒𝑝 cos 𝜃̂ cos 𝛽 −

          √
𝜅𝜂

𝜅𝜉
𝑒𝑝 sin 𝜃̂ sin 𝛽 − 𝑒𝑓 sin 𝜃̂) ⋅

          [1 − (𝑒𝑝 sin 𝜃̂ cos 𝛽 − √
𝜅𝜂

𝜅𝜉
𝑒𝑝 cos 𝜃̂ sin 𝛽 −

          𝑒𝑓 cos 𝜃̂)

2

] +  
𝐽2

4𝑎̂
[(9 + cos 2𝜃̂) sin2 𝑖̂ − 6],  

(9) 

where some parameters are reformulated as follows 

𝐶 =

   ∑
𝑛̂𝐽2𝑛+1

𝑎2𝑛+1

𝑛

(2𝑛+1)(𝑛+1)
𝑃2𝑛+1

1 (0)𝑃2𝑛+1
1 (cos 𝑖 ̂)𝑁

𝑛=1 ,  
(10) 

𝑒𝑓 =
𝐶

𝜅𝜉

, (11) 

𝑒𝑝 = √
𝜅𝜉

𝜅𝜂

(𝑒̂0 sin 𝜔̂0 − 𝑒𝑓)
2

+ 𝑒̂0
2 cos2 𝜔̂0 

 

(12) 

sin 𝛼  =  √
𝜅𝜉

𝜅𝜂

𝑒̂0 sin 𝜔̂0 − 𝑒𝑓

𝑒𝑝

, (13) 

𝛽(𝜏) = 𝛼 + 𝜅𝜉√
𝜅𝜂

𝜅𝜉

𝜏, (14) 

𝜅𝜉

=  − ∑
𝑛̂𝐽2𝑛

𝑎2𝑛 (
2𝑛(2𝑛 + 1)

2
𝑃2𝑛(cos 𝑖̂)𝑃2𝑛(0)

𝑁

𝑛=1

+
(2𝑛 − 1)(2𝑛 − 2)(2𝑛 − 2)!

2(2𝑛 + 2)!
𝑃2𝑛

2 (cos 𝑖̂)𝑃2𝑛
2 (0)

−  𝑃′
2𝑛(cos 𝑖)̂𝑃2𝑛(0) cot 𝑖̂) ,                          

(15) 

𝜅𝜂

=  − ∑
𝑛̂𝐽2𝑛

𝑎2𝑛 (−
2𝑛(2𝑛 + 1)

2
𝑃2𝑛(cos 𝑖̂)𝑃2𝑛(0)

𝑁

𝑛=1

+
(2𝑛 − 1)(2𝑛 − 2)(2𝑛 − 2)!

2(2𝑛 + 2)!
𝑃2𝑛

2 (cos 𝑖̂)𝑃2𝑛
2 (0)

+ 𝑃′
2𝑛(cos 𝑖̂)𝑃2𝑛(0) cot 𝑖̂)                                

(16) 

As with the SO-filter, this conjunction filter is 

developed as an optimization problem: determining the 

maximum and minimum values of the radius function, 

but with boundaries in both variable—temporal (β) and 



 

 

argument of latitude (𝜃̂)—the latter being defined by the 

relative nodes. Here, the quartic equation of the first 

filter is replaced by a sixth-degree polynomial equation. 

Additionally, the constraint of the argument of latitude 

interval introduces a second polynomial, resulting in a 

total of two sixth-degree polynomials. 

3 INTEGRATION OF MANOEUVRES IN 

THE FILTERING PROCESS 

Both SO filters are originally formulated based on a set 

of initial orbital elements at 𝑡0 and consider the 

evolution of these elements over a 5-day time, 

accounting for zonal perturbations. However, 

manoeuvres can alter these orbital elements during the 

analysed period. 

One technique to account for the impact of manoeuvres 

is to sample ephemeris data, as demonstrated in 

previous works by Casanova et al. in [4] or Woodburn 

et al. in [22]. Instead of applying the filter solely at 𝑡0, it 

is recalculated at regular intervals (Δ𝑡) to update the 

orbital elements and capture the effects of manoeuvres. 

The analysed time span is then divided into n intervals, 

with 𝛥𝑡 =
𝑡𝑓−𝑡0

𝑛
. The orbital elements are updated using 

ephemeris data at 𝑡𝑘, where 0 ≤ 𝑘 ≤ 𝑛 − 1. Since these 

filters account for the evolution of the orbital elements 

due to zonal harmonics, not only the initial time is 

relevant, but also the time interval. To determine the 

boundaries within any interval, [𝑡𝑘, 𝑡𝑘+1], the filter is 

applied twice: 

1. At 𝑡𝑘, considering a forward time span of 𝛥𝑡, 

as per the original formulation, to obtain 𝑟𝑚𝑎𝑥
𝑘  

and 𝑟𝑚𝑖𝑛
𝑘 . 

2. At 𝑡𝑘+1, considering a backward time span of 

𝛥𝑡, to obtain 𝑟𝑚𝑎𝑥
𝑘+1 and 𝑟𝑚𝑖𝑛

𝑘+1. 

The boundaries for this interval are defined as the most 

restrictive solutions from the two computations: 

𝑟𝑚𝑎𝑥([𝑡𝑘, 𝑡𝑘+1]) = max(𝑟𝑚𝑎𝑥
𝑘 , 𝑟𝑚𝑎𝑥

𝑘+1), (17) 

𝑟𝑚𝑖𝑛([𝑡𝑘, 𝑡𝑘+1]) = min(𝑟𝑚𝑖𝑛
𝑘 , 𝑟𝑚𝑖𝑛

𝑘+1). (18) 

Using this method, if one of the satellites performs a 

manoeuvre within [𝑡𝑘, 𝑡𝑘+1], the altitude range defined 

by the boundaries in Eq. (17) and (18) encompasses the 

entire range of altitudes of the objects, both before and 

after the manoeuvre. 

Increasing the number of intervals n improves accuracy, 

especially when manoeuvres occur frequently. 

However, the computational cost of the filters grows 

proportionally with n. Thus, determining an optimal 

value for n is essential. Section 6 presents tests 

conducted to identify this optimal value. 

4 ATMOSHPERIC DRAG MODELING 

Atmospheric drag, alongside gravitational harmonics 

perturbations, is a major source of orbital perturbations 

for LEO orbits, particularly those below 500 km in 

altitude. It primarily affects two orbital elements: 

eccentricity and semimajor axis. In generic orbits, drag 

reduced both the eccentricity and the semimajor axis by 

decreasing the apogee radius. However, in nearly 

circular orbits—such as those of Starlink satellites, 

which are the focus of this analysis—atmospheric drag 

primarily causes a gradual reduction in the semimajor 

axis, leading to a corresponding decay in orbital radius 

[21]. For this study, the focus is exclusively on this 

latter effect. 

The reduction in orbital radius caused by atmospheric 

drag is analogous to that of a manoeuvre altering 

altitude. Consequently, the method introduced to handle 

manoeuvres can also account for this effect. However, 

when both effects are combined—for example, when a 

satellite performs a station-keeping manoeuvre to 

restore the altitude lost due to the drag—the sampling 

method cannot fully capture the trajectory using only 

the initial and final conditions (see e.g. Figure 2). 

 

Figure 2 Evolution of the semimajor axis (left) and the 

radius (right) of NORAD 59427 

To address this limitation, the effect of atmospheric drag 

on the semimajor axis is implemented analytically. 

Desmond King-Hele, in his book, introduced several 

theories for calculating changes in orbital elements 

caused by atmospheric drag. This project employs his 

model for a spherically symmetric, exponential 

atmosphere, as detailed in [12]. 

King-Hele’s theory employs the atmospheric density 

exponential model. This assumes the density of the 

atmosphere, 𝜌, decays exponentially from the surface, 

depending exclusively on the radial distance from 

Earth’s centre. The density variation with altitude is 

expressed as: 

𝜌 =  𝜌0 exp (−
𝑟 − 𝑟0

𝐻
) , (19) 

where H is the density scale height, and 𝜌0 is the 

atmospheric density at a chosen reference altitude, 𝑟 =
𝑟0. These reference values are obtained from the 

exponential model in Vallado [21], Table 7-4. 



 

 

In this theory, two variables are introduced: 𝑥 = 𝑎𝑒, and 

𝑧 =
𝑎𝑒

𝐻
. The change in the semi-major axis over one 

orbital period, Δ𝑎, is expressed as 

Δ𝑎 =  −2𝜋𝐹 ⋅ 𝐵𝐶𝑎2 𝜌𝑝0  exp (𝛽(𝑎0 − 𝑎

− 𝑥0)) [𝐼0 + 2𝑒𝐼1 +
3

4
 𝑒2 (𝐼0

+ 𝐼2 ) +
1

4
 𝑒3 (3𝐼1 + 𝐼3)

+ 𝑂(𝑒4)], 

(20) 

where 𝐼𝑥 represents the Bessel function of order 𝑥, with 

argument 𝑧; 𝜌𝑝0 is the atmospheric density at perigee 

altitude; F represents the factor accounting for 

atmospheric rotation and BC means the ballistic 

coefficient. 

The factor F is considered constant over one orbital 

period for a given satellite and is defined as 

𝐹 =  (1 −
𝑟𝑝𝑤

𝑣𝑝

cos 𝑖̂)

2

, (21) 

where 𝑟𝑝 , 𝑣𝑝 are the radius and velocity at perigee, and w 

is the angular velocity of the atmosphere. 

The ballistic coefficient, BC, is given by: 

𝐵𝐶 =  
𝑆𝐶𝐷

𝑚
, (22) 

where S is the cross-sectional area perpendicular to the 

direction of motion, 𝐶𝐷 is the drag coefficient, and m is 

the mass of the object. The BC values are unknown for 

most catalogue object and studies on this coefficient are 

mainly related to the estimation of the drag coefficient, 

for spherical objects of known surface properties. 

However, in the entire catalogue, there are many objects 

for which area and mass are also unknown, particularly 

most debris objects. Then, this work employs the 

method presented in [19], which estimate BC values of 

LEO space objects. Here, ephemeris data are employed 

rather than two-line element data as in the original 

method. This method is summarized in Section 4.1 for 

the reader’s convenience. 

Assuming that the semimajor axis variation is negligible 

over a single orbital period, a can be treated as constant 

within one period, so 𝑎 = 𝑎0. An iterative process is 

then used to compute the semimajor axis evolution over 

the analysed time span, 

𝑎𝑖 = 𝑎𝑖−1 + Δ𝑎𝑖−1. (23) 

Figure 3 illustrates an example of this approximation 

using the data of NORAD 32259. 𝑎 means the 

osculating semi-major axis, 𝑎̂ the mean one and 𝑎𝐾𝐻 is 

the evolution computed analytically. 

 

Figure 3 Evolution of the osculating and mean semi-

major axis and the analytical approximation of object 

NORAD 32259 

Atmospheric drag impacts the radius function 

evaluation, requiring its adjustment. Since the trend is 

monotonically decreasing over time, only the initial, 

which is 𝑎̂, and the final values, which is the analytical 

value computed at the end of the interval, let us call it 

𝑎𝐾𝐻 for simplicity, are relevant. Particularly, in the 

original algorithm, that the time interval starts on an 

initial time and goes forward, the maximum value of the 

semimajor axis is 𝑎̂ and the minimum value is 𝑎𝐾𝐻. 

Then, when the equation of the radius is evaluated at 

(𝜃̂ 𝑚𝑖𝑛
∗ , 𝛽 𝑚𝑖𝑛

∗ ) to compute the minimum radius, the 

value employed for the semimajor axis is 𝑎𝐾𝐻. Thus, the 

boundaries of the filters are as follow, 

𝑟𝑚𝑎𝑥 = 𝑟(𝜃̂ 𝑚𝑎𝑥
∗ , 𝛽 𝑚𝑎𝑥

∗ , 𝑎̂), (24) 

𝑟𝑚𝑖𝑛 = 𝑟(𝜃̂ 𝑚𝑖𝑛
∗ , 𝛽 𝑚𝑖𝑛

∗ , 𝑎𝐾𝐻). (25) 

where 𝑟(𝜃̂, 𝛽, 𝑎̂) refers to Eq. (2) in the case of the SO-

filter and to Eq. (9) in case of the SOP-filter, with 𝑎̂ as 

an input variable rather than a constant. 

4.1 Estimation of ballistic coefficient 

The method developed in [1919] estimates BC values of 

LEO space objects based on their historical two-line 

elements. In this work, the method is adapted by 

utilizing ephemeris data instead of TLEs. The algorithm 

can be summarized as follows: 

The rate of change of the semi-major axis due to 

atmospheric drag is expressed as: 

𝑑𝑎

𝑑𝑡 𝐷𝑟𝑎𝑔
=  

2𝑎2𝑣

𝜇
 𝒗̇𝑫𝒓𝒂𝒈 ⋅ 𝒆𝒗, (26) 

where 𝑣 is the velocity of the object, 𝒆𝒗 is the unit 

vector in the direction of the motion. The vector 𝒗̇𝑫𝒓𝒂𝒈 

is the acceleration of the object due to atmospheric drag, 



 

 

which is defined as, 

𝒗̇𝑫𝒓𝒂𝒈 =
1

2
𝜌𝐵𝐶|𝒗 − 𝑽|𝟐𝒆𝒗−𝑽, (27) 

where 𝒗 is the velocity vector of the satellite, 𝑽 is the 

atmospheric wind velocity vector, and 𝒆𝒗−𝑽 is the unit 

vector of the relative motion respect to the atmospheric 

wind. Since the effect of atmospheric rotation is already 

accounted for via the coefficient 𝐹, we assume 𝑽 =
𝟎, 𝒆𝒗−𝑽 = 𝒆𝒗. 

Assuming that 𝐵𝐶 is constant. Substituting Eq. (27) into 

Eq. (26) and integrating, the ballistic coefficient can be 

expressed as: 

𝐵𝐶 =  −
𝜇Δ𝑎𝑡1,𝐷𝑟𝑎𝑔

𝑡2

∫ 𝑎2𝑣3𝜌𝑑𝑡
𝑡2

𝑡1

. (28) 

The denominator is approximated using numerical 

integration, resulting in: 

𝐵𝐶 =  −
𝜇Δ𝑎𝑡1,𝐷𝑟𝑎𝑔

𝑡𝑛

∑ 𝑎𝑞
2𝑣𝑞

3𝜌(𝑡𝑞+1 − 𝑡𝑞)𝑛−1
𝑞=1

, (29) 

where 𝑎𝑞  and 𝑣𝑞  are the osculating semimajor axis and 

velocity obtained from the ephemeris at time 𝑡𝑞.  The 

time step for the numerical integration, (𝑡𝑞+1 − 𝑡𝑞), is 

determined by the ephemeris resolution, which in this 

work is ser to one minute. The atmospheric density is 

computed using the exponential model and the variation 

of the semimajor axis is given by 

Δ𝑎𝑡1,𝐷𝑟𝑎𝑔
𝑡𝑛 =  𝑎̂𝑡𝑛

− 𝑎̂𝑡1, (30) 

where 𝑎̂𝑡1
 and 𝑎̂𝑡𝑛

 represent the mean semimajor axes at 

times 𝑡1 and 𝑡𝑛, respectively.  

5 IMPLEMENTATION OF THE SPACE 

OCCUPANCY FILTERS 

One of the primary differences between the classical 

application of the SO filters and the current formulation 

lies in the time of application. In the classical 

implementation, the filters are applied only at the initial 

instant of time. In contrast, this formulation applies the 

filters at regular intervals of Δ𝑡, dividing the total time 

window into n equal intervals, 

[𝑡𝑘, 𝑡𝑘+1],      𝑘 ∈ [0, 𝑛 − 1]. 

Let 𝑟𝑘(𝜃̂, 𝛽, 𝑎̂) denote the radius expression for the SO-

filter (SOP-filter), defined by Eq. (2) (Eq. (9)), using the 

ephemeris data at 𝑡𝑘 as initial condition. 

The first step in both filters is to compute the mean 

orbital elements, (𝑎̂𝑘 , 𝑒̂𝑘, 𝑖̂𝑘, Ω̂𝑘, 𝜔̂𝑘 , 𝑀̂𝑘), using the 

Kozai-Lyddane equations [13, 15]. Subsequently, the 

parameters of Cook’s theory, defined by Eqs. (3-8) 

(Eqs. (10-16)) for the SO-filter (SOP-filter), are 

computed based on these mean orbital elements. 

The implementation details of the SO-filter are 

presented in Section 5.1, while the difference required 

for the implementation of the SOP-filter are discussed in 

Section 5.2. 

5.1 SO-filter implementation 

The algorithm is applied in the same manner across all 

intervals. For each interval, the filter is applied twice: 

1) First Application at 𝒕𝒌: 

At time 𝑡𝑘, the filter computes the maximum and 

minimum values of the function 𝑟𝑘(𝜃̂, 𝛽, 𝑎̂), considering 

𝛽 ∈ [𝛼𝑘, 𝛼𝑘 + 𝜅𝑘(𝜏𝑘+1 − 𝜏𝑘)]. Using the SO-filter 

algorithm described in [17], the coordinates at which the 

maximum and minimum radii occur are computed: 

(𝜃̂𝑚𝑎𝑥
𝑘 , 𝛽𝑚𝑎𝑥

𝑘  ), and (𝜃̂𝑚𝑖𝑛
𝑘 , 𝛽𝑚𝑖𝑛

𝑘  ). 

The evolution of the semimajor axis is then calculated 

as described in Section 4. Specifically, the maximum 

value of the semimajor axis is 𝑎̂𝑘, and the minimum 

value is determined analytically at the end of the 

interval, denoted as 𝑎𝐾𝐻
𝑘 . The boundaries of the radius 

for this interval are then defined as: 

𝑟𝑚𝑎𝑥
𝑘 = 𝑟𝑘(𝜃̂𝑚𝑎𝑥

𝑘 , 𝛽𝑚𝑎𝑥
𝑘 , 𝑎̂𝑘), (31) 

 𝑟𝑚𝑖𝑛
𝑘 = 𝑟𝑘(𝜃̂𝑚𝑖𝑛

𝑘 , 𝛽𝑚𝑖𝑛
𝑘 , 𝑎𝐾𝐻

𝑘 ). (32) 

2) Second Application at 𝒕𝒌+𝟏: 

For the second application, the filter is applied at 𝑡𝑘+1. 

It is important to note that the time interval in this case 

is [𝑡𝑘+1, 𝑡𝑘+1 − Δ𝑡], meaning time runs backward. 

Consequently, the minimum value of the semimajor axis 

is 𝑎̂𝑘+1, and the maximum value is the one computed 

analytically at the end of this interval (𝑡𝑘+1 − Δ𝑡), 

denoted as, 𝑎𝐾𝐻
𝑘+1. The boundaries for this interval are 

defined as: 

𝑟𝑚𝑎𝑥
𝑘+1 = 𝑟𝑘(𝜃̂𝑚𝑎𝑥

𝑘+1 , 𝛽𝑚𝑎𝑥
𝑘+1 , 𝑎𝐾𝐻

𝑘+1), (33) 

 𝑟𝑚𝑖𝑛
𝑘+1 = 𝑟𝑘(𝜃̂𝑚𝑖𝑛

𝑘+1, 𝛽𝑚𝑖𝑛
𝑘+1, 𝑎̂𝑘+1). (34) 

3) Defining the Interval Boundaries: 

The overall boundaries of the orbital radius within 

[𝑡𝑘, 𝑡𝑘+1] are determined as follows: 

𝑟𝑚𝑎𝑥,𝑘 = max(𝑟𝑚𝑎𝑥
𝑘 , 𝑟𝑚𝑎𝑥

𝑘+1 ), (35) 

 𝑟𝑚𝑖𝑛,𝑘 = max(𝑟𝑚𝑖𝑛
𝑘 , 𝑟𝑚𝑖𝑛

𝑘+1 ). (36) 

For a pair of space objects, the following interval is 

defined for each object (𝑖 =  1,2): 

ℛ𝑖
𝑘 =  [𝑟𝑚𝑖𝑛,𝑘

𝑖 , 𝑟𝑚𝑎𝑥,𝑘
𝑖 ]. (37) 

4) Filter condition: 

A conjunction is deemed impossible if: 



 

 

ℛ1
𝑘⋂ℛ2

𝑘 =  ∅    ∀   𝑘 ∈ [0, 𝑛 − 1], (38) 

In this case, the pair is flagged as negative and excluded 

from further analysis. Otherwise, it is flagged as 

positive, requiring more detailed evaluation. 

Finally, these intervals can be expanded by applying a 

buffer, as defined in [18]. 

5.2 SOP-filter implementation 

The implementation of the SOP-filter follows the same 

steps as the SO-filter, with the key difference that, 

among all the values of the argument of latitude, only 

the relative nodes are considered. Instead of defining a 

single interval that encompasses the entire radius, two 

separate intervals are introduced for each object and 

each pair: one corresponding to a relative node, 

ℛ𝑖
𝑘 =  [𝑟𝑚𝑖𝑛,𝑘

𝑖 , 𝑟𝑚𝑎𝑥,𝑘
𝑖 ]. (39) 

and another corresponding to the opposite relative node, 

ℛ𝑖
𝑘∗ =  [𝑟𝑚𝑖𝑛,𝑘

𝑖∗ , 𝑟𝑚𝑎𝑥,𝑘
𝑖∗ ]. (40) 

For a pair of space objects, the filtering condition is 

given by: 

ℛ1
𝑘⋂ℛ2

𝑘 = ∅ ∧  ℛ1
𝑘∗⋂ℛ2

𝑘∗ = ∅    ∀ 𝑘 ∈ [0, 𝑛 − 1] (41) 

If this condition holds, the pair is flagged as negative 

and excluded from further analysis, as a conjunction 

between the two objects is deemed impossible. 

Otherwise, it is flagged as positive for further 

evaluation. 

This filter employs two different types of buffers: a 

radial buffer, which enlarges the radius intervals ℛ, and 

an angular buffer, which expands the intervals defining 

the location of the relative nodes. Both are detailed in 

Section 5.3 of [17]. 

To test and evaluate the performance of the proposed 

improvements, five different configurations of the filters 

are considered: 

1. “Original configuration”: The filters are 

applied as originally described in [18] and [17], 

without incorporating the improvements 

presented in this work. 

2. “Start-end (1 interval, no drag)”: The time 

window is not divided, meaning only one 

interval is considered; and the improvement of 

atmospheric drag is not considered. In 

summary: 

𝑛 =  1  &  𝑎𝐾𝐻 =  𝑎̂ = 𝑐𝑡𝑒. 

3. “Start-end (1 interval, with drag)”: The time 

window is not divided, meaning one interval is 

considered; the improvement of atmospheric 

drag is included: 𝑛 = 1. 
4. “Daily (2 intervals, with drag)”: The filters are 

evaluated every 24 hours, meaning the time 

window is divided into two intervals (𝑛 = 2); 

and atmospheric drag is considered. 

5. “12-hourly (4 intervals, with drag)”: The filters 

are evaluated every 12 hours, dividing the time 

window into four intervals (𝑛 = 4); with 

atmospheric drag included. 

6 RESULTS 

The modifications developed in Sections 3 and 4 for 

both the SO-filter and the SOP-filter have been tested 

and validated using the Starlink constellation, applying 

the five configurations as outlined in the previous 

section. The ephemeris of this constellation was 

obtained from publicly available files from Space Track, 

with data spanning from 2024-11-07 for two days. The 

dataset contains information on 5,369 satellites. 

However, since not all the data start at the same time, 

the initial epoch of the ephemeris was set at 𝑡0 = 11 −
07 − 2024 ,05: 42: 42, which is the earliest time at 

which data for all satellites are available. Additionally, 

the data covers the period from 𝑡0 to 𝑡0 + 42ℎ, so the 

time window was set to 42 hours. 

The performance of the proposed improvements is 

assessed using the metrics introduced in Section 6.1. 

Furthermore, since the ballistic coefficient of each 

satellite in the constellation must be estimated, Section 

6.2 outlines the application of the method presented in 

Section 4.1 for estimating BC, along with the results for 

the Starlink constellation. Finally, Section 6.3 presents 

the results from applying the SO-filter across the five 

different configurations described above, and Section 

6.4 presents the results for the SOP-filter. 

6.1 Performance metrics 

 In order to evaluate the performance of the different 

configurations of the filters, two definitions are 

particularly relevant. 

A false positive occurs when the filter flags a pair as 

positive because condition (38) or (41) is not satisfied, 

but the pair is determined to be negative from the result 

of the complete ephemeris. 

A false negative occurs when the filter flags a pair as 

negative because condition (38) or (41) is satisfied, but 

the pair is determined to be positive from the result of 

the complete ephemeris. False negatives are the type of 

error that are not allow in conjunction analysis, as they 

can lead to a collision. Therefore, the performance of a 

filter is considered good if the number of false negatives 

is reduced to zero and the number of false positives is 

minimized. 

To assess the performance of the different 

configurations with the number of false positives and 

false negatives, three different metrics are employed, 



 

 

following [18]. 

The false positives to true positives ratio is defined as 

𝜌𝑓𝑝 =
𝑁𝑓𝑝

𝑁𝑡𝑝

, (42) 

where 𝑁𝑓𝑝 and 𝑁𝑡𝑝 represent the number of false and 

true positives, respectively. 

The false negatives to true positives ratio is defined as 

𝜌𝑓𝑛 =
𝑁𝑓𝑛

𝑁𝑡𝑝

, (43) 

where 𝑁𝑓𝑛 is the number of false negatives. 

Finally, the filter effectiveness defined as 

𝜂 =
𝑁𝑜𝑢𝑡

𝑁
, (44) 

where 𝑁𝑜𝑢𝑡 is the number of pairs eliminated by the 

filter because they are flagged as negative, and 𝑁 is the 

total number of pairs over which the filter is tested. As 

the number of satellites employed in this analysis is 

5,369, the total number of pairs over which the first 

filter is tested is 14,410,396. 

6.2 Starlink ballistic coefficient 

The algorithm described in Section 4.1 to estimate the 

ballistic coefficient has been applied to the Starlink 

constellation. For this computation, it is not necessary to 

have overlapping time windows between satellites, so 

all available data, spanning two days, are considered. 

For a proper estimation of this magnitude, the 

trajectories must be free of manoeuvres. However, 

Starlink satellites performs manoeuvres very often. 

Therefore, an initial analysis was conducted on the slope 

of the mean semimajor axis to identify intervals where 

the semimajor axis exhibited a decreasing trend. For 

those satellites with multiple manoeuvres-free windows, 

the ballistic coefficient has been computed as the 

average of the values obtained from each interval. 

Figure 4 shows the evolution of the osculating 

semimajor axis and the mean semimajor axis (magenta 

line). The magenta-shaded regions indicate the 

manoeuvres-free intervals, while the dots represent the 

initial and final values of the mean semimajor axis, 𝑎̂𝑡1 

and 𝑎̂𝑡𝑛. The value of the BC employed in this case is 

1.669e-07 m2/kg, the average of the values of the four 

intervals.   

Conversely, for objects performing manoeuvres 

throughout the entire time interval, the ballistic 

coefficient could not be estimated. There were 100 such 

cases in the survey. 

Figure 5 presents the BC plotted against eccentricity, 

with the colour bar indicating the different Starlink 

generations (information sourced from DISCOSweb). 

Moreover, Table 1 summarizes the key characteristics 

of these generations. 

 

Figure 4 Semimajor axis of NORAD 59427 indicated 

the intervals selected to compute the BC. The values of 

the BC are in [m2/kg]. 

 

Figure 5 BC of satellites at nominal altitude versus 

eccentricity. 

Table 1 Starlink constellations data from DISCOSweb 

Constellation 

Name 

i (deg) Deploy 

Start 

Area 

(𝑚2) 

Mass 

(kg) 

G1-P1-group1 53 24/05/2019 13.56 258.96 

G1-P1-group2 70 14/09/2021 12.34 282.16 

G1-P1-group3 97.6 24/01/2021 13.09 267.57 

G1-P1-group4 53.2 13/11/2021 13.40 260.00 

G2-P1-group5 43 28/12/2022 11.93 292.18 

G2-P1-group6 43 27/02/2023 33.88 750.00 

G2-P1-group7 53 22/08/2023 33.88 750.00 

 

Although satellites of the same generation share 

characteristics, no definitive conclusion can be drawn 

about the ballistic coefficient, therefore, it must be 

estimated for each object. 



 

 

6.3 SO-filter performance 

Since the SO-filter is the first filter in the process, it is 

tested against the entire constellation of 5,369 objects, 

thus, the total number of pairs over which this filter is 

tested is 14,410,396. 

Table 2 shows the number of objects for which the 

boundaries computed by the filter failed in one or both 

limits. It is important to note that an object being out-of-

bounds does not necessarily imply a false negative in 

this particular analysis, but it can lead to a false negative 

when considering other objects.  

Table 2 Objects out-of-bound for each configuration of 

the SO-filter. 

Configuration Out-of-Bound 

Original 280 

2d no drag 0 

2d drag 0 

Daily drag 0 

12h drag 0 

 

Table 3 and Table 4 summarize the performance of each 

configuration of the filter. The first table presents real 

positives along with false positives and false negatives, 

while the second table shows the performance of the 

different configurations through the three previously 

defined metrics. 

Table 3 Summary of the SO-filter performance 

comparison. 

Configuration Real 

Positives 

False 

Positives 

False 

Negatives 

Original 3,409,518 118,561 9,966 

2d no drag 3,409,518 125,901 0 

2d drag 3,409,518 132,986 0 

Daily drag 3,373,864 167,393 0 

12h drag 3,287,200 238,178 0 

 

Note that the false positives for the SO-filter increased 

as the number of intervals grew. On the other hand, the 

number of real positives decreased, and the total number 

of discarded pairs increased. This issue with false 

positives is due to cases where, considering the total 

maximum and minimum ephemeris data, the boundaries 

overlapped. However, when using intervals, the 

boundaries did not overlap. Despite this, since the 

objects are very close, the filter still detected them as 

positives. 

 

Table 4 Summary of the SO-filter performance with 

metrics. 

Configuration 𝜌𝑓𝑝 𝜌𝑓𝑛 𝜂 

Original 3.488 % 0.293 % 75.59 % 

2d no drag 3.693 % 0 % 75.47 % 

2d drag 3.900 % 0 % 75.42 % 

Daily drag 4.990 % 0 % 75.56 % 

12h drag 7.282 % 0 % 75.65 % 

 

The configuration Start-end (2 days, no drag) is able to 

eliminate all false negatives and bound correctly all the 

objects. This shows that for the SO-filter, there is no 

need to improve the treatment of atmospheric drag. 

Regarding the number of intervals, when it increases, 

the percentage of discarded pairs also increases, though 

the improvement is not significant. The percentage of 

discarded pairs increases only 0.23% between one and 

four intervals. Since the computational time of the filter 

is multiplied by the number of intervals, it is not worth 

increasing it by a factor of four, for such a small 

improvement. Thus, the best configuration for the SO-

filter is the Start-end method (2 days, no drag). 

These results, obtained with a real population, are 

highly consistent with those obtained using the 

numerical propagation presented in [17]. The number of 

eliminated pairs is reduced by only 2%, while the metric 

of the false positives increases by the same margin of 

2%. These are excellent results, demonstrating the 

filter’s robustness and suitability for transitioning from 

theoretical simulations to a real-world population. 

6.4 SOP-filter performance 

Since the SOP-filter is the second stage of the process, it 

is assessed using the pairs flagged as positives by the 

SO-filter. The number of pairs that pass through the 

chosen configuration of the SO-filter, Start-end (2 days, 

no drag) is 3,542,504. However, as this filter cannot 

handle coplanar pairs, because the MOID can be far 

from the relative nodes, those pairs whose mutual 

inclination is smaller than 10 degrees or higher than 170 

degrees are not considered for the analysis. Thus, the 

SOP-filter is evaluated employing 3,303,697 pairs. 

Table 5 shows the number of objects for which the 

boundaries computed by the filter failed in one or more 

of the limits.  

Table 5 Objects out-of-bound for each configuration of 

the SOP-filter. 

Configuration Out-of-Bound 

Original 285,758 



 

 

2d no drag 159,026 

2d drag 169 

Daily drag 0 

12h drag 0 

 

Table 6 and Table 7 summarize the performance of each 

configuration of the SOP-filter. The first one presents 

real positives along with false positives and false 

negatives, while the second one shows the performance 

of the different configurations through the three 

previously defined metrics. 

Table 6 Summary of the SOP-filter performance 

comparison. 

Configuration Real 

Positives 

False 

Positives 

False 

Negatives 

Original 2,066,021 36,393 12,732 

2d no drag 2,066,021 56,208 7,135 

2d drag 2,066,021 137,873 0 

Daily drag 2,062,071 118,122 0 

12h drag 2,053,835 107,658 0 

 

Table 6 shows that, for the SOP-filter, it is necessary to 

consider the improvement in atmospheric drag to 

completely avoid false negatives errors. Thus, the 

configuration chosen for the SO-filter is not an option in 

this second filter. 

Table 7 Summary of the SOP-filter performance with 

metrics. 

Configuration 𝜌𝑓𝑝 𝜌𝑓𝑛 𝜂 

Original 1.772% 0.620 % 36.75 % 

2d no drag 2.730 % 0.347 % 35.98 % 

2d drag 6.673 % 0 % 33.29 % 

Daily drag 5.728 % 0 % 34.01 % 

12h drag 5.242 % 0 % 34.57 % 

 

The same conclusion can be drawn about the number of 

intervals. The percentage of discarded pairs increased 

with the number of intervals, but not in a significant 

manner to justify the increase in the computational time. 

However, even though the number of false negatives is 

zero in all configurations that account for the 

improvement in atmospheric drag, the Start-end (2 days, 

drag) configuration presents 169 cases of poorly 

bounded objects. These objects could potentially result 

in false negatives with other objects do not consider in 

this analysis. Therefore, as in conjunction analysis the 

safer option is always preferred, the Daily (2 intervals, 

no drag) is the one recommended for the SOP-filter. 

In contrast to the first filter, the performance of the 

SOP-filter in this series is notably affected when tested 

on a real population. This could be due to the finer 

nature of the filter, which makes it more susceptible to 

perturbations, or possibly due to the specific population 

chosen for testing. Nevertheless, considering the 

complete process, the number of pairs is reduced from 

14,410,396 to 2,458,451 by the SO and SOP-filters. 

Thus, only around 17% of the input pairs need further 

analysis. 

7 CONCLUSIONS AND FUTURE WORK 

This project evaluates the performance of the SO- and 

SOP-filters against real data, emphasizing the need for 

adjustments to account for satellite manoeuvres and 

atmospheric drag. It proposes a sampling method to 

manage manoeuvres that alter the satellite’s altitude, as 

well as an analytical approach to incorporate the 

semimajor axis decay, and consequently the radius 

decay, caused by the atmospheric drag. 

These improvements were tested on the Starlink 

constellation by running the filters under five different 

configurations to evaluate both methods. The analysis 

concludes that while the SO-filter only requires 

adjustments for handling manoeuvres, the SOP-filter 

also necessitates the inclusion of the atmospheric model. 

The SO-filter performs effectively considering only a 

single interval; however, the SOP-filter needs to 

consider at least two intervals. In addition, increasing 

the number of intervals yields a marginal improvement 

in discarded pairs at the expense of significantly higher 

computational time, thus, the minimum number of 

intervals required for each filter is chosen. 

The filtering process eliminates 83.2% of the total input 

pairs from further analysis, with no false negatives 

detected. This substantial reduction in the number of 

pairs has significant implications for space traffic 

management and collision risk mitigation. 

Future work will include the incorporation of a safety 

buffer to account for out-of-plane manoeuvres, which 

may affect the relative nodes calculation in the SOP-

filter. A more in-depth analysis of these manoeuvres is 

needed to better capture their impact on the filter’s 

performance. Additionally, to generalize the filters for 

broader use in the LEO region, a more comprehensive 

atmospheric model should be considered, taking into 

account not only the effect of drag on the semimajor 

axis but also its influence on eccentricity. Finally, the 

integration of a third filtering stage based on the satellite 

phase, such as the classical time filter, could provide 

further improvements in this filtering process. 
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