

Improvements to SST Core Software: Advanced Software Engineering

Practices, Integration of Track-to-Track Algorithm and other

Algorithmic Enhancements

Diego Ramírez Rodriguez (1), Jack McHugh(2), Ben Johnson(1), Francisco Javier Simarro Mecinas(3),

Alfredo Antón(3), Bogdan Bija(4), Ian Holbrough(5), James Beck(5), Nishitha Mathew(6), Robin Jennings(6),

Riaz Shafi(6), Louise Rees(6), Andrea Scalabrin(7)

(1) GMV, Airspeed 2, Eighth Street, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0RL, UK.,

Emails: dramirez@gmv.com, ben.johnson@gmv.com
(2) GMV , Enterprise Centre, Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK, Email: jmchugh@gmv.com

(3) GMV, Calle Isaac Newton 11, Tres Cantos, 28670, Spain. Emails: fjsimarro@gmv.com, amanton@gmv.com
(4) Former Affiliation, GMV, Airspeed 2, Eighth Street, Harwell Science and Innovation Campus, Didcot, Oxfordshire

OX11 ORL, UK
(5) Belstead, 387 Sandyhurst Lane, Ashford, Kent, TN25 4PF, UK, Emails:ian.holbrough@belstead.com,

james.beck@belstead.com
(6) Starion, Newark Works 2 Foundry Way, South Quays, Bath, Somerset, BA2 3DZ, UK, Emails:

n.mathew@stariongroup.co.uk, r.jennings@stariongroup.co.uk, r.shafi@stariongroup.co.uk,

l.rees@stariongroup.co.uk
(7) Former Affiliation, Starion, Newark Works 2 Foundry Way, South Quays, Bath, Somerset, BA2 3DZ, UK

ABSTRACT

This paper presents the enhancements made to the SST

Core Software (CSW) with the aim of enhancing its

capabilities by integrating innovative algorithms and

modern software engineering practices. Under P3-SST-

XXVI, this included reorganising the software into

different GitLab repositories, refurbishing GitLab

Pipelines, integrating a Nexus repository for artifact

publication, parallelising DPC processes, restructuring

the Maven Project Object Model (POM), implementing

an automated test framework, and upgrading re-entry

analysis capabilities. Under S2P-S1-SC-08 the Track-to-

Track (T2T) algorithm was implemented to address the

limitations of the Track-to-Orbit (T2O) method enabling

the association of uncorrelated tracks, which enhances

the robustness of orbit determination and reduces error

margins in space object tracking.

1 Introduction

The SST Core Software (CSW) is ESA’s complete

software for SST data processing, including the

configuration of a sensor network

It is separated in the following components/subsystems:

- Generic Services: maintains general services

and tools used by the CSW.

- Data Processing Chain (DPC): processes input

sensor observations and third party orbit data to

perform a series of operations for new or

existing objects: Initial Orbit Determination

(IOD), Routine Orbit Determination (ROD),

correlation, orbit quality analysis

- Planning System (PS): manages sensor network

and schedules tracking and survey requests,

requested by the user or the CSW itself.

- SST Services: Series of end-user products to

conduct analyses in different areas of SST from

the data processed by other subsystems of the

CSW:

o RPS: Re-entry Planning Subsystem

o CPS: Collision Prediction Subsytem

o FAS: Fragmentation Analysis

Subsystem

o CQS: Catalogue Query Subsystem

- SVT: Software Virtualisation Toolbox

- SSTDB: CSW database

- Catalogue tools

These components are deployed within different docker

containers. The CSW’s GitLab CI/CD pipeline is

responsible for building, testing, generating

documentation, creating the CSW docker images, and

deployment.

The following sections and subsections shall detail the

improvements made to the CSW, both structurally and

algorithmically, achieved during the P3-SST-XXVI and

S2P-S1-SC-08 activities.

2 SST CORE SOFTWARE STRUCTURE

IMPROVEMENTS

2.1 From Monolithic to Modular Approach

The initial organisation of the CSW GitLab repository

included everything needed to build and test (as well as

other jobs/procedures) the components of the CSW to

Proc. 9th European Conference on Space Debris, Bonn, Germany, 1–4 April 2025, published by the ESA Space Debris Office

Editors: S. Lemmens, T. Flohrer & F. Schmitz, (http://conference.sdo.esoc.esa.int, April 2025)

mailto:dramirez@gmv.com
mailto:ben.johnson@gmv.com
mailto:jmchugh@gmv.com
mailto:fjsimarro@gmv.com,
mailto:amanton@gmv.com
mailto:james.beck@belstead.com
mailto:n.mathew@stariongroup.co.uk
mailto:r.jennings@stariongroup.co.uk
mailto:r.shafi@stariongroup.co.uk
mailto:l.rees@stariongroup.co.uk

finally deploy it to a specified environment, handled by

its CI/CD pipeline. Since the code base of the CSW is

large, this monolithic approach proved unfavourable for

multiple reasons:

- Git branch management complications; poses

risk of overlapping of changes requiring

additional processes to ensure no data loss

- Management of contributors is limited since a

developer would have access to all aspects of

the CSW.

- The entire CSW repository was needed to be

downloaded to perform any change, even if

there was no impact between the modified

component and the rest of the software

- It was required to build and test all CSW

components before confirming and validating

new changes. Any failure would further increase

this time.

A significant improvement was therefore to transition

from a monolithic approach to a modular one. It was

identified that the connections between CSW

components is handled through a specific component; the

SST Common Data model (explained in section 2.2.2.2)

meaning there is no direct relationship or dependency

between the components themselves. As a result, to

transition the CSW to be modular, the SST Common

Data model was extracted to be inside its own GitLab

repository that can be compiled and distributed as a

dependency to the other components. The Nexus

software repository manager is now used to facilitate this,

to act as the artifact/dependency provider for the CSW.

With this, it enabled the CSW to be modularised into

multiple GitLab repositories, all stored within the same

GitLab group. The following subsections detail the CSW

Gitlab Group contents, including their sub-groups

specific purpose, the repositories and the necessary

adaptation of their CI/CD pipelines.

2.1.1 CSW Multi-pipeline

The multi-pipeline is responsible for performing a full

build of the SST Core Software via the CI/CD pipelines

of all GitLab repositories inside the Code Base

Management (section 2.1.2) and CSW Modules (section

2.1.3), in a specific order. This includes the building,

testing, quality analysis, artifact publishing, and docker

images generation, ready for deployment and automated

testing.

This repository keeps control on the building of the CSW,

eliminating risk of errors if a user/contributor executes

individual repositories out of order.

Once the sst-cs-build CI/CD pipeline is executed

successfully on a specific environment, then all docker

images shall be stored on the defined docker registry, and

all artifacts shall be stored on the Nexus repository,

giving contributors the freedom to then directly execute

pipelines on specific repositories with their changes.

2.1.2 Code Base Management

As part of the P3-SST-XXVI activity, these repositories

were included to gain more control and management of

future CSW implementations, by minimising the amount

of duplicated data, spread across various subfolders.

They are now stored in three different repositories, each

with their own unique purpose:

- sst-cs-parent: maintains the Centralised

(parent) POM used throughout the CSW

repositories

- sst-cs-libs: maintains the CSW libraries such as

the SST Common Data model

- external_standards_lib: maintains external

libraries used by the CSW.

Further details on these new concepts and repositories

can be found in sections 2.2.1 and 2.2.2.

Their CI/CD pipelines all follow the same structure

where it builds the target folder (through maven)

conducts any necessary test of the jar files, then publishes

the artifacts to the Nexus repository so they are all

available for use by future repositories.

Figure 1. CI/CD pipeline template used by Code Base

Management repositories

2.1.3 CSW Modules

The CSW modules contain the bulk of the software

components necessary to build all CSW docker images.

The following lists the repositories and what they are

responsible for.

- common_modules: code base for the generic

services, including space weather and expert

centre components

- dpc_modules: code base for the DPC

- ps_modules: code base for the PS

- sst-web-portal_modules: code base for the RPS,

CPS, FAS and CQS subsystems, as well as the

CWBI webservice and SST HMI.

- svt_modules: code base for the SVT

- database_modules: code base for the SSTDB

- catalogue_modules: code base for the catalogue

tools used with the CSW when live.

The CSW modules CI/CD pipelines all follow the same

structure and have the same stages:

- download_cots: downloads the necessary

artifacts from Nexus

- build: various stages to build the source code

(tools, backend, HMI)

- test: perform unit tests on the compiled code

- test_report: extract results of the tests

- quality analysis: check the quality of the code,

by submitting the code onto SonarQube

- publish: further publish artifacts to Nexus for

other repositories to have visibility on (required

for their own pipeline execution)

- build_runtime: jobs to build the docker images.

Once the build_runtime job(s) have been executed on a

pipeline, the docker image(s) will be added to a docker

registry.

2.1.4 CSW Deployment

The CSW deployment is responsible for deploying the

CSW following instructions from a docker-compose.yml

file. This is handled through a single repository, sst-cs-

deploy. Its CI/CD pipeline is composed of one stage, with

different deployment jobs, for which it retrieves the

docker images from the configured docker registry.

Figure 2. CI/CD pipeline for the deployment repositor.

2.1.5 Test Automation

As part of the P3-SST-XXVI activity, the CSW

component and system regression tests were automated.

This was achieved by creating an additional repository,

the test_common_modules, which contains an automated

test tool framework (tools, procedures, etc.) to

significantly reduce the time needed to verify updates to

the CSW. It can be executed programmatically once

every night, or after a new CSW deployment to assess its

status as fast as possible.

The test automation is accomplished through the GitLab

CI/CD pipeline, for which it first builds and deploys a test

docker container to the same environment where the

CSW is deployed, and then executes the CSW tests on

that environment from within the test container. The

CI/CD pipeline is able to generate reports per test, as

GitLab artifacts, for users to review once completed to

assess the state of the current deployment of the CSW.

Further details on the automated test tool can be found in

section 2.3.

2.2 The Need of a Centralised Multi-modular

Project

In the context of multi-modular software projects, the

usage of similar configurations, libraries and overall

structure is a common approach, more even if those

modules have been developed within the frame of the

same project. However, if not carefully assessed, any of

those submodules can diverge from the rest very rapidly,

making it to the point that the configurations and libraries

are not compatible anymore.

To avoid this problematic situation, the SST Core

Software, an Apache-Maven structured software, has

been modified to avoid any divergences in terms of

libraries’ usage and versions, configuration definitions

and plugin usage.

2.2.1 Centralised POM

The main purpose of a parent POM in a multi-modular

Maven-based project is typically to serve as a central

management point that child modules inherit, promoting

consistency, simplicity and maintainability in large

projects.

This approach has several advantages compared to a

modular-distributed approach:

- Centralised dependency management: all

child modules can inherit the same dependency

versions, preventing version conflicts and

ensuring consistency across the project. This

reduces the risk of different modules using

incompatible versions of the same library.

- Simplified POM files: any module that inherits

from a parent POM will avoid repeating any

configuration already defined in the parent. This

reduces redundancy and increases readability.

- Consistency across modules: configuration

elements such as plugin versions, repository

definitions, and property settings are centralized

in the parent POM, leading to a more consistent

and predictable build environment.

- Easier version management: dependency and

plugin versions can be easily upgraded in all

modules by simply changing them in the parent

POM.

In this context, an additional module was added to the

SST Core Software project called SST-CS-PARENT. It

oversees defining the parent POM of the whole project,

which includes:

- The definition of all the dependencies, and their

versions, needed in the whole project.

- The definition of all the repositories from where

the project shall download any dependencies.

- The project properties, which includes endpoint

definitions, debug configurations and logging

configurations, among others.

- The definition of all the plugins needed in the

whole project, including not only their versions,

but also the configurations needed for its use

throughout the entire Maven cycle execution.

Finally, all the other modules in the SST Core Software

shall include the parent definition and point to this

specific new module as shown in Figure 3:

Figure 3. Parent POM definition in children’s modules

This way, any module that has this defined in their POM

file will inherit any dependencies and plugin versions,

plugin configurations and project configurations that may

be defined in the parent POM.

2.2.2 Centralised Libraries

Another enhancement included in the SST Core Software

related to centralisation are the internal and external

libraries usage and definition.

Due to the development process of the project during

previous activities, each tool was developed

independently, with their own approaches, style and

library usage. Although this approach increased the

flexibility in terms of implementation, testing and

deployment, it provoked a high amount of duplication

and redundancy in the usage and definition of the

software dependencies and external libraries.

In this section, two of the main sources of definition and

usage duplication within the SST Core Software are

presented, including the previous status and the approach

followed to solve this situation.

2.2.2.1 CCSDS Standard Usage
The CCSDS (Consultative Committee for Space Data

Systems) standard is a set of guidelines and specifications

created to ensure interoperability and standardization in

the communication and data systems used in space

missions. To simplify this standard usage, the CCSDS

provides a set of XSD files that allow Java-based

software to automatically generate the Java classes that

define and implement those standards.

In the context of the SST Core software, those XSD

standards were scattered all over the modules, even using

different versions of the standards.

To solve this problem, a new module was added to store

all these standards. The name used is EXTERNAL-

STANDARDS-LIB, and its sole purpose is to store and

maintain external libraries used by the SST Core

Software. It was generated not only to host the CCSDS

standards, but any other external libraries that may be

needed in the future by any subsystem in the SST Core

Software.

This approach serves as a way of centralising the

definition of these libraries and ensures consistency in

terms of versioning, package definition and auto-

generation configuration. This is controlled by the POM

file defined in the module and inherits from the general

parent POM.

2.2.2.2 SOAP API and Common SST Data Model
The communication between the SST Core Software

subsystems is ruled by SOAP-based APIs.

A SOAP (Simple Object Access Protocol) API is a

protocol for exchanging structured information in the

implementation of web services. It is a message-based

communication protocol that allows different systems,

often over HTTP or other protocols, to exchange data in

a structured, XML format. This structured XML format

is based on WSDL (Web Services Description

Language), which is used to describe the functionality of

a web service, specifically how the SOAP service can be

accessed and what operations it can perform. Finally,

XSD files attached to the WSDL files ensure that the

XML data follows a certain structure and defines the

elements and attributes within that structure.

In the context of the SST Core Software, this SOAP API

is utilised to share information between subsystems,

including both front-end and back-end software

subsystems. Due to the fact these WSDL and XSD files

are fixed, they can be used to automatically generate Java

classes that define those web services and data structures.

These are generated during the build stage within the

deployment of the SST Core Software, ensuring a smooth

and stable software generation.

The Common SST Data Model is a set of WSDL and

XSD files used by the SST Core Software that defines

two main things:

- How this communication between subsystems

shall be performed.

- The format and the shape of the data to be sent

through the communication channel.

This includes information such as:

- space object main definition

- track structure

- conjunction message structure

- fragmentation message structure

- re-entry message structure

among others. As these WSDL and XSD files are also

fixed, they can be used to automatically generate

equivalent Java classes in the build stage within the

deployment.

In the past, during the development of the SST Core

Software, as stated in section 2.2.2, different subsystems

of the entire project were developed by separated teams

with no communication with each other. This provoked a

duplication of both the Web Services definitions and the

Common SST Data Model instances. To revert this and

to avoid future divergences and incompatibilities that

could rise from this duplication, a separate module called

SST-CS-LIBS was created. The purpose of this new

module is to centralise both the Web Services WSDL

files of all the subsystems in the SST Core Software and

the XSD files that conform the Common SST Data

Model. This does not only include the definition of those

files, but it also centralises the configuration that

describes how the Java classes based on those WSDL and

XSD files shall be generated.

The services comprised in this folder, that is, the

WSDL/XSD files that define them, are the following

ones:

- authentication-service

- common-resources (Common SST Data Model)

- cps-service

- cqs-service

- dpc-service

- email-service

- fas-service

- log-service

- mmso-service

- notification-service

- planning-service

- ps-service

- rps-service

- sensor-service

- sstwp-service

- svt-service

2.3 Test Automation Framework

The cornerstone of the test automation framework is the

use of JBheave, a framework for behaviour driven

development (BDD). It is intended to make the testing

more accessible and intuitive to enable faster and easier

updates to future testing of the CSW, if desired. Each

CSW test case is presented in a file that is easily readable

and consists of a series of steps. Each step is mapped to

methods in Java which are used to carry out the test case

steps.

Figure 4. Extract of an easily understood CSW test case

story file

The test automation tool contains java projects, made to

be generic and reusable to minimise repetition in the

code:

- Commanding: Provides the ability to SSH to

the IRE and execute commands on the docker

instances.

- HTTP: Checks the availability of URL’s.

- JBehave: Behaviour Driven Development

(BDD), through story files and the underlying

java code. Assertions are handled here to verify

each step of a test case.

- Properties: A common properties project to

avoid hard coding properties.

- SOAP: Automates SOAP service interactions.

- SQL: Executes queries to the SST database and

returns results.

- Selenium: Automates web browser

interactions.

- Rich Client Platform (RCP): An example

RCP project used to automatically test Eclipse

RCP clients (DPC, PS and SST-HMI), using the

SWTBot.

- SWTBot: Automates user interactions with an

Eclipse RCP Client.

- Target: Provides dependencies for the other

projects.

Figure 5. Automated testing for component and system

regression tests

The test automation tool is deployed as a docker

container onto the same environment where the CSW is

deployed. This way, it ensures all necessary data is

available inside the docker container, as well as has the

necessary access to interact and test the CSW and the

input test data folder (TESTSUITE) required for test

execution.

The test_common_modules’ CI/CD pipeline is

responsible for test automation, from building and

deploying the test container, to executing the tests, and

retrieving the test reports. Once a test is completed,

HTML reports (and other relevant output files of a test

e.g.: screenshots, data files, etc.) are stored as GitLab

artifacts for a user to download and review further.

Figure 6. Extract of an output HTML test report for a

CSW test case executed through the automated test tool.

3 SST CORE SOFTWARE

IMPROVEMENTS

3.1 DPC Parallelisation

3.1.1 DPC overview

The DPC is a mainly data-driven piece of software able

to ingest tracklets generated by sensors and third-party

orbits with the following main purposes:

- Evaluate the correlation between the input

tracklets and objects stored in a catalogue.

- Update the orbital information of the correlated

objects within the catalogue.

- Create new objects based on the input tracklets

if no correlation was successful.

- Monitor the accuracy of the catalogue objects’

orbital information and its evolution over time.

- Send tracking requests with the appropriate

priorities depending on several thresholds such

as the accuracy level or the time since accuracy

envelop violation.

Figure 7 shows a diagram of how the data flows between

the different parts that compose the DPC software.

Different data flows can be distinguished and are listed

below:

- Blue lines: processing of observational data.

- Green lines: third party non-correlated data.

- Yellow lines: third party correlated data.

- Red lines: data after catalogue update due to

processing of any of the above-mentioned input

data types.

- Black dashed lines: event information to be

stored for data retrieval monitoring.

- Brown dashed lines: services that require the

use of the Orbit & Covariance propagation

service.

- A unique and common Database is defined and

the different databases in the figure above must

be understood as a logical representation of the

data.

The Data Processing Chain has been re-factorized to

avoid the misuse of services and improve performances,

making use of basic SOAP web services and non-SOAP

components. In this context, the SOAP web services

provide the interfaces between the DPC and the external

components: SSIM (providing simulated sensor

observations), Expert Centre (providing real sensor

observations), Third Party providers and Planning

System. On the other hand, the non-SOAP components

implement maintenance tasks and the Data Processing

Chain itself.

Figure 7. Data Processing Chain data flow diagram

3.1.2 Implementation in Previous Activities

The Data Processing Chain developed in the context of

the DC-II project was designed as a full SOA (Service-

Oriented Architecture) solution. The relationship

between the system components SPS, SSIM and DPC, as

well as between DPC internal elements were

implemented following that Service Oriented

Architecture, in which each facility dynamically interacts

with the others using the COSIF SOA middleware layer.

This design decision led to serious performance problems

to the DPC, due to the complexity of the system, the

unnecessary overload of data interchange between

services and the delays provoked by the serialization of

data on client and server. It was concluded that a full

SOA solution was not appropriated in DPC scenario.

The new solution is focused on designing a more efficient

Data Processing Chain avoiding the use of internal

services for performing basic operations and preventing

the detected problems.

3.1.3 New Software Implementation

The DPC is composed of basic SOAP web services and

non-SOAP components as described in Figure 8:

Figure 8. Data Processing Chain components

3.1.3.1 SOAP Web Services Exposed by the DPC
SSTDataProcessingService: implements the DPC’s

input point. The functionalities covered by the service are

the reception of observation/third party orbit data,

validation of the data and the storage into the database.

PlanningRequestListener: in charge of receiving

asynchronous notifications from the Planning System.

DPCMonitoringService: provides methods for starting,

stopping and consulting the status of the Data Processing

chain.

HMICommunicationService: internal interface only

used by the DPC HMI (Human-Machine interface) to

communicate with the server side of the DPC.

3.1.3.2 Non-SOAP components
DPC Tools: component implemented in Java and

executed manually by one administrator. The DPC Tools

implements functionalities for cleaning the catalogue

database and population of the catalogue database with

external TLE (Two-line Element set) catalogues. It

provides scripts for start/stop and check status.

Common Services: component implemented as Java

libraries which can be imported by any DPC component.

It provides common utilities to the DPC components such

as: configuration management, access to DPC internal

database, implementation of generic services clients, etc.

DPC HMI: component that provides a graphical

interface which allows the configuration, control and

monitoring of the DPC.

Fortran Routines: computational algorithms which

provide the processing functionalities: calibration

analysis, correlation (using agendas), orbit

determination, mass and area estimation, orbit and

covariance propagation, generation of ephemerides,

calculation of mean elements and check quality.

DPC Processor: it is the main process of the DPC. It runs

as a daemon and orchestrates the processing of incoming

observations and third-party data in batches. It provides

scripts for start/stop and check status. The DPC Processor

extracts the data to be processed from the database, issues

the processing of said data and loads the results into the

database.

DPC Processing Unit: is the main computational

component of the DPC. It is also running as a daemon

and is executing the processing (using Fortran routines)

of observations and third-party data issued by the DPC

Processor. Multiple DPC Processing Units can be

deployed to make use of the full computational capacity

of the available hardware and improve the computational

speed of the DPC.

3.1.4 DPC Parallelisation

The DPC Processor is the main component of the DPC,

it oversees performing several maintenance tasks and

orchestrates the whole processing which provides the

catalogue update by means of processing the

observations coming from real sensors (or sensor

simulator) and the third-party data.

Within the DPC Processor, the DataProcessingChain is a

periodic task which processes requests (observations and

third-party data) in batches. Some required data is loaded

at the start of the batch processing as the configuration of

all active sensors, the configuration of the DPC and the

lists of requests to be processed.

In this activity, one of the main tasks performed by the

DataProcessingChain was parallelized, that is, the

observation and third-party data ingestion. The

processing of this data is issued sequentially to the

available DPCProcessingUnits, the DPC component in

charge of the actual data processing.

The DPCProcessingUnit is able to cover all the

processing jobs needed for the build-up and maintenance

of a catalogue of objects, including the correlation of

observations, the initial/routine orbit determination and

any post-processing jobs that are needed after a new

updated orbit is obtained (generation of ephemerides,

OMMs, quality checks), as described in Figure 9 for the

processing of observation requests.

Figure 9. Observation ingestion workflow

The coordination of the DPCProcessor and

DPCProcessingUnits is achieved using a combination of

the orchestrator and choreography patterns, as shown in

Figure 10. This means DPCProcessor works as an

orchestrator-like component that issues and controls the

processing of the data, while executing maintenance

tasks in parallel, and the DPCProcessingUnits as the

processing services.

Communication between the processor and processing

units is achieved through a Kafka Message broker. Kafka

is a distributed system consisting of servers and clients

that communicate via a high-performance TCP

(Transmission Control Protocol) network protocol. It

uses concepts as producers, consumers, topics, partitions

and records to share messages between the different

components inside a system.

Figure 10. Orchestrator + Choreography pattern

Apache Kafka is used as the main interface between the

DPC Processor and the DPC Processing Units. Figure 11

describes a high-level view of the interaction between the

DPC Processor and the DPC Processing Units through

Kafka, using as example two DPCProcessingUnits to

illustrate the communication mechanism between the

producers and consumers and how they use the topics and

partitions to achieve it. As a first step, the DPC Processor

queries the database for the requests to be processed in

the current batch. For each request, the next steps follow

the workflow described in Figure 9:

- The DPCProcessor publishes a message inside

the correlation topic (using its correlation

producer), informing that the correlation can be

executed for the request.

- The DPCProcessingUnit uses the consumer of

the correlation topic to consume the message

and executes the correlation. At the end, if the

request did not correlate with any catalogued

object, the processing unit submits a message

inside the orbit determination topic to inform

that an IOD (Initial orbit determination) can be

executed. Any free DPCProcessingUnit can

consume the message and start the IOD. On the

other hand, if the correlation was successful, a

message is produced inside the successful

correlation topic.

- If the correlation was successful, the

DPCProcessor consumes the successful

correlation topic and issues the execution of the

ROD (Routine orbit determination) only if no

other ROD is executed for the object. It does so

by submitting a message inside the orbit

determination topic.

- The DPCProcessingUnit consumes the

messages from the orbit determination topic and

issues the IOD or ROD. After a successful OD

process, a message is produced inside the post

processing topic that is consumed by the

DPCProcessingUnit and executes the post-

processing job (generation of OMMs (Orbit

Mean Elements Message), ephemerides, quality

check).

Figure 11. Kafka interface

Finally, the DPCProcessingUnits, which are DPC’s main

computational component, implement three main

processing jobs needed for the build-up and maintenance

of a catalogue of objects. These jobs are described in the

subsections below.

3.1.4.1 Correlation Job
Correlation of tracks to objects based on the generation

of the predicted observations (agendas) of the object in

the catalogue. This correlation based on track is

performed in parallel independently track-by-track.

3.1.4.2 Orbit Determination Job
The Orbit Determination (OD) job includes several

algorithms for Initial Orbit Determination (IOD) and

Routine Orbit Determination (ROD).

During IOD, orbits are computed based on an

uncorrelated track. It is used for tracks that have not been

correlated to an object based on the predicted

observations; a new object is created from the

uncorrelated track without a priori orbital information.

During ROD, it is executed for correlated tracks, using

an initial estimation of the orbit, which could have been

generated by the IOD during the correlation process. This

process can be performed in parallel independently

object-by-object, as the tracks are already associated to

an object. This process allows to estimate the area, and

the mass of the object based on the drag and radiation

pressure coefficients (Cd·A/M and Cp·A/M) and the

visual magnitude and RCS (Radar Cross Section) of the

observations.

3.1.4.3 Post-Processing Job
This includes any job needed to be executed after a

successful update of on object’s orbit:

- Orbit Quality: This process is devoted to

analysing the orbit on the catalogue and to

generate tracking request for the objects

violating accuracy envelope. If the catalogue

was successfully updated and agendas were

updated, the object’s orbit calculated by the

DPC is checked regarding computation of

accuracy envelope and the violation of the

accuracy envelope limits (which are defined at

configuration level).

- Generation of Ephemeris: computes

ephemeris and store them into the catalogue

database.

- Generation of Mean Elements (OMM):

generates mean elements by a fitting least

squares process of the osculating orbit.

3.2 RPS Capabilities Enhancement

A series of upgrades were made to the Atmospheric Re-

entry Prediction System (ARPS) software as part of the

P3-SST-XXVI project. These improvements addressed

deficiencies in the physical modelling, computational

performance, and realism of risk assessments for space

object re-entries. This section presents a summary of the

RPS enhancements, with supporting verification

analyses, however not all updates have been detailed, due

to page limit constraints.

Due to the lack of extensive unit tests and system tests

definitions, ESA’s DRAMA software was used to verify

the changes that were made to ensure no unwanted

behaviour or unexpected results were output.

3.2.1 Object Initialization and Scaling

The implementation of object models has been

overhauled. Template object definitions are now held in

text files. This allows the redefinition or extension of the

range of re-entering objects without re-compilation of the

ARPS.

The scaling of all objects now adheres to the following

rules:

- Object mass is scaled linearly based on the ratio

of the re-entering object mass to the mass of the

object prototype. Therefore, all components of a

900kg payload will be doubled in mass if the

prototype object has a mass of 450kg.

- For the parent object, the object dimensions will

be scaled by the square-root of the mass scaling

factor. This will result in the projected area of

the parent being set to the value required to

ensure the original object ballistic coefficient is

matched.

- For child objects, the object dimensions will be

scaled by the cube-root of the mass scaling

factor. This will result in the density of child

objects being unchanged because of the scaling

exercise.

- Child temperature and mass inheritance

mechanisms were removed.

Figure 12 shows that the adjusted scaling code now

correctly handles the spherical child resulting in a

velocity profile in line with DRAMA. Moreover,

although not apparent, this and other new test objects

required for future enhancements can now be

implemented without the need to recompile the ARPS.

Figure 12. Initialisation and scaling post-

implementation ARPS Performance Versus DRAMA 3.1

3.2.2 Updated Vehicle Models

Both the vehicle models, and algorithm used to construct

vehicles, have been enhanced to improve the

representation of all three types of re-entering vehicle.

The following principles have been applied when

designing a single model to apply to all:

- The parent object is constructed from an

undemisable material and is configured to

demise at an altitude of 78km, consistent with

standard practice in object-oriented analyses.

- On demise the parent object releases a catalogue

of child objects covering a range of ballistic

coefficients and sizes. These are constructed of

aluminium, steel and titanium to represent the

behaviour of objects with low, moderate and

high resistance to demise respectively.

Table 1 Updated Vehicle Model

Table 1 shows the updated vehicle model, where all

objects are children of the Parent. Ballast objects are not

actually constructed within the model as they are

guaranteed to demise and will needlessly increase

computational time. Approximately 5% of the mass of

the model is made up of steel and titanium respectively,

which is broadly consistent with the mass fractions of

these materials on spacecraft.

The algorithm used to construct vehicles from this

prototype has also been extended to prevent individual

objects becoming excessively large or small because of

the scaling operation. When instantiating a vehicle, a

target mass is constructed for each object by scaling the

product of the nominal mass and quantity by the ratio of

the actual mass to the nominal parent mass.

Table 2 Updated Vehicle Model Mass and Quantity

Limits

The degree to which the mass of each component can be

scaled is constrained to an upper and lower value

provided by part of the model, while the number of

objects to be instantiated is also constrained by an upper

value, as described in Table 2. The constrained object

scaling is then used to evaluate the number of objects

required to achieve the target mass for the object type.

Moreover, any mass remaining within the target once

objects are instantiated is carried forward to the next

object definition.

The effect of this algorithm is that as the overall mass of

the re-entering object is varied both the size and number

of each component type can vary within sensible bounds.

This can result in large components being dropped from

the model if the actual object is substantially smaller than

the prototype.

The performance of the post-implementation vehicle

model and algorithm is shown in Table 3:

Table 3 Post-Implementation Vehicle Model

Performance

The benefits of the revised model are clear. Both the

number and mass of impacting fragments increase

monotonically as the size of the re-entering object

increases, which is in line with expectations. A 25%

proportion of parent mass for large objects that impacts

the ground falls within the bounds of 10% - 40% reported

by Aerospace Corporation (1). The fact that only items

that have the possibility of impacting the ground are

modelled, and the ballast is not, limits the total number

of fragments modelled leading to execution times being

capped at approximately 30seconds for 10,000kg

vehicles. Whilst this model is not backed up by

significant research or simulations and therefore should

be reviewed and refined in a later activity, it is clearly a

significant step forward over the existing vehicle models.

3.2.3 Gravity Harmonics

The ARPS used a simple spherical model of gravity. This

has proven to be inadequate in other codes, and

gravitational models with zonal harmonic terms to at

least J2 have been found to be required to provide correct

along track distances from the beginning of re-entry to

landing. The solution to this issue was to add a new

spherical harmonic gravitational model with zonal terms

to J4.

Figure 13 shows how the correction of the gravity model

has a significant impact on the ARPS, resulting in the

trajectories matching at high altitudes (>100km) where

the gravity terms are dominant relative to the drag forces.

3.2.4 Atmospheric Model (US76)

Whilst sophisticated, the MSISE atmosphere requires

significant computation time to evaluate and is typically

not the model used for destructive entry analyses. To

solve this problem and serve as an alternative model, US

1976 Standard Atmosphere model was added to the

ARPS.

Figure 13. Gravity harmonics post-implementation

ARPS Performance Versus DRAMA 3.1

Figure 14. Atmospheric model post-implementation

ARPS Performance Versus DRAMA 3.1

Figure 14 shows how the correlation of the US76

atmosphere results between DRAMA and the ARPS are

significantly better than those associated with the

NRLMSISE. The trajectories generated by DRAMA and

ARPS are now aligned for the fully free-molecular region

(>100km) and only diverge as the object enters the

transition regime.

3.2.5 Earth Rotation Inclusion

In several places, the evaluation of parameters including

the Mach number and kinetic energy were based on

velocities in the inertial frame, rather than the rotating

frame of the planet and atmosphere. As the use of these

values in all instances is to gain a value relative to the

atmosphere or the ground, the assessment of these values

is incorrect. To solve this, A new function has been

implemented to encapsulate the conversion of an inertial

velocity into one relative to the planet / atmosphere.

Figure 15. Earth rotation post-implementation ARPS

Performance Versus DRAMA 3.1

Figure 15 shows the impact of these updates on the

results. Note the small reduction in ARPS flight time and

the better correlation of the velocity altitude profile at low

altitudes. The large erroneous ground velocities have

been removed.

3.2.6 Rarefied Bridging via Knudsen Number

The previous ARPS implementation did not model the

transition between the free-molecular and continuum

aerodynamic regions with an appropriate bridging

regime. A proper rarefied flow model bridging between

free-molecular and continuum aerodynamics is required

for the ARPS to be able to obtain credible results.

The free-molecular and continuum coefficients for the

three basic shapes supported by the ARPS are taken from

DRAMA. In the transition regime these will be bridged

based on the Knudsen number, 𝐾𝑛, in the same manner

to DRAMA as follows:

- Knudsen number > 1.0: Free molecular drag

coefficient (𝐶𝐷,𝑓𝑟𝑒𝑒−𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟) is used

- 0.01 < Knudsen number <= 1.0:

𝐵 = (sin(𝜋(0.5 + 0.25 · log10 𝐾𝑛)))
3
 (1)

𝐶𝐷,𝑟𝑎𝑟𝑒𝑓𝑖𝑒𝑑 = 𝐶𝐷,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚

+ 𝐵(𝐶𝐷,𝑓𝑟𝑒𝑒−𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟

− 𝐶𝐷,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚)

(2)

- Knudsen number <= 0.01: Continuum drag

coefficient (𝐶𝐷,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚) is used

The trajectory performance for a spherical object of

ARPS is now closely aligned with that generated by

DRAMA, as can be seen in Table 4:

Table 4 Comparison of ARPS and DRAMA Trajectory

for a Sphere

At the completion of this fix, the distance between the

impact locations reported by DRAMA and ARPS is

89km, which translates into the removal of 98% of the

4429km difference seen in the original baseline

comparison at the outset of this activity. The correlation

now seen is well within the uncertainties in aerodynamics

of the actual vehicles, and therefore, the performance of

aerodynamics of spheres is deemed acceptable.

3.2.7 Standard Aerodynamic Coefficients

ARPS coefficients differed from DRAMA, causing

trajectory drift. Therefore, the free molecular and

continuum coefficients used by DRAMA v3.1 for

spheres, cylinders and boxes have been extracted from

the NetCDF databases within the application. These have

then been implemented with the ARPS as detailed in

Table 5.

Table 5 New ARPS drag coefficients

3.2.8 Simplified Knudsen Number Evaluation

The prior implementation was unnecessarily complex

and not easily maintainable.

A straightforward hard sphere Knudsen number model is

used. The Knudsen number

𝐾𝑛 =
𝜆

𝐿
 (3)

where 𝜆 is the mean free path and 𝐿 is the reference length

of the object. The hard sphere model gives the mean free

path as:

𝜆 =
𝑘𝐵𝑇

√2𝜋𝑑2𝑝
 (4)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature,

𝑑 is the molecular diameter and 𝑝 is the local pressure.

Using the ideal gas equation, this becomes:

𝜆 =
𝑘𝐵

√2𝜋𝑑2ρ𝑅
 (5)

where 𝜌 is the local density and 𝑅 is the species gas

constant. For the Earth’s atmosphere, the molecules of

interest in the rarefied region are nitrogen and oxygen.

The molecular diameter, 𝑑, is taken as 3.64x10-10m, and

the gas constant, 𝑅, is taken as 287J/kgK. All the values

in this equation are now constants, except for the local

density.

This allows implementation of the Knudsen number in

ARPS as:

𝐾𝑛 =
8.13 · 10−8

𝜌𝐿
 (6)

which is a significant simplification over the previous

implementation.

3.3 Track-to-Track Association

The Track-To-Track (T2T) association aims to reliably

detect and initialise new resident space objects (RSOs) to

help with cataloguing space objects that are not currently

within the catalogue. This can be a time consuming and

computationally expensive process to conduct, which is

where the T2T algorithm described in this article steps in.

3.3.1 Track-To-Orbit Drawbacks

Track-To-Orbit (T2O) association can be effect if certain

conditions are met, but it does have some drawbacks.

Firstly, it is very dependent on the models used to predict

a catalogued object’s position in the future. Highly

complex and accurate models are time consuming and

with so many tracks that could be fed to the system, this

is undesirable. Secondly, the success of T2O algorithms

is also dependent upon the size of the current catalogue

and the accuracy of information inside it. Small initial

catalogues will make it hard to associate tracks from

sensors to objects in the catalogue, leading to a low

success rate. Additionally, if the information in the

catalogue is rarely updated or inaccurate then this will

lead to more false positives and false negatives being

associated as well as making the orbit prediction

processes require more work as the error in the prediction

relies on the period that the prediction is made over.

Lastly, for tracks that do not get associated via T2O, these

tracks may identify a new object or an existing object that

has conducted a manoeuvre. In this case an IOD may be

conducted to update or add the object to the catalogue.

However, a singular IOD for an object will not be

sufficiently accurate to be used later when associating it

to other tracks that may belong to the same object, which

can incur false results.

3.3.2 The Need for T2T

The T2T association algorithm described in this paper

addresses those limitations outlined in section 2.1. This

is not to say that T2T should be used in replacement of

T2O algorithms, but rather they can be used together as

the T2T picks up the pieces where the T2O lacks.

T2T uses models of varying complexity and accuracy to

help speed up computations where accuracy is not the top

priority and maintains that accuracy when it is needed for

further inspection or validation. It also contains

thresholds that involve the number of tracks and figure of

merit (FOM) that ensure the abundance and quality of the

tracks are sufficient to reliably associate the tracks. This

avoids unreliable results and could help rectify some

error that may already exist in the catalogue

It is also independent of the current state of the catalogue

as it does not need to refer to it at any point during the

prediction of the objects orbit, only when checking if it

currently exists to add to or update the orbit. This avoids

the drawbacks of the amount or quality of data in the

catalogue.

3.3.3 Definitions

Below are some definitions that can be commonly

mistaken, so are shown here for clarity in the context of

this paper.

- Measurement: Single value of a geometrical or

physical property of an object observed by a

sensor at certain epoch (e.g. Azimuth).

- Observation: A set of measurements taken from

a single sensor at a common epoch and

originated from the same object.

- Track: A set of observations taken by a single

sensor during a period of continuous

observation of an object.

- Hypothesis: Association of N tracks assumed to

have been originated from a common object.

3.3.4 Methodology

Ref. [1] gives an in depth look at the algorithm that was

used as the main inspiration for the algorithm that was

implemented into the CSW. In this section, a rough

outline of the methodology is shown as well as any other

tweaks that were made to suit the implementation into the

CSW.

The methodology for this T2T algorithm can be broken

down into 7 main processes which are:

- Generation

- Estimation

- Scoring

- Pruning

- Promotion

- Merging

- Confirmation

 These steps link together as shown below in Figure 16.

Figure 16. T2T overview schematic

3.3.4.1 Generation
The Generation step is the first major step in the T2T

algorithm and is responsible for generating hypotheses

from new and previously uncorrelated tracks. The

generation of hypotheses are subject to thresholds which

limit the computational burden that comes when creating

hypotheses from tracks that obviously wont correlate.

These thresholds are:

- Upper- and lower-time span thresholds

- State thresholds

The time span thresholds ensure that the tracks are not

too close or too far in time to correlate with one another.

The state thresholds which check semi-major axis,

eccentricity and inclination ensure that the tracks have

roughly the same orbits so that it can avoid any obvious

tracks that won’t correlate.

Further to these thresholds, there is a requirement that for

a hypothesis to be generated it must come from two child

hypothesis. These child hypotheses must have all but one

track in common in order for the new hypothesis to be

generated which will result in the generated hypothesis

having one more track than the child hypotheses (All

common tracks plus each unique track from each child

hypothesis).

3.3.4.2 Estimation
The estimation step is responsible for the execution of the

IOD/OD for each hypothesis within the new hypothesis

list created by the generation step. The IOD is called for

hypotheses containing only one track and OD for all other

hypotheses. The outputs of this step consist of the state

vector, covariance matrix and measurement residuals, all

of which help with the scoring of hypotheses.

For the propagators used within the T2T algorithm, it is

desirable to have the ability to use both numerical and

analytical/semi-analytical propagators. Since there is a

trade-off between accuracy and speed between the types

of propagators used it is important to use the correct one

in the correct place. The analytical/semi-analytical

propagators are best used for when hypotheses have

fewer tracks due to its greater speed and larger

convergence windows which will help to avoid non

convergence on tracks that could possibly correlate when

the hypothesis has more tracks. On the contrary, when it

comes to validating and confirming that a hypothesis is

true, then it is desirable to use a numerical propagator

since the importance lies in the accuracy and not so much

the speed for a step as important as this.

Despite this plan being made, the Orbit determination

service in the DPC did not have an analytical/semi-

analytical propagator implemented. Due to this falling

outside the scope of the activity, it was not implemented,

and the tests were run with only the numerical

propagator. This will make the system less effective in

the problems it tries to solve, but it will not make results

any less reliable, bar the speed of course.

3.3.4.3 Scoring
This step is where the hypotheses are evaluated by a

‘Figure of merit’ (FOM) which is a value that represents

how well the tracks within a hypothesis correlate. In this

case the lower the FOM value the more likely it is that

the tracks within the hypothesis correlate. The FOM can

be seen as a Mahalanobis distance in the measurement

space demonstrated in Eq. 1.

𝑑2(𝐻) =
1

|𝐻|
∑

1

|𝑇|
𝑇∈𝐻

∑(𝑧 − �̂�)T(𝑷𝑧
0)−1(𝑧 − �̂�)

𝑧∈𝑇

(7)

Where d is the FOM, H is the hypothesis, |H| is the

number of tracks in the hypothesis, T is the track, |T| is

the number of observations in the track, z is the

measurement, ẑ is the a-posteriori computed

measurement and P0
z is the a-priori measurement

covariance.

This equation corresponds to the weighted root mean

squared (WRMS) and allows each track to contribute

equally to the FOM, else, this could encourage the

production of false positives or false negatives depending

on the situation.

3.3.4.4 Pruning
The pruning step is a filtering step which will only allow

certain hypotheses through and all those that don’t meet

the criteria are removed from the system (the tracks are

not removed, just the hypothesis). The criterion for

passing this step is for hypotheses to have a FOM value

lower than a threshold configurable by the user. A

different value can be configured for hypotheses with 1,

2, 3 and 4+ tracks in a hypothesis. It is important to not

configure this value to be too low for hypotheses with

low number of tracks as it is not desirable to filter out

hypotheses that potentially could correlate too early due

to them having a high FOM. On the flip side, it is also not

good to have these thresholds too high so as to allow

through so many hypotheses that it becomes a

computational burden.

3.3.4.5 Promotion
The promotion step is where hypotheses that meet certain

criteria can be considered true and correlated. To be

considered for promotion, the criteria that a hypothesis

must meet are that a hypothesis must contain a minimum

of 4 tracks, and it must have a FOM value lower than a

user defined threshold value, similar to that from the

pruning step. The hypotheses that pass is then sorted by

increasing FOM and are promoted in order starting with

the lowest FOM.

When a hypothesis is promoted, it is considered that a

promoted track cannot belong to more than one

hypothesis which could suggest that it belongs to more

than one object. This is not possible so when a hypothesis

is promoted, all other hypotheses that contain a track that

belongs to the promoted hypothesis are invalid and

removed from the system.

3.3.4.6 Merge
This step can be seen as optional as all hypotheses that

make it to this step can be deemed accurate enough to add

to the database. However, it has been included in this

implementation. The objective of the merging process is

to attempt to combine two already promoted hypotheses.

This helps to avoid adding duplicate hypotheses to the

database. The two selected hypotheses must pass time

span thresholds and state thresholds similar to that in the

generation step, but with more strict values. If the two

hypotheses pass this then they are merged, estimated and

scored as one hypothesis in the same way as in the

previous steps. Then if the merged hypothesis results in

the lower FOM value than that of its two child hypotheses

then it is validated, and the child hypotheses are removed

from the validated list.

3.3.4.7 Confirmation
The confirmation step involves using an OD model that

is more accurate that what has been used already in order

to fully confirm and have even more confidence that the

promoted hypotheses are correlated. However, this was

not possible to do with the current state of the OD service

as it did not have the capability of using such an OD

model at the time of implementation.

3.3.5 T2T Integration within SST Core

Software

In the context of the SST Core Software, the tool DPC is

the one in charge of processing observations, performing

object correlations, computing orbit propagations and

assigning planning requests to sensors based on the status

of the objects catalogue.

Figure 17. T2T implementation within DPC Correlation

Service

Figure 17 shows how the T2T algorithm has been

included in the Correlation Service within DPC

Processor execution chain. As explained in section 3.1.4,

Once an observation is ingested and its processing starts,

a DPC Processing Unit will try to correlate it with an

object that already exists in the catalogue.

In the previous implementation, if the observations

present in the input tracklet are not correctly correlated to

any object in the catalogue, a new object would be

generated with only the orbital information from that

uncorrelated tracklet. However, with the new

implementation, once a tracklet could not be correlated

to an object in the catalogue, its information is now sent

to the T2T algorithm. Once ingested, the algorithm will

send the tracklet observations through all the steps

defined in section 3.3.4, trying to correlate them to

already existing tracklets that did not have enough

information to conform a valid new object. From this

point three different outcomes can be faced:

- The tracklet is associated to a hypothesis with

enough information to generate a new object: in

this case, this information will transcend into the

database by creating a new object in the

catalogue and removing the hypothesis.

- The tracklet is associated to a hypothesis

without enough information to generate a new

object: in this situation, the hypothesis will

remain incomplete waiting for more tracklets to

be ingested. No new objects are generated, and

no hypotheses are removed.

- The tracklet is not associated with any

hypothesis: in this case, a new hypothesis is

generated with a single tracklet. This new

hypothesis will remain incomplete until new

information is ingested.

4 REFERENCES

1. Pastor, A., Sanjurjo-Rivo, M. & Escobar, D. (2022).

Track‑to‑track association methodology for

operational surveillance scenarios with radar

observations. CEAS Space Journal (2023), 535-551.

2. Comparison of Reentry Breakup Measurements for

Three Atmospheric Reentries. Feistel, A, Weaver, M,

Ailor, W. s.l. : 6th IAASS Conference, 2013.

