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ABSTRACT

Satellite conjunctions involving “near misses” of space
objects are increasingly common, especially with the
growth of satellite constellations and space debris. Ac-
curate risk analysis for these events is essential to pre-
vent collisions and manage space traffic. Traditional
methods for assessing collision risk, such as calculating
the so-called collision probability (pc), are widely used
but have limitations, including counterintuitive interpre-
tations when uncertainty in the state vector is large. To
address these limitations, we build on an alternative ap-
proach proposed by [1] that uses a statistical model al-
lowing inference on the miss distance between two ob-
jects in the presence of nuisance parameters. This model
provides significance probabilities for a null hypothesis
that assumes a small miss distance and allows the con-
struction of confidence intervals, leading to another inter-
pretation of collision risk.

In this study, we compare this approach with the tradi-
tional use of pc across a large, NASA-provided dataset of
real conjunctions, in order to evaluate its reliability and to
refine the statistical framework to improve its suitability
for operational decision-making. We also discuss con-
straints that could limit the practical use of such alterna-
tive approaches.

Keywords: Probability of collision, Linear motion, Like-
lihood function, Statistical inference, Parametric model.

1. INTRODUCTION

The rapid expansion of satellite constellations and the
persistent threat posed by orbital debris have greatly in-
creased the frequency of close approaches in Earth orbit.
To mitigate the risk of on-orbit collisions, satellite oper-
ators frequently monitor potentially hazardous conjunc-
tions over time, refining the collision probability (pc) as
new tracking data become available.

Traditionally, pc is iteratively computed at each predic-
tion update by integrating the density describing the rela-
tive position uncertainty over the disk defined by the sum
of the colliding objects’ radii. This iterative assessment
is especially important because the positional uncertain-
ties, and hence pc, often evolve significantly between an
initial detection of a close approach and the final decision
point, typically just hours before the Time of Closest Ap-
proach (TCA) [2, 3, 4]. Meanwhile, operators can also
track the evolution of the observed miss distance [5], an
intuitive measure of how “close” an encounter is likely to
be. As each new piece of tracking data refines the orbital
covariance, updated estimates of pc can either confirm a
low-risk event or indicate that active avoidance maneu-
vers are warranted. However, relying solely on pc can
lead to confusion when uncertainties are large. Under
such circumstances, the so-called dilution phenomenon
manifests as artificially low values of pc, creating a false
sense of safety [6, 7].

Recent work [1, 8] proposes shifting the focus from pc
to direct statistical inference on the miss distance at the
TCA. By framing conjunction assessment in terms of
hypothesis testing, one obtains significance probabilities
and confidence intervals that more transparently balance
Type I (false alarm) and Type II (missed detection) errors.
This perspective aims to offer decision-makers a clearer
statement of the situation, even when orbital uncertain-
ties are considerable. In this paper, we build on these
ideas and compare the traditional approach of computing
pc against the inference-based method for the miss dis-
tance using a large real-world dataset provided by NASA.
We also show a theoretical relationship indicating that the
conventional collision probability is systematically lower
than the significance probability derived from hypothesis
testing.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the conventional methodology for calculat-
ing collision probability and its known limitations. Sec-
tion 3 describes the inference framework built around the
miss distance, including the relevant hypothesis tests and
their interpretation. Section 4 presents the NASA con-
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junction dataset and the numerical comparison of both
approaches. We conclude in Section 5 with a discussion
of the operational implications of our findings and poten-
tial directions for future research.

2. COLLISION RISK ASSESSMENT

2.1. Collision Probability pc

Accurate collision risk assessment is an essential aspect
of space operations. A widely-used basis for risk assess-
ment is the calculation of collision probability. This pro-
vides a quantitative estimate of the probability of two ob-
jects coming into contact during a close encounter and
has become a standard basis for operational risk manage-
ment.

The probability of collision, pc, is derived within the fol-
lowing statistical framework. The observed state vector
y, which represents a noisy estimate of the relative posi-
tion µ and velocity ν of two objects, is assumed to follow
a multivariate normal distribution with mean vector η and
known covariance matrix Ω. The vector y is the result
of an orbit determination and prediction process, that is
part of a broader space surveillance framework that relies
on dynamic catalogs of space objects and comprehen-
sive forecasting methods [4]. Like other approaches to
conjunction analysis, our statistical formulation treats the
state vector y as a realization of a random variable drawn
from the specified multivariate normal distribution.

In the case of short-term conjunctions, the following as-
sumptions are taken to hold: (1) the encounter is brief,
involving a single close approach at the Time of Clos-
est Approach (TCA); (2) the relative motion between the
objects is approximately linear, with the relative veloc-
ity assumed constant; and (3) velocity uncertainty can be
neglected, with all positional uncertainties projected onto
the two-dimensional encounter plane normal to the rela-
tive velocity at the TCA [9].

These assumptions imply that the position uncertainties
form a three-dimensional Gaussian error ellipsoid during
the encounter, which yields a bivariate Gaussian distri-
bution when projected onto the encounter plane. In this
two-dimensional plane normal to ν, the observed position
x is treated as a projection of y, modeled as a bivariate
normal variable centered at the projected true position ξ,
with covariance matrix D = diag(d21, d

2
2); see Figure 1.

The conjunction probability pc is then computed as the
integral of the joint normal probability density function
f(x; ξ) over the collision volume V , defined as the disk
of radius ψmin (the combined hard-body radius) centered
at the origin, i.e.,

pc =

∫
∥x′∥≤ψmin

f(x′; ξ) ddx′. (1)

Numerous methods to evaluate the integral in Equa-
tion (1) efficiently and accurately have been proposed.

Figure 1: The geometry of an encounter in the plane nor-
mal to the relative velocity vector. The observed position
is x = (4, 3), and its projections onto the two axes are
shown by dashed black lines. The ellipses are centered
at x, with standard deviations d1 = 1.5 and d2 = 0.8;
without loss of generality their semi-axes can be taken to
be parallel to the coordinate axes. The hard-body radius
(HBR), ψmin = 1, shown as the blue dashed circle cen-
tered at the origin O, represents the collision volume V .
The angle λ indicates the orientation of x relative to the
origin.

Early approaches relied on numerical quadrature tech-
niques, while later methods leveraged analytical approx-
imations and asymptotic expansions to reduce computa-
tional complexity. A widely used method [3] employs a
transformation to polar coordinates, simplifying the inte-
gral into a form suitable for numerical evaluation. Al-
ternative approaches include the Rice integral method
[2, 10, 11], which relies on affine transformations and the
“line integral” method [12], which approximates the in-
tegral using contour integration. Analytical techniques
such as Laplace transforms [13] and Hermite polynomial
expansions [14] further refine probability estimates by
leveraging closed-form approximations. A comparative
analysis of these methods is available in [15].

2.2. Limitations of pc

In the definition of the collision probability pc in equa-
tion (1), the probability density function is centered at
the true relative position ξ. However, since ξ is unknown
in practice, pc is estimated by centering the density at the
observed position x, giving

p̂c =

∫
∥x′∥≤ψmin

f(x′;x) dx′.

One might think that computation of p̂c is the basis for
risk analysis, but unfortunately this is not the case, for
two reasons. The first is the underlying assumption that
the conjunction geometry corresponds to Figure 1, where
the density is centered at the observed position x, whereas



Figure 2: This Figure corrects the geometry of Figure 1.
The uncertainty is centered at the true relative position
ξ = (4, 3), with projections ξ1 and ξ2 onto the axes of
the encounter plane. The standard deviations are d1 =
1.5 and d2 = 0.8. The hard-body radius ψmin = 1, is
illustrated as the blue dashed circle centered at the origin
O, representing the collision volume. 1000 points were
sampled from the bivariate normal distribution centered
at ξ with covariance D = diag(d21, d

2
2). Points closer to

O than ξ are shown in red, while points farther from O
are shown in purple. The dashed black circle is the circle
with radius ψ passing through ξ, and the angle λ indicates
the orientation of ξ relative to the origin.

in reality the situation is better represented by Figure 2,
where the density is centered at the true relative position
ξ.

A bias arises because the observed position x, shown in
Figure 2 as one of the sample points, incorporates mea-
surement noise and is, on average, farther from the origin
than the true position ξ. As a result, p̂c tends to under-
estimate the true collision probability pc by an amount
that depends on the measurement uncertainty, increasing
as the covariance matrix grows larger.

The distinction between pc and p̂c is often overlooked.
The plug-in estimate p̂c is commonly referred to as pc
without acknowledging the systematic bias introduced by
centering the density at x instead of ξ [1, 8]. This lack
of clarity can lead to misinterpretation of the estimated
collision probability, as p̂c does not account for the true
conjunction geometry but rather approximates the proba-
bility based on a single noisy observation. Clarifying this
is essential for accurate and reliable risk assessments in
operational contexts [16].

A more serious difficulty is that pc is the probability that
the observation vector x, and not the true position ξ of
the satellite, lies inside the hard-body radius. In classical
statistics ξ is regarded as an unknown but fixed constant,
so the latter probability is either 0 or 1. Thus a different
statistical approach is needed in which ξ is treated as a
random variable.

A limitation of p̂c is its sensitivity to uncertainties in the
state vector, a phenomenon often called the dilution ef-
fect [6, 7]. When the covariance matrix is small (i.e., un-
certainty is low), the probability density function (PDF)
becomes tightly concentrated around its mean, reducing
the probability inside the collision volume and leading to
a lower p̂c, whereas when the covariance matrix is large
(i.e., uncertainty is high), the PDF spreads over a much
broader area, again decreasing p̂c. Between these ex-
tremes, there is an intermediate level of uncertainty where
the overlap between the PDF and the collision volume is
maximized [17].

This behavior highlights the sensitivity of p̂c to the level
of uncertainty and complicates its interpretation. In prac-
tice, some operational teams compute p̂cmax , the highest
value of p̂c across possible uncertainties, comparing it to
fixed thresholds such as 10−3, 10−4, or 10−7 to guide
mitigation decisions. The selection of these thresholds
has evolved with little formal consideration of how they
should be set.

2.3. Alternative methods

Methods developed to address collision risk assess-
ment challenges include belief and plausibility-based
approaches, such as decision support systems combin-
ing Dempster–Shafer theory with machine learning [18],
which provide nuanced classifications based on collision
probability, uncertainty and mitigation costs. Simulation
studies suggest that this approach provides detailed risk
assessments, although its routine operational implemen-
tation remains under evaluation.

Fully numerical methods, such as Monte Carlo simula-
tions, and machine learning-based approaches [19, 20],
are also widely applied. While effective in many cases,
these methods can be computationally burdensome.

One approach focuses on the miss distance, either de-
riving its distribution [21, 22], or inverting its moment-
generating or characteristic functions in order to estimate
collision probabilities [23]. These approaches share sim-
ilarities with the framework proposed in [1], but the latter
move beyond probability calculations to inference about
the miss distance. The details of this approach are pre-
sented in the next section.

3. INFERENCE ON THE MISS DISTANCE

The framework proposed in [1], building upon earlier
ideas in [3, 4], shifts the focus from estimating the col-
lision probability to inference about the distance between
the objects at the time of closest approach. Rather than
using collision probability as the sole metric, this ap-
proach treats the true miss distance ψ as the key quantity
of interest, enabling the construction of confidence inter-
vals and significance probabilities that can yield a more
informative assessment of conjunction risk.



3.1. Statistical model

The underlying statistical model is that used above, i.e.,
the observed relative position x is treated as a bivari-
ate normal variable with mean ξ and covariance ma-
trix D = diag(d21, d

2
2) obtained by projecting the three-

dimensional position covariance onto the encounter plane
and rotating it as described in [1]. Our goal is to make in-
ference about the length of ξ, which is expressed in polar
coordinates as

ξ = (ψ cosλ, ψ sinλ), (2)

where ψ > 0 is the Euclidean norm of ξ (the miss dis-
tance) and λ ∈ [0, 2π) is the orientation angle in the en-
counter plane. The probability density function f(x; ξ)
of x is thus

1

2π d1 d2
exp

[
−1

2

{
(x1 − ψ cosλ)2

d21
+

(x2 − ψ sinλ)2

d22

}]
.

(3)

When the relative motion is linear but velocity uncer-
tainty must be incorporated, the observed state becomes
a six-dimensional vector y, following

y ∼ N6(η,Ω),

with η and Ω respectively denoting the mean and covari-
ance of the full state. The density is then

f(y; η) =
1

(2π)3 |Ω|1/2
exp

{
−1

2
(y − η)T Ω−1 (y − η)

}
.

In this higher-dimensional setting, the miss distance ψ
depends on both the mean relative position µ and the
velocity vector ν. Rather than using ∥µ∥ directly, we
write ψ = ∥µ∥

∣∣sinβ∣∣, where β is the angle between
µ and ν. Accounting for both position and velocity un-
certainties raises the dimension of the parameter space,
yet ψ remains the parameter of primary interest, with
additional angles and orientation parameters treated as
nuisance components. In the two-dimensional case, λ
describes the inclination of ξ in the plane, while in the
six-dimensional scenario, λ generalizes to include the un-
known orientation of the encounter plane and alignment
of µ and ν.

3.2. Hypothesis formulation

Statistical inference aims to draw conclusions about un-
known parameters based on the observed data. In para-
metric settings such as those above a central quantity is
the likelihood function, defined as the probability density
function of the observed data, regarded as a function of
the parameters. The likelihood, which is a central focus
of interest in both frequentist and Bayesian approaches to
inference, typically depends on both a parameter of in-
terest ψ and nuisance parameters λ. A common strategy

to isolate ψ uses for example the profile log-likelihood
function [24]

ℓp(ψ) = ℓ
{
ψ, λ̂(ψ)

}
, λ̂(ψ) = argmax

λ
ℓ(ψ, λ)

as the basis for pivotal statistics such as the likelihood
root and Wald statistics

r(ψ0) = sign
(
ψ̂ − ψ0

) √
2
{
ℓp(ψ̂)− ℓp(ψ0)

}
, (4)

w(ψ0) =

(
ψ̂ − ψ0

)2
v̂ar(ψ̂)

, (5)

where v̂ar(ψ̂) is typically derived from the observed in-
formation matrix. Under regularity conditions and in suf-
ficiently large samples, and if ψ0 is the true value of ψ,
both r(ψ0) and w(ψ0) have approximate standard nor-
mal distributions, making them bases for hypothesis tests
and confidence intervals despite the presence of the nui-
sance parameters. The resulting inferences are said to be
well-calibrated if the standard normal distributional ap-
proximations for r(ψ0) and w(ψ0) are accurate, in which
case tests and hypothesis tests based on them will have
good frequentist properties. In the present setting there
is a single observation, and the ‘large sample size’ cor-
responds to small variance, i.e., small d1 and d2 in the
two-dimensional setting, or small Ω in a suitable matrix
sense in six dimensions.

The likelihood framework sketched above is a well-
established basis for statistical inference that is used in a
vast range of applications. In the context of conjunction
assessment, these principles are applied to ensure robust
risk evaluation regarding close approaches. One key chal-
lenge is to decide whether such an approach requires mit-
igation, and this can be addressed via a hypothesis test of
whether the miss distance ψ exceeds a predefined safety
threshold ψ0. We might test

H0 : ψ ≥ ψ0 vs. HA : ψ < ψ0, (6)

using the smallest significance probability under H0, i.e.,

pobs = Pr
{
r(ψ0) ≥ robs

}
= Φ

(
−robs

)
, (7)

where Φ denotes the standard normal cumulative distri-
bution function, and reject the null hypothesis H0 if pobs
falls below a chosen significance level α.

The setup in (6) allows for well-calibrated inference and
ensures that both over- and under-estimation risks are ac-
counted for. Even with large uncertainty, framing the
test in this manner can yield reliable inferences by bal-
ancing the probabilities of Type I and Type II errors. In
the present context a Type I error corresponds to an un-
necessary mitigation maneuver, a false alarm, whereas a
Type II error corresponds to not making such a maneu-
ver when one is necessary to avoid a collision, a missed
detection. Rejecting H0 corresponds to identifying a po-
tentially critical conjunction. This helps avoid frequent
false alarms but can understate the risk when uncertainty



is large, thus increasing the chance of missed detections
[7].

The choice of significance level α therefore involves a
trade-off between Type I and Type II errors. Smaller
α decreases the rate of false alarms but raises the rate
of missed detections, and this trade-off grows more se-
vere with high uncertainty. A complementary approach
is to use confidence intervals, which provide a range of
plausible values for ψ rather than a binary accept/reject
decision. Confidence intervals, particularly those de-
rived from profile-likelihood methods, can offer a more
flexible and informative approach to conjunction assess-
ment by directly incorporating uncertainty into inferences
[25, 26].

In the next section, we illustrate this tradeoff using real
conjunction data. In forming this tradeoff, it is essential
to consider the underlying theoretical principles that sep-
arate the metrics of pc and pobs. A detailed derivation of
the relationship between these two metrics is presented
in the Appendix 6, which shows, pc in Eq (1) is always
lower than the significance probability in Eq (7). This for-
mal comparison underscores the conceptual differences
in directly comparing their values.

4. ANALYSIS AND RESULTS

4.1. Data description

The dataset analyzed in this study is provided by NASA
and consists of detailed records of close encounters be-
tween space objects. Each record provides the positional
and velocity vectors of the primary and secondary ob-
jects, expressed in both Earth-Centered Inertial (ECI) and
UVW coordinate systems. The dataset also includes co-
variance matrices that quantify the uncertainties associ-
ated with these state vectors, incorporating both three-
dimensional positional and velocity covariances, along
with their projections onto the encounter plane.

The dataset includes temporal information such as Con-
junction Data Message creation time and Time to Closest
Approach TCA. Events are identified by grouping entries
with the same primary and secondary object IDs within
a ±15 minute window around TCA. To ensure sufficient
time for collision avoidance, only the entries closest to
12 hours before TCA are retained. After filtering, 76,225
unique OCMs remain, representing 9.38% of the origi-
nal 812,632 entries, forming the basis for the comparative
analysis.

Figure 3 illustrates key spatial and uncertainty proper-
ties of the dataset. The left-hand panel shows a log-
scaled scatter plot of the squared eigenvalues d21 versus
d22, highlighting strong anisotropy in uncertainty. The
eigenvalues often differ by several orders of magnitude,
leading to highly elongated error ellipses, and, in ex-
treme cases, nearly degenerate shapes resembling lines.

These anisotropies significantly impact collision proba-
bility estimates and the interpretation of encounter dy-
namics. The right-hand panel of Figure 3 shows standard-
ized position variables x1/d1 versus x2/d2, with most
encounters clustering near the origin. This occurs either
because uncertainties are well-contained relative to posi-
tion or because they are disproportionately large. A few
outliers with extreme standardized values correspond to
cases where uncertainties are small relative to positional
coordinates in one or both directions.

A complementary view of encounter geometry and uncer-
tainty is given in Figure 4, which shows the distribution
of miss distances in absolute and normalized terms. The
left-hand panel displays absolute miss distances, with
most encounters occurring within 20 km. The middle
and right-hand panels scale miss distances by the smallest
and largest eigenvalues, respectively, and show a sharper
peak near zero. This suggests that many encounters have
small miss distances relative to uncertainty in at least one
principal direction, an effect amplified when scaling by
the largest eigenvalue, reinforcing the strong anisotropy
in conjunction uncertainties.

The dataset includes estimates of pc using the method
of [3], evaluated with both a standard hard-body radius
(HBR) of 20 meters and a mission-specific HBR (Foster
1 and Foster 2), and the method of [4], evaluated for the
same two values of HBR (Chan 1 and Chan 2). Table 1
summarizes the resulting values of p̂c, which cluster near
zero, as indicated by a 75% quantile of essentially zero.
However, higher probabilities are observed for methods
using HBR= 20m, leading to more encounters exceed-
ing the (10−7, 10−4) thresholds. A small fraction of the
catalogued encounters, around 0.7%, of the events reach
values that could warrant maneuver planning.

4.2. Results and Discussion

Although both p̂c and p-values provide insights into con-
junction risk, they assess it in fundamentally different
ways. p̂c estimates the probability of collision by inte-
grating the joint density over the collision region, while
pobs measures the consistency of the observed data with
a default assumption that a collision will occur, corre-
sponding to the null hypothesis H0 : ψ = ψ0, where ψ0

is typically set to a safety threshold. Given these differ-
ences, their numerical values are not comparable. More-
over, as shown in the appendix, p̂c ≤ pobs. This further
emphasizes the distinction between them and the result-
ing challenges of direct numerical comparison, and im-
plies that p̂c is not calibrated.

Beyond these theoretical differences, pc also has well-
documented limitations as a measure of collision risk,
discussed in Section 2.2. These limitations suggest that
it should not be treated as an absolute benchmark for as-
sessing the risk of close conjunctions. However, given its
widespread use in operational conjunction assessments,
its familiarity among practitioners makes it a practical
reference when introducing alternatives.



Figure 3: Left: Scatter plot of log-scaled squared eigenvalues d21 vs. d22. Right: Scatter plot of standardized position
variables x1/d1 vs. x2/d2.

Statistic p̂c Foster 1 p̂c Foster 2 p̂c Chan 1 p̂c Chan 2
Mean 3.1359e-05 1.7762e-05 3.1885e-05 1.8220e-05
Median 7.4835e-188 3.7307e-193 8.8650e-199 1.7008e-199
Min 0.0000 0.0000 0.0000 0.0000
Max 3.4777e-01 3.4777e-01 3.4299e-01 3.4137e-01
25% Quantile 0.0000 0.0000 0.0000 0.0000
50% Quantile 7.4835e-188 3.7307e-193 8.8650e-199 1.7008e-199
75% Quantile 2.4259e-25 7.5545e-27 6.3523e-27 1.0519e-27
90% Quantile 1.7758e-07 1.6612e-08 1.1622e-07 1.3268e-08
95% Quantile 1.3546e-05 1.6050e-06 1.1919e-05 1.4312e-06
99% Quantile 2.6485e-04 8.4446e-05 2.4651e-04 7.4343e-05
Encounters with p̂c > 10−7 10568 (13.86%) 7045 (9.24%) 10419 (13.67%) 6949 (9.12%)
Encounters with p̂c > 10−4 503 (0.66%) 318 (0.42%) 493 (0.65%) 268 (0.35%)

Table 1: Summary statistics for the estimated collision probabilities p̂c, including the numbers exceeding critical proba-
bility thresholds.

In this section, we take as a reference p̂c computed us-
ing the method in [3] with a mission-specific HBR, ensur-
ing consistency with the p-values, which are also evalu-
ated at ψ0 = HBR. To illustrate the behavior of p̂c and
p-value over time, we construct a hypothetical scenario
based on a single conjunction with multiple CDMs cho-
sen from the original dataset. Initially, a nominal trajec-
tory is considered, corresponding to the miss case, where
the object follows its original path. A second trajectory,
the hit case, is generated by biasing the state vector by
−ξ(TCA) and thus shifting the trajectory toward a colli-
sion at the final recorded entry. Both trajectories are fur-
ther perturbed by adding noise proportional to the final
covariance, ensuring that the perturbation remains small.
Figure 5 presents the time evolution of the observed miss
distance (left), p̂c (middle), and pobs (right) for this con-
junction. As expected, the hit case (red) drifts toward
zero miss distance, while the miss case (blue) remains at
a larger separation. The values of p̂c and pobs are initially

close for both cases but diverge significantly in the final
48 hours, with the hit case exceeding the 10−4 threshold.
The particular conjunction in Figure 5 demonstrates that
as the uncertainties decrease sufficiently to yield a clear
decision, both the p-value and p̂c converge to either very
small or very large values. However, during this process,
the two metrics differ in absolute magnitude; as indicated
by the differing scales on the y-axis. A more detailed Re-
ceiver Operating Characteristic (ROC) study, which ex-
amines the performance of pobs and p̂c over a range of
hit–miss separations using similar data, is presented in
[27].

The alignment observed near the TCA in the preceding
example is not guaranteed, as we see from the right-hand
panel of Figure 6, which shows values of p̂c and pobs for
the dataset of conjunctions described in Section 4.1. The
values of pobs are all larger than the corresponding values
of p̂c, but while both metrics lead to the same classifica-



Figure 4: Histograms of estimated miss distances. Left: Distribution of absolute estimated miss distances, showing a
concentration of encounters within 20 km. Middle: Estimated miss distances normalized by the smallest eigenvalue,
exhibiting a heavy-tailed distribution. Right: Estimated miss distances normalized by the largest eigenvalue, showing a
more compressed distribution.

Figure 5: Left: observed miss distance for a particular conjunction in hit (red) and miss (blue) cases, where the hit
trajectory leads to a collision while the miss trajectory does not. Middle and right: corresponding evolutions of log10 p̂c
and log10 pobs.

tion outcome for 83% of encounters, the discrepancies
become more pronounced at higher values of pobs.

This is also seen in the confusion matrix, which classifies
encounters based on whether pobs exceeds a threshold α,
when compared to the 10−4 threshold for pc. The top left
of Table 2 confirms that pobs gives a higher false alarm
rate than p̂c, with significantly more encounters surpass-
ing the 10−4 threshold but no missed detections. When
the threshold for pobs is increased to ε = 10−1 (top right),
the false alarm rate decreases, but 79 encounters are then
classified as missed detections. This illustrates how pobs
naturally flags more encounters as high risk than p̂c. Ad-
justing the threshold offers a controlled way to balance
false alarms against missed detections.

A key factor influencing these results is the level of uncer-
tainty. Shrinking the covariance by a factor c = 0.01 re-
duces the values of p̂c and shifts many encounters below

the 10−4 threshold, as shown in the right-hand panel of
Figure 6; it lowers the false alarm rate, as reflected in the
bottom matrices of Table 2. This underscores the strong
dependence of both p̂c and pobs on uncertainty. How-
ever, interpreting false alarm and missed detection rates
requires caution. Labeling a discrepancy as a “missed
detection” presupposes that p̂c provides the correct risk
assessment, despite its known limitations. Since no ac-
tual collisions are recorded in the dataset, a missed de-
tection does not imply a failure to predict a real collision
but rather a classification divergence between p̂c and p-
values. If a real collision had occurred, failing to flag that
event as high risk would be an obvious mistake. How-
ever, in the absence of recorded collisions, what we call
missed detection is just a case where pobs and p̂c disagree.

False alarms are more nuanced, occurring when pobs flags
an event for closer scrutiny even though p̂c does not clas-
sify it as high risk. Unlike standard classification prob-



Figure 6: Comparison of log10 p̂c and log10 pobs for different covariance scaling factors. The left panel corresponds to
c = 1, representing results obtained using the original dataset, while the right panel shows results when all covariance
matrices are scaled down by a factor of 100, i.e., c = 0.01. The dashed black line represents x = y. The dashed lines
mark the threshold 10−4 for both metrics.

lems where false positives can be validated against real
outcomes, here there is no definitive ground truth for col-
lision probability. Since both metrics measure risk dif-
ferently, their discrepancies do not necessarily indicate
errors but rather variations in how uncertainty affects
the outcomes. The work in [27] shows that pobs, com-
puted based on the likelihood root, consistently provides
superior discrimination between collision (hit) and non-
collision (miss) cases when the data is constructed with a
balanced 50% of hits and 50% of misses.

5. CONCLUSION

In this paper, we formulated satellite conjunction as-
sessment in statistical terms and introduced an inference
framework centered on the miss distance. Our previous
analyses [1, 8] demonstrated that the conventional esti-
mator, p̂c, is downward biased because it relies on plug-in
estimates and fails to capture the true conjunction geome-
try. Here, we further showed that the collision probability
is always lower than the significance probability pobs de-
rived from the signed likelihood root.

Using a large, real conjunction dataset provided by
NASA, we compared the collision probability estimates
with the significance probabilities for conjunction assess-
ment. Our numerical results indicate that pobs produces
a higher false alarm rate than p̂c; moreover, this false
alarm rate decreases as the significance level is lowered
and uncertainty is reduced. This is primarily attributable
to the construction of the null hypothesis; when the ob-
served data for a particular conjunction lack sufficient
precision, as is often the case many hours before TCA,
there is stronger evidence in favor of the null.

The comparison between these two metrics naturally en-
compasses the discussion of false alarms and missed de-
tections. Since p̂c is computed as an integral estimate and
does not inherently control error rates, thresholds based

on it do not provide the calibrated trade-off between Type
I and Type II errors that the hypothesis testing framework
underlying pobs offers. Consequently, while thresholds
applied to p̂c can guide decision-making, they do not of-
fer the same level of error rate control as a formal hypoth-
esis test.

Future work should explore further refinements to im-
prove the operational suitability of our statistical ap-
proach, particularly in managing false alarms, select-
ing appropriate significance thresholds, and incorporat-
ing time series information from repeated observations
of the same encounter.

6. APPENDIX: COMPARISON OF p̂c AND pobs

The MLE of ξ for fixed miss distance ψ is defined as

ξ̂(ψ) = arg min
∥ξ∥=ψ

{
(ξ1 − x1)

2

d21
+

(ξ2 − x2)
2

d22

}
,

so the likelihood root statistic can be expressed as

r(ψ) = sign(∥x∥−ψ)
[
{x1−ξ̂1(ψ)}2

d21
+

{x2−ξ̂2(ψ)}2

d22

]1/2
,

with corresponding p-value

pobs = Φ {−r(HBR)} =
1√
2π

∫ ∞

r(HBR)

e−t
2/2dt.

If we define the function

∆(t) = (t1−x1)
2

d21
+ (t2−x2)

2

d22
,

then we can write

r(HBR) = sign(∥x∥ − HBR)∆(ξ̂)1/2



Original data
α = 10−4 α = 10−1

p̂c < 10−4 p̂c ≥ 10−4 p̂c < 10−4 p̂c ≥ 10−4

pobs ≥ α 11261 315 5010 236
pobs < α 63568 0 69819 79

Data with covariance matrices shrunk by c = 0.01.
α = 10−4 α = 10−1

p̂c < 10−4 p̂c ≥ 10−4 p̂c < 10−4 p̂c ≥ 10−4

pobs ≥ α 1594 197 443 141
pobs < α 73410 0 74561 56

Table 2: Confusion matrices comparing p̂c and pobs for the original dataset (top) and the dataset with shrunk covariances
(bottom) for significance levels α = 10−4, 10−1.

where ξ̂ = ξ̂(HBR). To proceed, we define the sets

A = {t ∈ R2 : ∥t∥ ≤ HBR},
C = {t ∈ R2 : ∆(t) ≤ ∆(ξ̂)},
B = {t ∈ R2 : t1ξ̂1 + t2ξ̂2 ≤ ∥ξ̂∥2},

D =
{
t ∈ R2 : (t1−x1)(ξ̂1−x1)

d21
+ (t2−x2)(ξ̂2−x2)

d22
≤ ∆(ξ̂)

}
.

Lemma 1. If ∥x∥ > HBR, then B = Dc, whereas if
∥x∥ < HBR, then B = D.

Proof. The disk A = {t : ∥t∥ ≤ HBR} has a differen-
tiable boundary, on which every supporting half-space is
unique. The Cauchy–Schwarz inequality implies that the
function u 7→ u · ξ̂ is a supporting linear functional, so
B is the unique supporting half-space of A at ξ̂. The el-
liptical set C = {t : ∆(t) ≤ ∆(ξ̂)} also has a smooth
boundary, and its unique supporting half-space at ξ̂ is D.

When ∥x∥ > HBR, suppose that int(A) ∩ int(C) ̸= ∅.
Then there exists t such that ∥t∥ < HBR and ∆(t) <

∆(ξ̂). By the intermediate value theorem, there ex-
ists a convex combination s = αt + (1 − α)x such
that ∥s∥ = HBR. Since int(C) is convex, we obtain
∆(s) < ∆(ξ̂), contradicting the definition of ξ̂. Hence,
int(A)∩ int(C) = ∅. For ∥x∥ < HBR, a similar argument
shows that C ⊆ A. In both cases, A and C share the
boundary point ξ̂.

If ∥x∥ > HBR, the separating hyperplane theorem implies
that B = Dc. However, if ∥x∥ < HBR, then C ⊆ A
implies that B = D. □

Theorem 1. In the setting above,

p̂c =
1

2πd1d2

∫∫
t∈A

e−∆(t)/2 dt1dt2 ≤ pobs.

Proof. There are three possibilities: that ∥x∥ = HBR,

∥x∥ > HBR or ∥x∥ < HBR.

If ∥x∥ = HBR then r(HBR) = 0 and therefore pobs =
Φ(0) = 1/2. The integral defining p̂c is over less than

one-half of a bivariate normal density and thus is strictly
less than 1/2. Hence, p̂c < pobs.

The second possibility is that ∥x∥ > HBR, in which case
B = Dc by Lemma 1. Hence

p̂c =
1

2πd1d2

∫∫
t∈A

e−∆(t)/2 dt1dt2,

≤ 1

2πd1d2

∫∫
t∈B

e−∆(t)/2 dt1dt2,

=
1

2πd1d2

∫∫
t∈Dc

e−∆(t)/2 dt1dt2.

To evaluate this integral, we define new coordinates s =
(s1, s2) by

 t1 − x1
d1

t2 − x2
d2

 = ∆(ξ̂)−1/2


ξ̂1 − x1
d1

− ξ̂2 − x2
d2

ξ̂2 − x2
d2

ξ̂1 − x1
d1

(
s1
s2

)
.

This composite transformation from (t1, t2) to (s1, s2)
both standardizes and rotates the space; the determinant
of its Jacobian is d1d2. The integration region

{t : (t1−x1)(ξ̂1−x1)/d21+(t2 − x2)(ξ̂2 − x2)/d
2
2 ≥ ∆(ξ̂)}

becomes {s : s1 ≥ ∆(ξ̂)1/2, s2 ∈ R}. Hence

p̂c ≤ 1

2πd1d2

∫∫
t∈Dc

e−∆(t)/2 dt1dt2

=
1

2π

∫∫
s1≥∆(ξ̂)1/2

e−(s21+s
2
2)/2 ds1ds2

=
1√
2π

∫
s1≥∆(ξ̂)1/2

e−s
2
1/2 ds1,

and, using the fact that r(HBR) = ∆(ξ̂)1/2, we therefore
have

p̂c ≤
1√
2π

∫ ∞

r(HBR)

e−s
2/2ds = Φ {−r(HBR)} = pobs.



The third possibility is that ∥x∥ < HBR. In this scenario
B = D so

p̂c =
1

2πd1d2

∫∫
t∈A

e−∆(t)/2 dt1dt2,

≤ 1

2πd1d2

∫∫
t∈B

e−∆(t)/2 dt1dt2,

=
1

2πd1d2

∫∫
t∈D

e−∆(t)/2 dt1dt2.

In this case, using the same transformation as above, the
integration region

{t : (t1−x1)(ξ̂1−x1)/d21+(t2 − x2)(ξ̂2 − x2)/d
2
2 ≤ ∆(ξ̂)}

becomes {s : s1 ≤ ∆(ξ̂)1/2, s2 ∈ R}, giving

p̂c ≤ 1

2πd1d2

∫∫
t∈D

e−∆(t)/2 dt1dt2,

=
1

2π

∫∫
s1≤∆(ξ̂)1/2

e−(s21+s
2
2)/2 ds1ds2,

=
1√
2π

∫
s1≤∆(ξ̂)1/2

e−s
2
1/2 ds1.

For ∥x∥ < HBR, we have r(HBR) = −∆(ξ̂)1/2, so

p̂c ≤
1√
2π

∫ −r(HBR)

−∞
e−s

2
1/2 ds1 = Φ {−r(HBR)} = pobs.

□

ACKNOWLEDGEMENTS

This material is based upon work partially supported by
the Air Force Office of Scientific Research under award
number FA8655-24-1-7009



REFERENCES

1. Soumaya Elkantassi and Anthony C. Davison. Space
oddity? A statistical formulation of conjunction as-
sessment. Journal of Guidance, Control, and Dy-
namics, 45(12):2258–2274, 2022.

2. R. Patera. General method for calculating satellite
collision probability. Journal of Guidance, Control,
and Dynamics, 24(4):716–722, 2001.

3. J. L. Foster and H. S. Estes. A Parametric Analysis of
Orbital Debris Collision Probability and Maneuver
Rate for Space Vehicles. NASA, National Aeronau-
tics and Space Administration, Lyndon B. Johnson
Space Center, Houston, 1992.

4. K. Chan. Collision probability analyses for earth
orbiting satellites. In Pacific Basin Societies, Ad-
vances in the Astronautical Sciences, 7th Interna-
tional Space Conference, volume 96, pages 1033–
1048, 1997.

5. S. Alfano and D. Jr. Negron. Determining satellite
close approaches. Journal of the Astronautical Sci-
ences, 41(2):217–225, June 1993.

6. M. S. Balch, R. Martin, and S. Ferson. Satel-
lite conjunction analysis and the false confidence
theorem. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
475(2227):20180565, 2019.

7. M. D. Hejduk, D. E. Snow, and L. K. Newman. Satel-
lite conjunction assessment risk analysis for “di-
lution region” events: Issues and operational ap-
proaches. volume 28, Austin, TX, 2019.

8. Soumaya Elkantassi. Higher Order Asymptotics:
Applications to Satellite Conjunction and Boundary
Problems. PhD thesis, EPFL, Lausanne, 2023.

9. Doyle T. Hall. Expected collision rates for tracked
satellites. Journal of Spacecraft and Rockets,
58(3):715–728, 2021.

10. R. Patera. Calculating collision probability for ar-
bitrary space vehicle shapes via numerical quadra-
ture. Journal of Guidance Control and Dynamics,
28(6):1326–1328, 11 2005.

11. Russell P. Patera. Satellite collision probability for
nonlinear relative motion. Journal of Guidance, Con-
trol, and Dynamics, 26(5):728–733, 2003.

12. Salvatore Alfano. A numerical implementation of
spherical object collision probability. The Journal of
the Astronautical Sciences, 53(1):103–109, 2005.

13. Romain Serra, Denis Arzelier, Mioara Joldes, Jean-
Bernard Lasserre, Aude Rondepierre, and Bruno
Salvy. Fast and accurate computation of orbital col-
lision probability for short-term encounters. Journal
of Guidance, Control, and Dynamics, 39(5):1009–
1021, 2016.

14. Ricardo Garcı́a-Pelayo and Javier Hernando-Ayuso.
Series for collision probability in short-encounter
model. Journal of Guidance, Control, and Dynam-
ics, 39(8):1904–1912, 2016.

15. Ken Chan. Comparison of methods for spacecraft
collision probabability computations. In AAS 18-
671, 04 2020.

16. Doyle T. Hall. Ephemeris-based satellite collision
rates and probabilities. Journal of Spacecraft and
Rockets, 0(0):1–18, 2025.

17. Salvatore Alfano. Relating position uncertainty to
maximum conjunction probability. The Journal of
the Astronautical Sciences, 53(2):193–205, 2005.

18. Luis Sánchez Fernández-Mellado and Massimiliano
Vasile. On the use of machine learning and evidence
theory to improve collision risk management. Acta
Astronautica, 181:694–706, 2023.

19. Lukasz Tulczyjew, Michal Myller, Michal Kawulok,
Daniel Kostrzewa, and Jakub Nalepa. Predicting
risk of satellite collisions using machine learning.
Journal of Space Safety Engineering, 8(4):339–344,
2021.

20. João Simões Catulo, Cláudia Soares, and Marta
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