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ABSTRACT

Assisted Natural Reentry (ANR) is a deorbitation strat-
egy conceived for low-thrust LEO satellites, aiming to
minimize the duration of the uncontrolled reentry phase.
Such an approach allows to limit uncertainties on the de-
bris impact area, which ensures compliance with human
casualty risk requirement. However, due to the limiting
low-thrust capability, an ANR operation can extend over
several months, leading to significant operational cost as
a ground team must continuously monitor and adjust the
trajectory. As the first step toward an autonomous ANR
guidance solution, this paper presents a new method for
computing an optimal open-loop ANR guidance using
an indirect optimization approach. This approach uses
Pontryagin’s Maximum Principle to derive the necessary
conditions of optimality and rewrites the ANR optimiza-
tion problem into a two-point boundary value problem.
This problem is then solved using a multiple shooting
method to obtain the optimal solution. An application of
this method is shown for the initial computation and sub-
sequent updates of a fuel-optimal ANR trajectory. The
ability to compute and update objective-optimal strate-
gies makes it an interesting alternative to the existing
ANR strategy computation tools for ground teams, but
the main interest of this approach is its use as a basis for
the development of an autonomous closed-loop guidance.

Keywords: Deorbitation; Indirect Optimization; Fuel-
Optimal Many-Revolution Trajectory.

1. INTRODUCTION

Satellites in low Earth orbit must be deorbited after their
mission lifetime to limit the proliferation of space debris.
Controlled reentry is a common deorbiting strategy, in
which the satellite is deorbited with a relatively large ve-
locity decrement. This allows to keep the human casu-
alty risk under the regulatory threshold by precisely con-
trolling the impact area. However, the propulsion system
must be dimensioned accordingly and it is, therefore, un-
feasible for low-thrust propulsion systems. A common
alternative is natural reentry, where the orbit is left to

decay under the sole effect of atmospheric drag. How-
ever, due to uncertainties in the atmospheric drag force,
the impact point cannot be predicted, which implies that
the spacecraft must be designed such that it satisfies ca-
sualty risks assuming a random impact point.

Assisted Natural Reentry (ANR) is an intermediate strat-
egy in which the satellite is progressively brought in
a controlled manner to an interface orbit with a very
low perigee (between 130km and 170km), from which it
quickly re-enters the atmosphere after a few uncontrolled
revolutions. The short final uncontrolled reentry limits
the uncertainty introduced by the drag force, and allows
to target an unpopulated debris impact area to reduce the
ground casualty risk compared to a random natural reen-
try. And the progressive controlled descent is feasible
with lower thrust chemical or electrical propulsion sys-
tems that would not permit a controlled reentry.

The computation of a maneuver strategy for the ANR’s
controlled phase poses several challenges. Firstly, as the
altitude decreases the increasing atmospheric drag, and
its associated uncertainty, become predominant over the
spacecraft thrust toward the end of the descent. Secondly,
the increasing aerodynamic torque will put a strain on the
attitude control system, which will not be able to point
the thrusters or solar panels below a certain altitude (typ-
ically around 250km). Thus Borobia et al. (2017) deter-
mined that the controlled descent and the interface orbit
should be elliptical to allows to maintain control around
the apogee while the perigee decreases. Tools were devel-
oped by Airbus (Lagadec and Gegout, 2023) and CNES
(Goester et al., 2022) to enable ground operation teams
to compute and readjust maneuvers for the ANR. How-
ever, with low-thrust propulsion the ANR may take sev-
eral months, which come at a high operational cost since
ground teams must remain mobilized to adjust the fre-
quent maneuvers. Thus the next step to facilitate the
adoption of ANR for low-thrust missions is to embed an
autonomous ANR guidance on the satellite.

The first step toward autonomous guidance is to have
a method for computing an open-loop guidance, which
gives a nominal trajectory, and which can then be con-
verted into a closed-loop guidance and embedded into
the spacecraft software. Airbus’s tool is not accessible
and was thus not considered. And while CNES’s tool,
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SIRENA, is available to the author, it relies on shape-
based methods that are sub-optimal, especially for very
low-thrust propulsion, and not easily translatable to a ro-
bust closed-loop guidance.

This paper thus presents a new method for computing an
open-loop ANR guidance using an indirect optimization
approach. This approach uses the Pontryagin’s Maxi-
mum Principle to derive the necessary conditions of opti-
mality and rewrite the ANR optimization problem into a
two-point boundary value problem (TPBVP). This prob-
lem is then solved using a multiple shooting method to
obtain the optimal solution. The indirect optimization is
applied in this paper for the computation of a fuel-optimal
guidance, but the approach can be applied to other opti-
mization objectives.

An advantage of the indirect approach is its low dimen-
sionality, since the resulting optimal guidance is charac-
terized by a costate vector of same dimension than the
state. Furthermore, Sidhoum and Oguri, 2024 shows
that such open-loop guidance can be turned into a robust
closed-loop control by mapping deviations of the state to
adjustment of the costate vector. This method is also a
potential alternative to existing ANR maneuvers compu-
tation tools for ground operations since it allows to effi-
ciently update a previously computed maneuvers strategy
to take into account deviations from the nominal trajec-
tory. However, more work is still needed on the enforce-
ment of maneuver constraints for the computed guidance
to be a suitable candidate.

The rest of this article is organized as follows. Section 2
defines the ANR guidance optimization problem. Sec-
tion 3 presents the indirect optimization approach for a
fuel-optimal objective. Section 4 shows a numerical ap-
plication of this method for the initial computation and
subsequent updates of an ANR trajectory.

2. PROBLEM STATEMENT

2.1. System dynamics

The Modified Circular Elements (MCE) along with the
satellite mass m are used to represent the satellite state.
The relation between MCE and keplerian elements is

xorb =



p = a(1− e2)

ex = e cosω

ey = e sinω

i

Ω

α = ω + ν

(1)

Where a is the semi-major axis, e the eccentricity, i the
inclination, Ω the Right Ascension of Ascending Node
(RAAN), ω the argument of perigee, ν the true anomaly
and α the Argument of Latitude (AoL). The eccentric-
ity vector (ex, ey) avoids the singularity for circular or-
bits, and the orbit is always assumed to be non-equatorial

(i ̸= 0). MCE are preferred over the more commonly
used Modified Equinoctial Elements since having the
RAAN directly in the state allows for a more practical
representation of the ANR interface orbit constraints.

The equation of the state dynamics is

ẋ = f(x,u, σ) =

[
ẋorb

ṁ

]
=

[
B

(
σ T

mu+ adrag

)
+ b

−σ T
c

] (2)

Where T is the maximum thrust, c is the exhaust veloc-
ity, σ is the commanded throttle in [0, 1], u is the thrust
direction unit vector. The thrust and acceleration vec-
tors are expressed in the QSW local orbital frame where
Q is the radial direction along the position vector, W is
the off-plane direction along the orbital angular momen-
tum, and S is the orthoradial direction that completes the
direct frame. B is the matrix of Gauss variational equa-
tions mapping the satellite acceleration to its effect on
orbital elements, b is the secular variation of orbital ele-
ments under Earth potential. The drag acceleration adrag

is expressed

adrag = −1

2

CDS

m
ρvv (3)

Where CD is the drag coefficient, S is the satellite cross-
section, ρ is the atmosphere density computed with the
NRLMSISE-00 model, v is the velocity vector and v is
its magnitude.

2.2. Maneuver constraints

Maneuvers are subject to two types of constraints. The
first are the forced coast arcs, which are portions of the
orbit where the satellite is not allowed to perform thrusts.
Such constraints can be modelled as an inequality con-
straint

σg(t,x) ≥ 0 (4)

where g(t,x) is a coast function which is positive when
thrust is allowed and strictly negative otherwise. A typ-
ical example of forced coasting in ANR scenarios is
passages under a certain altitude hmin below which the
aerodynamic torque becomes too strong for the reaction
wheels to maintain the satellite pointing. The coast func-
tion associated with this constraint, assuming a spherical
Earth of radius Re is

g =
p

1 + ex cosα+ ey sinα
− (Re + hmin) (5)

Another common forced coast arc is eclipse passages,
which are not considered here but their implementation
on an indirect optimization problem is shown in Pontani
(2021).

The second type of constraint for low-thrust propulsion
is battery charge, which limits the duration of thrust arcs



and enforces coasting arcs for battery charging between
each thrust. However, such constraints cannot be directly
modeled as an inequality constraint like Eq. 4, so the
thrust duration is left unconstrained in this paper.

2.3. Objectives

The initial conditions are the predicted date t0, satellite
mass m0, and orbit xorb,0 at the beginning of end-of-life
operations, which are all fixed. The target orbit is the in-
terface orbit of the ANR between the controlled and un-
controlled phase. Its defining feature is that its ascending
node is fixed at a terrestrial longitude, so the final RAAN
Ωf is tied to the final date tf by the relation:

Ωf = Λf − θ0 − θ̇(tf − t0) (6)

Where Λf is the target Longitude of Ascending Node
(LAN), θ0 is the sideral time at t0 and θ̇ is the Earth an-
gular rate. The other orbital elements af , exf , eyf , if , αf

are fixed, and the final mass mf is free. The rotating an-
gular elements α, Ω as well as Λf are not bounded in
[−π, π[ to keep track of the number of turns. In particu-
lar, Λf −Ωf is directly related to the duration of the ANR
trajectory.

The choice of the interface orbit is discussed in Borobia
et al. (2017) and Lagadec and Gegout (2023). To begin
with, the final total AoL αf is defined modulo 2π.

αf = ᾱf + 2πNα (7)

Where ᾱf is the target final AoL in ] − π, π], and Nα

is the integer number of AoL turns which is a free vari-
able. A practical choice is to set the interface orbit at
perigee (αf = ωf ) since it is by design in a forced coast-
ing arc imposed by Eq. 5, which tends to facilitate opti-
mization. The target apogee altitude haf and perigee alti-
tude hpf are chosen high enough for the interface orbit to
be reached in a controlled manner, and low enough to re-
duce the duration of the subsequent uncontrolled phase,
the uncertainty on the debris impact area, and thus the
risk of casualty below the target threshold. The target
LAN Λf is chosen to align the impact area of debris in
unpopulated areas. The target argument of perigee is cho-
sen to either adjust the uncontrolled phase duration or the
orbit orientation relative to the Earth shadow. The target
inclination if is usually close to the mission inclination
to avoid the need for out-of-plane orbit adjustments.

Finally, to complete the optimization problem statement
an objective function to minimize must be defined in the
following form

J = Φ(t0,x0, tf ,xf ) +

∫ tf

t0

L(t,x,u, σ) (8)

The objective chosen in this paper is to find the guidance
that minimises fuel consumption for a given value of Λf .
The corresponding fuel-optimal objective function is

J =

∫ tf

t0

L dt = −
∫ tf

t0

ṁ dt =
T

c

∫ tf

t0

σ dt (9)

3. INDIRECT OPTIMIZATION

3.1. Indirect formulation

The indirect approach is formulated for the fuel-optimal
problem, where the control inputs to optimize are the
thrust direction u and throttle σ.

The Hamiltonian associated with this problem is formed
by adjoining the system dynamics in Eq. 2 to the cost
function L in Eq. 9.

H = λT f + L

= λx
T

[
B

(
σ
T

m
u+ adrag

)
+ b

]
+ σ

T

c
(1− λm)

(10)

Where λ = [λx
T λm]T is a set of of time-varying La-

grangian multipliers called costates, λx is the costate
vector associated with the orbital elements xorb, and λm

is the costate associated with the mass m.

The Pontryagin’s Maximum Principle (PMP) states that
the optimal control, states and costates must minimize H
at all time. For the control input, this translates to

u∗ = arg min
||u||=1

H (11)

σ∗ = arg min
σ∈[0,1]

H (12)

The optimal thrust direction is expressed with Lawden’s
primer vector (Rutherfobd, 1964)

u∗ = − BTλx

||BTλx||
(13)

Since σ must also satisfy the forced coasting inequality
in Eq. 4, we define

σ = σmσg (14)

Where σm is the fuel-optimal throttle and σg is the con-
straint throttle, both in [0, 1]. Since H is linear in σm, the
optimal throttle σ∗

m is either 0 (no thrust) or 1 (full thrust)
depending on the sign of ∂H

∂σ , leading to a bang-bang
thrust profile. We derive the switching function from ∂H

∂σ

Sf =
c

m
||BTλx||+ λm − 1 (15)

And the optimal throttle is then given by

σ∗
m =

{
1, if Sf > 0

0, if Sf < 0
(16)

We assume that the case Sf = 0 where σ∗
m is undefined

only happens on singular time intervals and is thus not
considered. The constraint throttle is defined as

σg =

{
1, if g(t,x) ≥ 0

0, if g(t,x) < 0
(17)



Table 1: Summary of boundary constraints.

Initial bound Final bound

Component State Costate State Costate

p p0 free pf free
ex ex0 free exf free
ey ey0 free eyf free
i i0 free if free
Ω Ω0 free Eq. 6 Eq. 19
α α0 free αf free
m m0 free free 0

t t0 Eq. 6
H free Eq. 19

The PMP also allows to derive the costates differential
equations

λ̇ = −
[
∂H

∂x

]T
(18)

as well as the costates boundary conditions on λ and H ,
summarized in Table 1. If a state component is fixed at a
boundary, the associated costate is free. If a stat compo-
nent is free at a boundary, the associated costate is fixed
at 0. Finally, the constraint in Eq. 6 translates to the con-
straint Eq. 19 on the final RAAN costate λΩ and Hamil-
tonian H .

θ̇λΩ(tf ) +H(tf ) = 0 (19)

Finally, we define the augmented state vector y =
[xT λT ]T . The optimal command u∗, σ∗ is a function
of y, meaning that the augmented state dynamics on the
optimal trajectory is a function of itself.

ẏ =

[
ẋ(x,u∗, σ∗)

λ̇(x,λ,u∗, σ∗)

]
=

[
ẋ(y)

λ̇(y)

]
= fy(y) (20)

The fuel-optimal optimization problem thus becomes a
Two Points Boundary Value Problem (TPBVP).

Find y(t)

s.t.
ẏ = fy(y)

t ∈ [t0, tf ]

t0,y(t0), H(t0) → Table 1
tf ,y(tf ), H(tf ) → Table 1

(21)

3.2. Forced coasting arcs

As demonstrated in Pontani (2021), transition between a
thrust arc and a forced coasting arc introduces a disconti-
nuity on the costate vector λ and on Hamiltonian H .

λ+ = λ− − ξ

[
∂g

∂x

]T
(22)

H+ = H− + ξ
∂g

∂t
(23)

Where the superscripts − and + denotes the value of the
variables respectively before and after the discontinuity,
and ξ is an unknown parameter. By expanding H with
Eq. 10 in Eq. 23 we obtain

0 = −T

c

[
λ+
mσ+ − λ−

mσ−]
− T

m

[
σ+∥BTλ+

x ∥ − σ−∥BTλ−
x ∥

]
− ξ

[(
∂g

∂x

)T (
Badrag + b

)
+

∂g

∂t

] (24)

And after expanding λ+ with Eq. 22 in Eq. 24 we obtain
the equation to solve for the unknown parameter ξ.

The process of integrating the augmented state vector
through these discontinuities is as follows. When a coast-
ing event g(t,x) = 0 is detected, the integration is
stopped and the throttles σ−, σ+ before and after the
event are determined. Then Eq. 24 is solved with the
MATLAB® solver fzero to obtain the parameter ξ. Fi-
nally, the costate vector is updated with Eq. 22 and the
integration is resumed.

Forced coasting arcs can be an issue when searching for
the solution of the TPBVP, as they can cause a discontin-
uous variation of the trajectory when a new discontinuity
is introduced or removed between two guesses for y(t).
As a workaround, the discontinuous coasting constraint
in Eq. 17 can be replaced with a smoothed coasting con-
straint

σg =
1

2

(
1 + tanh

g(t,x)

2ϵ

)
(25)

Where tanh is the hyperbolic tangent and ϵ is the smooth-
ing parameter. Using this smoothed constraint also
smooths out the costate discontinuity when transitioning
between a thrust arc and a forced coasting arc.

3.3. Solving methodology

Since the solution to the TPBVP must satisfy the bound-
ary conditions on both ends, an iterative shooting method
is used to find it. The most simple method, single shoot-
ing, consists in guessing a value for y(t0), integrating the
differential equation to the final bound, computing the er-
ror on y(tf ) and adjusting the guess. However, small
variations in the candidate y(t0) lead to considerable and
non-linear variations in the resulting trajectory and final
augmented state. This is especially true in the case of the
ANR where small variations of the trajectory are ampli-
fied by the atmospheric drag, which scales exponentially
with altitude. The consequence is that the convergence
domain of the shooting method is very small, and thus
finding a good enough initial guess is difficult.

To increase the convergence domain, the problem is cut
into two segments date at an intermediate date ti to per-
form a multiple shooting search. The date ti is cho-
sen around the point where the drag force becomes the



main perturbing acceleration, which roughly corresponds
to the transition between the first phase and the second
phase of the ANR in Lagadec and Gegout (2023). In the
first segment, the candidate y(t0) is propagated from t0
to ti to obtain the intermediate y−(ti). In the second
segment, the candidate y(tf ) is back-propagated from tf
to ti to obtain the intermediate y+(ti). The shooting
method is then used to search the combination of y(t0)
and y(tf ) that satisfies both boundaries constraints and
the junction constraint

y+(ti)− y−(ti) = 0 (26)

This approach has several advantages that extend the con-
vergence domain of the multiple shooting compared to
single shooting. Firstly, the boundary constraints are eas-
ily enforced on both ends. Secondly, propagating the
second segment backward avoids the non-linear ampli-
fication effect of the atmospheric drag. Finally, having
two smaller segments means that variations of y(t0) and
y(tf ) have a smaller effect on their respective segments
than if they were propagated on the entire interval at once.

The multiple shooting can be represented as a function
E = F (Y ) that maps the vector of unknown parameters
Y to the shooting error E. The 14 unknown parameters
are Ωf and the 13 free states and costates in Table 1. The
final time tf and λΩ(tf ) can be computed from the other
parameters with Eq. 6 and Eq. 19 respectively. The shoot-
ing error is composed of the 14 residuals from Eq. 26.
The TPBVP is solved by finding the root of F using the
MATLAB® solver fsolve with the Levenberg-Marquardt
algorithm. At each iteration, the Jacobian matrix of F is
computed using finite difference. The last unknown vari-
able is the number of AoL turns Nα. Since it is an integer,
it is optimized separately by solving the TPBVP for dif-
ferent values of Nα to find the one that minimizes mass
consumption.

Finding a suitable first guess for Y is often the most dif-
ficult step of the indirect approach. A common approach
is homotopy where a series of similar TPBVP are solved
successively and the solution of a TPBPV is used as first
guess for the next one. This is applied by first solving
a TPBVP with a smoothed forced coasting throttle from
Eq. 25, which has a greater convergence domain, and then
using the solution as the first guess for the TPBVP with
discontinuous forced coasting throttle from Eq. 17. Ho-
motopy is also used to search for the optimal Nα, where
solution for one value is reused as first guess for the next
value.

However, finding an initial guess for the first TPBVP
is still difficult. Since the shape of an ANR trajectory
is known from previous studies and existing tools like
SIRENA, the initial guess for Y can be found by hand
through trial-and-error by adjusting the unknown param-
eters to roughly reproduce the expected trajectory shape.
However, this method of initializing the initial guess re-
quires a good knowledge of the behaviour and effect of
the costates, and is thus a barrier to the use of the indirect
approach. A priority in future works will be to provide a

Table 2: Satellite properties.

Property Value

m0 90 kg
T 0.002N
ISP 2400 s
c 23 544m s−1

S 1.1m2

CD 2.25

Table 3: Initial and target orbit. ha and hp are the apogee
and perigee altitudes respectively.

Initial orbit Final orbit

ha0 580 km haf 300 km
hp0 580 km hpf 160 km
ω0 N/A ωf 0◦

i0 98.2◦ if 98.2◦

Ω0 0◦ Λf −300× 360◦

α0 90◦ ᾱf 0◦

method for consistently initializing the first guess without
such knowledge.

4. APPLICATION

In this section, an ANR open-loop guidance is computed
using indirect optimization on a deorbitation scenario
adapted from CNES’s mission PlayerOne. After optimiz-
ing the initial guidance, a deviation from the nominal tra-
jectory is simulated to demonstrate an update of the op-
timal guidance. The satellite’s parameters are shown Ta-
ble 2, and the initial and final orbital elements are shown
Table 3. It is assumed that the solar panels are oriented
face to the wind for passage at low-altitude perigee since
this is the most stable orientation, so the given cross-
section corresponds to this configuration. A constant so-
lar activity is used for the NRLMSISE-00 atmosphere
model with an F10.7 index of 100 and a geomagnetic in-
dex of 4. The satellite is not allowed to perform thrust be-
low hmin = 250 km, which is represented by the forced
coasting constraint in Eq. 5.

4.1. Initial trajectory computation

The fuel-optimal optimal guidance is first optimized us-
ing the smoothed forced coasting throttle in Eq. 25, with a
smoothing factor ϵ = 0.1. This optimization is repeated
with successive values for the number of AoL turns to
find the one that minimizes the consumed mass ∆m. The
search start at Nα = 4505, and since the variation of ∆m

is very small between two consecutive Nα, the number
of turns is increased with a step of 5. Once the optimal
N∗

α is found, the guidance is optimized again with the



Figure 1: Fuel-optimal ANR trajectory

(a) Mean apside altitudes versus time (b) Mean eccentricity vector, starting at 0 at initial date
and rotating under the secular effect of Earth potential
zonal harmonics

(c) True anomaly of thrust arcs versus time (d) Satellite mass versus time



Table 4: Summary of solved TPBVP, with the number of
AoL turns Nα, the smoothing factor ϵ and the fuel con-
sumption of the optimal trajectory ∆m

Nα ϵ ∆m (kg) Duration (min)

4505 0,1 0,64883 25
4510 0,1 0,64844 21
4515 0,1 0,64803 31
4520 0,1 0,64762 76
4525 0,1 0,64743 41
4530 0,1 0,64765 34
4525 0 0,64743 80

discontinuous forced coasting throttle in Eq. 17. This ho-
motopic search is summarized in Table 4. Solving a TP-
BVP takes between 20 to 80 minutes with 14 threads on
a 4.8GHz processor. The optimal solution is found for
N∗

α = 4525 for a total computation time of 5 hours.

The trajectory resulting from the optimized guidance is
shown Figure 1a and Figure 1b, the mass in Figure 1d,
and the location and width of thrust arcs are shown Fig-
ure 1c. The most surprising features, for a fuel-optimal
trajectory, are the apogee altitude increase at the begin-
ning and the increasingly large thrust arcs around apogee
toward the end. This is because the total loss of apogee
altitude from drag ∆hdrag

a is greater than the apogee
difference between initial and target orbit ∆h∗

a, forcing
the guidance to spend fuel to increase the apogee using
thrust.

∆hthrust
a = ∆h∗

a −∆hdrag
a (27)

To reduce ∆hdrag
a and thus ∆hthrust

a , bigger perigee
decrements can be made during the final descent to re-
duce the number of passes at low altitude perigee, but
this also cost fuel since it require longer and less efficient
thrust arcs around apogee. Thus, there is a trade-off be-
tween spending fuel to reduce ∆hdrag

a or spending fuel
on ∆hthrust

a . As the perigee altitude decreases and the
drag force increases, this trade-off shifts in favor of ac-
celerating the descent. As a consequence, the thrust arc
length progressively increases at the end of the trajectory,
until the thrust altitude constraint in Eq. 5 limits the thrust
arc length at the very end. Such long thrust arcs are not
feasible for most satellites, so a priority in further works
will be to enforce a limitation on thrust duration.

4.2. Trajectory update

During end-of-life operations, the satellite will deviate
from the predicted trajectory due to modeling uncertain-
ties or contingencies in the execution of the maneuver
plan. In addition, the short-term solar activity and at-
mospheric density predictions may change, which affects
the spacecraft dynamics. As a consequence, the open-
loop guidance must be updated regularly to account for
those deviations. Consider a previously computed nomi-
nal state x̄(t) and costate λ̄(t) trajectory, and a new devi-
ated state x(tu) ̸= x̄(tu) at date tu. An updated TPBVP

Table 5: Relative difference between the costate compo-
nents at tu before and after the update.

Component Relative difference

λp 1.35%
λex 0.02%
λey −0.01%
λi 1.02%
λΩ 0.07%
λα 1.75%
λp 0.03%

can be defined with the same final boundary conditions
but with the new initial date tu and state x(tu). The
updated open-loop guidance is then obtained by com-
puting the new costate vector λ(tu) that solves this up-
dated TPBVP. We make the assumption that if the state
x(tu) − x̄(tu) is small enough, the costate difference
λ(tu) − λ̄(tu) is also small, and the previous trajectory
costate λ̄(tu) is thus a suitable initial guess for the shoot-
ing method.

To demonstrate the update process, a contingency is sim-
ulated on the previously computed trajectory. At time
tcut = 60day, the nominal state x̄(tcut) is propagated for
10 orbital periods without any thrust to obtain a deviated
state x(tu) at time tu. The new TPBVP is solved directly
with the discontinuous forced coasting throttle in Eq. 17,
and the initial guess for Y is constructed by taking λ̄(tu),
λ̄(tf ), Ω̄(tf ) and m̄(tf ) from the previous trajectory. The
optimization converges successfully in 18 minutes. The
update has no significant impact on the shape of the tra-
jectory or the mass consumption, so the trajectory is not
shown again.

The relative difference λ(tu)−λ̄(tu) is small as expected,
as shown in Table 5. This suggests that a closed-loop
guidance could be constructed by mapping deviations of
the state to costate adjustments. For example, Sidhoum
and Oguri (2024) proposes a robust closed-loop solution
where a series of state feedbacks on the costate are opti-
mized to minimize the state covariance at critical dates.

CONCLUSION

In this paper a method for computing a low-thrust op-
timal Assisted Natural Reentry open-loop guidance us-
ing indirect optimization is presented. The minimum fuel
ANR optimization problem is defined, with an interface
orbit defined relatively to the rotating Earth and an al-
titude constraint on the thrust. This optimization prob-
lem is then converted into a Two Point Boundary Value
Problem using the Pontryagin’s Maximum Principle to
derive the necessary conditions of optimality. To reduce
the difficulty in finding an initial guess for the TPBVP’s
solution, a multiple shooting method and an intermediate
TPBVP with smoothed throttle constraint are used to im-
prove the convergence domain. Finally, the initial guess



is found through trial-and-error and the TPBVP is solved
to obtain the optimal guidance.

To demonstrate that indirect optimization is a potential
alternative to existing ANR strategies computation tools,
this method is successfully applied on a low-thrust ANR
scenario to compute and then update a fuel-optimal tra-
jectory. However, further work is needed to enforce ma-
neuver duration constraints and to provide a practical
method for finding an initial guess. Ultimately, the main
goal behind the development of this open-loop guidance
solution is to convert it into a robust and autonomous
closed-loop guidance, which would reduce the opera-
tional cost of Assisted Natural Reentry.
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