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ABSTRACT

The accumulation of space objects in Low Earth Orbit
(LEO) from decades of unregulated activities and recent
mega-constellations has heightened collision risks among
active satellites and debris. Effective disposal is critical
and can be performed via on-board propulsion—either
electric or chemical—with the optimal strategy balancing
maneuvering effort against collision probability based on
orbit and residence time. This work presents a multi-
objective approach to automating the search for opti-
mal deorbiting maneuvers that minimize propulsive ef-
fort and collision probability. The method utilizes a
non-singular orbital elements formulation, accounting for
Earth’s oblateness and atmospheric drag, as modeled by
the NRLMSISE-00, whose parameter uncertainties are
analyzed in the results. The approach extends the capa-
bilities of the DRAMA’s ARES tool, enabling collision
probability computation throughout the deorbiting pro-
cess via trajectory discretization. The resulting Pareto
front provides mission designers with a range of optimal
solutions and highlights how different propulsion tech-
nologies and varying solar activity impact disposal strate-
gies, ultimately contributing to the long-term sustainabil-
ity of LEO operations.

Keywords: space debris; deorbiting; collision probabil-
ity; multi-objective optimization.

1. INTRODUCTION

The accumulation of space debris in Low Earth Or-
bit (LEO) increasingly threatens satellite operations and
long-term space sustainability. This problem is worsened
by the increasing number of satellites launched and the
rise of mega-constellations. Consequently, the probabil-
ity of collisions rises, which increases the risk of col-
lisions and can result in satellite fragmentation and the
generation of additional debris, as seen in events such as
the 1996 Cerise-Ariane incident, the 2007 Chinese anti-
satellite test, and the 2009 Iridium-Cosmos collision [21].
The most extreme outcome is captured by the Kessler
Syndrome, which suggests that collisions could eventu-
ally trigger a chain reaction, making LEO entirely unin-

habitable for human activities.

Addressing these challenges requires the implementation
of effective debris mitigation strategies, such as Post-
Mission Disposal (PMD) and Active Debris Removal
(ADR). These two fundamental approaches are crucial
for reducing the growing volume of space debris and en-
suring the long-term sustainability of space operations.
The European Space Agency’s Zero Debris [11] approach
underlines the need for optimized deorbiting maneuvers.

A critical concern throughout these strategies is the colli-
sion risk, which affects both operational and decommis-
sioning phases. Reducing collision probability is essen-
tial for ensuring mission safety and the long-term sustain-
ability of space activities.

Several methodologies are used to estimate collision
probability in the context of space debris and celestial
mechanics. They are connected through their approach
to modeling the likelihood of space object collisions, but
they differ in their assumptions, mathematical formula-
tions, and computational implementations. Some exam-
ples include LUCA2 [19], the CUBE algorithm [5], and
Öpik’s theory [26, 24]. However, in the context of this
work, the ARES [9] module—part of ESA’s DRAMA
tool [10]—is used to accurately compute collision risks
during the deorbiting phase.

The literature highlights a range of strategies for deorbit-
ing that aim to reduce both fuel consumption and colli-
sion risks in LEO. Chen et al. [2] propose a three-stage
active debris removal method where a primary spacecraft
deploys multiple small, electrically propelled satellites.
These satellites push debris into lower orbits using ge-
netic algorithms and two-impulse rendezvous techniques,
optimizing the mission sequence under constraints such
as fuel, time, and available spacecraft. While effective,
this approach may benefit from a deeper analysis of per-
turbative forces.

Verri et al. [22] focus on optimizing low-thrust, many-
revolution transfers by employing a modified version of
Edelbaum’s theory that accounts for the J2 effects. Their
work targets either minimum deorbit time or reduced pro-
pellant consumption, emphasizing the importance of op-
timal thrust switching strategies in achieving efficient de-
orbiting.
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Gaglio et al. [14] introduce a drag-based deorbiting
method that leverages changes in a spacecraft’s aerody-
namic profile to enhance atmospheric drag. Using MAT-
LAB’s GPOPS-II and an hp-adaptive Gaussian quadra-
ture orthogonal collocation method, they derive time-
optimal decay trajectories under an exponential atmo-
spheric model. This strategy, while precise for circular
orbits, could be further improved by incorporating real-
time control methods and more realistic process models.

Complementing these active approaches, Colombo et al.
[3] and Fukii et al. [13] investigate passive deorbiting
techniques. Colombo et al. compare solar sails and
balloons by balancing re-entry time against cumulative
collision probabilities, whereas Fukii et al. assess the
use of low-thrust laser-ablation methods to maintain col-
lision risks within safe limits. Finally, Radtke et al.
[18] integrate active and passive deorbiting measures in
mega-constellation operations to mitigate long-term de-
bris risks, ensuring sustainable use of increasingly con-
gested orbital environments.

As highlighted in the literature review, previous studies
on decay optimization primarily focus on traditional ob-
jectives such as propellant consumption or decay dura-
tion. In contrast, this work introduces the incorporation
of collision risk into a multi-objective optimization pro-
cess.

Furthermore, this work proposes a methodology to im-
prove the estimation of collision probability during the
decay phase, thereby enhancing the reliability and accu-
racy of the results.

The analyses presented focus on low-thrust propulsion
systems, which have gained prominence in recent years,
though the methodology can also be applied to other re-
entry technologies.

The content of this article is structured as follows: Sec-
tion 2 introduces the problem along with the necessary
mathematical foundations, followed by Section 3, which
provides a detailed description of the proposed methodol-
ogy. Section 4 then presents numerical applications of the
methodology, while Section 5 summarizes the key find-
ings and conclusions.

2. PROBLEM STATEMENT

The decommissioning phase of a satellite is a critical
aspect of mission design, requiring passivation of haz-
ardous equipment and removal from congested orbital
regions. In LEO, this translates into deorbiting maneu-
vers, whose design requires careful balance of multiple
factors, including the duration, the amount of resources
expended, and the risk of collision with other bodies.

This problem can be treated as a multi-objective opti-
mization problem, which is presented alongside its key
components in the following subsections.

2.1. Optimization Problem

The optimization problem, whose results are shown in the
following chapter, is a control problem in which the goal
is to minimize a set of objectives while ensuring compli-
ance with system dynamics and constraints.

Mathematically, the problem is formulated as follows:

minu∈U J(t,y(t)),

subject to ẏ(t) = fd(t,y(t),u(t))

y(t0)−ψ0 = 0,

y(tf )−ψf = 0,

(1)

where y represents the state of the dynamical system, and
u the controls, which are the design variables. The ob-
jective vector J contains the objectives to be minimized,
which could include a combination of ∆V , propellant
mass (mp), decay duration (tf ) and the probability of col-
lision throughout the decay (pc).

The states are subject to dynamics, represented by the
function fd, and a set of boundary conditions, expressed
by the vectors ψ0 and ψf , for the initial and final condi-
tions respectively.

2.2. Deorbiting dynamics

The dynamics of the decay phase in Eq. (1) is described
by the following differential equations system:

ẏ(t) = fd = A(y(t))u(t) + b(y(t)), (2)

where the matrix A and vector b are defined as in [4],
representing Gauss variational equations. The state vec-
tor contains the Modified Equinoctial Elements (MEE),
namely p, f , g, h, k, and L, and the satellite mass (m):

y = [p, f, g, h, k, L,m]T . (3)

It is possible to transform the MEE formulation into Clas-
sical Orbital Elements (COE), via the transformation (ϕ)
[25]:

ycoe = ϕ (ymee) , (4)

where ymee ⊂ y. It is possible to apply the inverse trans-
formation ϕ−1 to retrieve MEE from COE. This allows
to specify the boundary conditions for the problem in an
easy manner. In particular, ψ0 contains the orbital ele-
ments and the initial mass. On the other hand, the only
element fixed in the final conditions is the final semi-
major axis (af ), whereas the other components are left
free. Therefore, ψf = [a(tf )− af ].

The perturbations considered in Eq. (2) include Earth’s
oblateness effects (specifically the J2 harmonic), mod-
eled using the formulation from [4], and atmospheric



drag, computed with the NRLMSISE-00 density model
[17].

2.3. Guidance policy

The optimization problem outlined in Eq. (1) requires
finding the time-dependent controls, u, which are
bounded within a set U and minimize a given set of ob-
jectives. In this work, the following guidance policy is
adopted:

α∗ = π + arctan

(
e sin(θ)

1 + e cos(θ)

)
, β∗ = 0, (5)

in which α∗ is the optimal in-plane angle, β∗ the opti-
mal out-of-plane angle, e the orbit eccentricity and θ the
current true anomaly.

This policy fundamentally states that to decrease the
semi-major axis, it is best to direct the thrust in plane and
opposite to the velocity vector [6]. This represents near-
optimal guidance for minimum-energy solutions varia-
tions of semi-major axis, under the assumption of circular
orbits, a condition generally satisfied in low-thrust trajec-
tories.

Due to the adoption of this guidance and the constraints
imposed, the firing time, called tthr, is the only remaining
design variable of the problem.

The evaluation of the objectives from Eq. (1) can be car-
ried out via numerical integration and post-processing of
the results obtained. The propellant mass (mp):

mp = m(t0)−m(tf ), (6)

whereas the ∆V —which is fundamentally equivalent to
mp— can be obtained applying Tsiolkovsky, and the de-
cay time (tf ) is the time at which the terminal conditions
are met (the re-entry boundary is reached).

2.4. Collision probability

The computation of probability of collision (P ) between
two objects can be found integrating the normalized
Gaussian probability density for the position covariance
(f(x, y, z)):

P =

∫ ∫ ∫
V

f(x, y, z)dx dy dz, (7)

in which the objects are usually assumed to be spheres
[16]. This equation provides a general tool to compute
the probability of collision between two objects, which is
critical for the estimation of collision events.

However, for design purposes, due to the large amount
of debris, and the unknown location and objects encoun-
tered throughout the mission, a flux approach is preferred.

A flux approach approximates populations of debris and
their evolution over time, which is a function of the
launches, satellite operations, and the decay of debris and
satellites. MASTER [8] represents one of these spatial
and temporal models, providing the flux for different de-
bris sizes.

Ultimately, the cumulative probability of collision (pc)
is computed using the trajectory history, thus the states
over time y(t), obtained as the integral over time of the
instantaneous probability:

pc =

∫ tf

t0

P (t,y) dt. (8)

3. METHODOLOGY

The methodology used to solve the optimization problem
outlined in the previous section is illustrated in Figure 1
using the Design Structure Matrix (DSM) standard. The
schematic represents the key inputs, outputs, and process
blocks in a sequential framework, each of which is de-
scribed below.

The process begins with the optimizer (a line search in
this case, though alternative gradient-based or heuristic
methods can be used), which selects a firing time (tthr)
(Step 1). Parameters such as the drag area (Ad), thruster
properties (T , Isp) are inputs at this stage. The system
then numerically propagates Eq. (2) using the guidance
policy from Eq. (5) (Step 2).

The propagation step produces the state trajectory
(y∗(t)), propellant mass (mp), and decay time (tf ), start-
ing from the initial state y(t0). These outputs are then
passed to the discretizer (Step 3), which generates a dis-
cretized trajectory of n intervals (td and yd).

Finally, ESA’s software tool Assessment of Risk Event
Statistics (ARES) is executed (Step 4), provided of the
collision area (Ac), which represents the size of the ob-
ject, and the maximum and minimum particle size (ps)
computing the cumulative collision probability (pc) ac-
cording to the procedure detailed in the following section.

The optimizer iterates over the steps described, ultimately
generating the set of optimal objectives (m∗

p, t∗f , p∗c ),
which typically results in a multi-dimensional Pareto
front.

Figure 1: Design structure matrix of the methodology.



3.1. Enhanced collision probability computation

A key contribution of this work is an enhanced method
for computing collision probability along the deorbiting
trajectory. This method corresponds to Steps 3 and 4 in
Figure 1, where the trajectory is discretized and the col-
lision probability is computed using ARES, providing an
estimate over a varying orbit.

To understand the rationale behind this approach, it is es-
sential to review some key aspects of ARES.

3.1.1. Background: ARES collision probability model

ESA’s Debris Risk Assessment and Mitigation Analysis
(DRAMA) software evaluates space missions’ compli-
ance with international space debris mitigation require-
ments. Within DRAMA, the ARES module computes
the Annual Collision Probability (ACP) by assessing col-
lision risks based on averaged orbital elements and debris
flux data from MASTER [8].

ARES relies on a set of key assumptions:

• Spacecraft shape: is assumed to be spherical, with a
radius Rsc.

• Reference orbit: is described using averaged ele-
ments, excluding the true anomaly since the model
is not dependent on the location within the orbit.

Thus, the ACP is computed as:

ACP =

m∑
j=1

Fj · π · (Rsc + rj)
2
, (9)

where Fj represents the annual debris flux provided by
MASTER [8], for the j-th population group, Rsc is
the spacecraft radius (associated to its spherical cross-
sectional area [15]), and rj is the size of the correspond-
ing debris element.

Additionally, ARES requires values for the minimum and
maximum debris particle sizes (indicated by the vector
ps, and the initial epoch.

An important observation is that ARES computes the an-
nual collision probability for a nominal orbit, fundamen-
tally assuming that this orbit is maintained (for example
via station-keeping), hence does not cover evolving or-
bits, such as in the case of a decaying or deorbiting satel-
lite.

3.1.2. Probability of collision throughout decay

Building onto the concepts and observations from the
previous subsection, this work proposes an improved and
efficient methodology for computing the cumulative col-
lision probability along the deorbiting trajectory using
ARES.

The instantaneous collision probability P can vary sig-
nificantly for a satellite whose trajectory is evolving over
time, such as a deorbiting satellite.

Given the high computational cost of ARES runs, a tra-
jectory discretization strategy is adopted to reduce the
number of calls, and a schematic is presented in Figure 2.

Figure 2: Schematic of discretization.

The procedure developed follows these key steps:

1. Trajectory discretization: the output trajectory (y∗)
is discretized in n intervals, using either a time or
a semi-major axis (SMA) discretization. Based on
each discretization point, the remaining parameters
are interpolated into yd.

2. ACP computation: for each interpolated orbit, the
ACP is computed with ARES. This assumes a 1-year
constant orbit, as shown in Figure 2. Calling the
ARES computation function χa (Eq. (9)):

ACPk = χa(tk,yd,k) ∀k ∈ [1, n], (10)

where tk is the time spent in the k-th interval, a com-
ponent of the discretized time vector td, and yd,k is
the k-th component of the discretized trajectory yd.

3. Interval collision probability computation: the colli-
sion probability within an interval (Pk) is computed
as the ACP normalized by the time spent in each in-
terval:

Pk =
ACPk · tk

365 · 24 · 3600
∀k ∈ [1, n]. (11)

4. Probability of collision through the decay: by sum-
ming all the Pk, it is possible to obtain the collision
probability throughout the decay trajectory:

pc =

n∑
k=1

Pk, (12)

where n is the number of discrete trajectory inter-
vals.



Table 1: Simulation parameters.

Parameter Value Unit
F10.7a 150 -
F10.7 150 -
Ap 4 -
Minimum particle size 0.01 m
Maximum particle size 100 m
Drag coefficient 2.2 -
Reference area 0.06 m2

Mass 10.0 kg
Epoch year 2000 -

3.2. Analysis of the discretization intervals

By observing the methodology presented in the previous
subsection, we note that for sufficiently small intervals:

lim
n→∞

Pk = P, (13)

hence, Eq. (12) would converge to Eq. (8).

While a higher n improves accuracy, it also increases
computational cost. The proposed method balances effi-
ciency and accuracy, enabling automated collision prob-
ability computation along deorbiting trajectories.

This section analyzes discretization intervals to deter-
mine the minimum n needed for accurate results with re-
duced computational effort. Two discretization strategies
are compared: time-based and semi-major axis (SMA)-
based.

The analysis considers a satellite deorbiting from two
Sun-Synchronous Orbits (SSO) with different initial al-
titudes. The simulation parameters, listed in Table 1, as-
sume a simplified case where the drag area (Ad) and col-
lision cross-sectional area (Ac) are equal.

The first case examines an SSO orbit at 350 km altitude,
with initial COEs given by :

y0 =


6721.0 km

0.001
96.83°
250.36°
120.0°
0.0°

 . (14)

For this orbit, computations were repeated for different
values of n. Figure 3 illustrates the discretization for
n = 4 and n = 30 based on the satellite’s semi-major
axis. Increasing n improves the trajectory approximation,
while fewer intervals assume COEs remain constant over
longer periods.

However, this comes at the cost of higher computational
time, as more intervals increase the number of inputs to
ARES.
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Figure 3: Time discretization example for an initial aver-
age with 4 and 30 intervals.

Figure 4 shows the relative error compared to the n =
200 case for both time-based and semi-major axis-based
discretizations. This plot helps identify the point at which
the error stabilizes. Notably, for n ≥ 40, the relative error
remains below 5%, with only minor residual oscillations.
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Figure 4: Relative error versus discretization intervals for
time and semi-major axis-discretization in the case of an
SSO at 350 km.

To better understand this oscillating behavior, Figure 5
presents the annual collision probability for different dis-
cretizations n. With more intervals, the probability os-
cillates significantly, likely due to discretization effects
within MASTER’s internal flux models. Conversely,
fewer intervals introduce an averaging effect, smoothing
out fluctuations. Thus, a sufficient number of intervals
is essential to preserve the probability trend. Ultimately,
this result confirms the observed behavior of pc.



0 20 40 60 80 100

Elapsed time (day)

1

2

3

4

5

6

7

8
A

n
n
u

a
l

p
ro

b
a
b

il
it

y
o
f

co
ll

is
io

n
(-

)
×10−6

100

4

225

250

275

300

325

350

A
v
er

a
g
e

a
lt

it
u

d
e

(k
m

)

Figure 5: Annual collision probability and average alti-
tude for n = 4 and n = 100.

The second case examines an SSO orbit at 520
km altitude, with initial COEs given by y0 =
[6891.0km, 0.001, 96.45°, 250.36°, 120.0°, 0.0°].

Figure 6 shows a similar trend to Figure 4, but the higher
altitude case exhibits more erratic behavior for the SMA-
based discretization. This likely occurs because, with
SMA discretization, more points are concentrated in the
final part of the decay trajectory, where altitude changes
more rapidly. In contrast, the time-based discretization
distributes points more uniformly along the entire trajec-
tory.

For the time-based discretization, n = 40 appears to be
an appropriate minimum number of intervals.
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Figure 6: Relative error versus discretization intervals for
time and semi-major axis-discretization in the case of an
SSO at 520 km.

This analysis demonstrates that time-based discretization
converges more rapidly and exhibits greater stability in
deorbiting scenarios when evaluating collision probabil-
ity along the decay trajectory. Consequently, the time-
based approach is adopted in the numerical examples pre-
sented in Section 4.

Moreover, comparison with a single ARES run highlights

Table 2: Nanosatellite properties.

Parameter Value Unit
Top-facing area (A1) 0.23 m2

Lateral-facing area (A2) 0.30 m2

Frontal area (A3) 2.1 m2

Tumbling area (At) 0.877 m2

Initial mass (m0) 75.0 kg
Drag coefficient (CD) 2.2 -

the critical role of using a sufficiently high number of in-
tervals, as it significantly refines the collision probability
estimation. With n = 40 intervals in both cases, the esti-
mate improves by up to 40%.

4. RESULTS AND ANALYSIS

This section presents numerical examples evaluating the
effects of atmospheric drag uncertainty and propulsion
system selection.

4.1. Simulation settings

The study considers an SSO at 520 km altitude, a densely
populated region of LEO. The number of intervals is set
to n = 40, as discussed in the previous chapter. To en-
sure realistic results, satellite properties are based on a
commercial nanosatellite platform [1]. The satellite’s ge-
ometric configuration is illustrated in Figure 7, with de-
tailed properties listed in Table 2.

Figure 7: Schematic of the selected satellite (d1 = d2 =
480 mm; d3 = 620 mm).

The frontal area is used for the cross-sectional area
required in the collision probability computation (Ac),
while the drag area (Ad) is assumed to correspond to the
tumbling area, computed as:

At =
1

3
(A1 +A2 +A3) (15)

The propulsion systems’ performance considered are
based on commercial systems, including a Hall Effect



Table 3: Propulsion systems properties.

System HET FEEP ATHENA
Thrust (mN) 2.5 0.84 1.75
Specific impulse (s) 850.0 3200.0 1500.0
Power (W) 60.0 80.0 60.0
Propellant mass (g) 600 440 700

Thruster (HET) [12], a Field Emission Electric Propul-
sion (FEEP) [7] and ATHENA (electrospray) [23]. Their
properties are listed in Table 3.

4.2. Collision probability as objective

The first result presented is the generation of Pareto opti-
mal front using collision probability as an objective.

The propulsion system firing time (tthr) is the variable in
Eq. (1). A firing time of tthr = 0.0 corresponds to a nat-
ural decay trajectory, driven solely by atmospheric drag.
For a given thrust-to-mass ratio, there exists a maximum
value of tthr that results in a direct re-entry trajectory.

As an example, Figure 8 illustrates the evolution of the
average semi-major axis over time for two different fir-
ing times (30 and 45 days). The initial trajectory leg is
identical for both cases. However, at t = 30 days, one of
the trajectories enters a drag-only decay phase. This case
requires less propellant (lower ∆V ), but the decay time
extends to nearly 80 days, compared to about 46 days for
the other case.
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Figure 8: Average semi-major axis over time for different
firing durations (tthr).

Thus, by varying tthr a Pareto optimal front contain-
ing classical optimization objectives can be obtained, as
shown in Figure 9. Each point of the Pareto optimal front
represents a feasible solution, with a different decay pro-
file. The trade-off between time and propulsive effort is
evident.

This result is generated considering the mean magnitude,
nominal scenario Schatten prediction [20] and consider-
ing the FEEP thruster from Table 3.
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Figure 9: Propellant mass versus decay time, with firing
time as a parameter.

By applying the methodology presented in Section 3, it
is possible to obtain the collision probability for each
point. A new Pareto front can be explored: for example,
Figure 10 displays collision probability versus propellant
mass.

It appears that larger propulsive effort (higher ∆V , mp

and tthr), translates into a reduction of collision proba-
bility and risk. It is possible to see that this is related to
the reduction in decay time. Although this latter link is
easily identifiable via Eq. (8), this methodology allows
computing the probability and designing the deorbiting
maneuver based on the acceptable collision probability.
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Figure 10: Decay time versus propellant mass, with firing
time as a parameter.

4.3. Atmospheric drag uncertainty analysis

A study on the impact of atmospheric drag uncertainty
on the decay predictions has been carried out, apply-
ing the methodology outlined in the previous subsection.
Specifically, the Schatten atmospheric density prediction



bounds at ±2σ have been considered to generate maps of
probable deorbiting solutions.

Figure 11 extends the analysis from Figure 9, illustrat-
ing the spread introduced by the uncertainty considered.
Notably, when minimal propulsive effort is applied, the
final decay time uncertainty is substantial. Conversely,
increasing propulsive effort significantly reduces this un-
certainty.
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Figure 11: Decay time, propellant mass, and firing time
with ±2σ uncertainty bounds.

Figure 12 expands on Figure 10, depicting the evolution
of collision probability throughout the decay trajectory
as a function of propellant mass, with decay time repre-
sented by the color bar. While increased propellant ex-
penditure inherently reduces collision risk, the associated
uncertainty remains mostly unchanged.

0.1 0.2

Propellant mass (kg)

10−4

10−3

C
o
ll

is
io

n
p

ro
b

a
b

il
it

y
(-

)

+2σ

-2σ

0

1

2

3

4

5

6

7

8

9

D
ec

ay
ti

m
e

(y
ea

rs
)

Figure 12: Propellant mass, collision probability, and de-
cay time with ±2σ uncertainty bounds.

To further investigate these effects, Figure 13 illustrates
the correlation between decay time and collision prob-
ability. While longer decay times generally correspond
to higher collision probabilities, the specific decay tra-
jectory (considering all orbital elements evolution) intro-
duces slight variations in the collision risk estimation.
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Figure 13: Propellant mass, decay time, and collision
probability with ±2σ uncertainty bounds.

Finally, Figure 14 highlights the relationship between
collision probability and decay time. The red line rep-
resents the n = 1 case, corresponding to a single ARES
run on the initial orbit. Notably, this curve falls outside
the computed uncertainty bounds, demonstrating that the
methodology presented provides improvements beyond
the intrinsic uncertainty of the process.
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Figure 14: Decay time, collision probability, and propel-
lant mass with ±2σ uncertainty bounds. The result for a
single interval (n = 1) is also shown.

4.4. Propulsion system analysis

A comparison of three different electric propulsion tech-
nologies is presented in this section. The systems ana-
lyzed are based on three commercial products, and their
performance parameters are summarized in Table 3.

For all systems, the power consumption is compatible
with the satellite’s solar panel area and expected power
generation at end-of-life. This analysis assumes constant
solar activity, with F10.7 = 150 and Ap = 16.

Figure 15 illustrates the Pareto front of propellant mass
versus decay time for the three thrusters. As expected,



the FEEP system, with its higher specific impulse, re-
quires the least propellant. The HET system could, in
theory, enable the shortest decay times, but its maximum
available propellant imposes a constraint. Consequently,
ATHENA emerges as the fastest solution.
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Figure 15: Propellant mass versus decay time for propul-
sion systems considered.

Figure 16 presents the probability of collision throughout
the deorbiting trajectory as a function of firing time for
all the systems considered. The results indicate that the
FEEP system can reduce the collision probability to ap-
proximately 1.4 × 10−5 with a firing duration of about
112 days. The HET system achieves similar values, con-
strained by the propellant mass limitation (maximum mp

as indicated in the Figure). In a hypothetical scenario
with a larger propellant tank, the collision probability
could be further reduced to approximately 6× 10−6. Fi-
nally, the ATHENA system can lower the collision prob-
ability to around 7 × 10−6 with a maneuver duration of
68.5 days.
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Figure 16: Probability of collision versus firing time for
the systems considered.

5. CONCLUSIONS

This paper presents a multi-objective methodology
for optimizing deorbiting maneuvers, minimizing both
propulsive effort and collision probability. It integrates
orbital dynamics—accounting for Earth’s oblateness and
atmospheric drag—with a DRAMA’s ARES extension to
compute collision probability throughout the decay tra-
jectory via discretization.

An optimizer selects the firing time, followed by numer-
ical propagation and discretization. Collision probabil-
ity is computed for each interval using ARES, capturing
evolving orbital conditions. This iterative process yields
optimal solutions for propellant mass, decay time, and
collision probability, enabling a more accurate risk as-
sessment of deorbiting satellites.

Analysis of discretization intervals shows that at least
40 intervals balance computational cost and accuracy,
keeping the error below 5%. Time-based discretization
also ensures better stability and convergence than a semi-
major axis-based approach.

The study further examines atmospheric drag uncertainty
and propulsion system selection, revealing key findings:

1. The proposed methodology significantly improves
accuracy of the collision probability estimation
throughout the decay trajectory.

2. Higher ∆V /propellant mass reduces collision prob-
ability, mainly due to shorter decay time.

3. With model uncertainties (e.g., atmospheric den-
sity), low propulsion effort leads to significant decay
time variability, while higher effort improves pre-
dictability.

4. The methodology enables rapid propulsion trade-
offs: among the systems analyzed, FEEP is the most
propellant-efficient, while the electrospray achieves
the fastest decay.

5. This approach has broader implications, including
potential applications in policy-making and integra-
tion with future space traffic management frame-
works, as it allows more precise estimation of colli-
sion probability during the decommissioning phase.

In conclusion, this paper presents a methodology that
provides an efficient means to compute collision proba-
bility for deorbiting satellites, offering valuable insights
for optimizing decay strategies. The findings contribute
to space debris mitigation and inform mission planning.

Future work may focus on the study of more complex
guidance laws and the analysis of a broader range of deor-
biting technologies, such as chemical propulsion, tethers,
or drag augmentation systems.
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